Teaching Physics with the Physics Suite

Edward F. Redish

TABLE of CONTENTS

Preface

Chapter 1 Introduction and Motivation

Introduction
Typical materials for a physics class
A new alternative: The Physics Suite
Motivation

Who are we teaching and why?
The growth of other sciences
The goals of physics for all
Are we already achieving these goals?
Figuring out what doesn’t work and what we can do about it

Introducing Sagredo

Why Physics Education Research?

Knowledge as a community map
Building the community map for education
The impact on teaching of research on teaching and learning
Even good students get the physics blues.
I wouldn’t have believed it if I hadn’t seen it.

Some caveats

What this book is about

Chapter 2 Cognitive Principles and Guidelines for Instruction

The Cognitive Model
Models of memory
1. Working memory
2. Long-term memory
Cognitive resources for learning
1. Robust reasoning structures:
 Common naïve conceptions
2. Modular reasoning structures:
 Primitives and facets
3. Activating resources from everyday experience:
 Situated cognition

Implications of the Cognitive Model for Instruction: Five foothold principles
1. The constructivism principle
2. The context principle
3. The change principle
4. The individuality principle
5. The social learning principle

Some General Instructional Methods Derived from the Cognitive Model
Cognitive Conflict
Bridging
Restricting the frame
Multiple representations

Rethinking the Goals of Physics Instruction

Extended Content Goals

Chapter 3 There’s More than Content to a Physics Course: The Hidden Curriculum

A Second Cognitive Level
Expectations: Controlling Cognition

Expectations about learning
The structure of student expectations: The Hammer variables
Connecting to the real world

Metacognition: Thinking about thinking
Instructional techniques for improving metacognition

Affect: Motivation, Self-image, and Emotion
Motivation
Self-image
Emotion

Chapter 4 Extending our Assessments: Homework and Testing

Assessment and Evaluation
Giving Feedback to your Students
Homework
Table of Contents

Getting Feedback from your Students
Testing
 Designing exams
 Exams as formative feedback
Eight Types of Exam and Homework Questions
 Multiple-choice and short-answer questions
 Multiple-choice multiple-response questions
 Representation-translation questions
 Ranking tasks
 Context-based reasoning problems
 Estimation problems
 Qualitative questions
 Essay questions

Chapter 5 Evaluating our Instruction: Surveys

Research-Based Surveys
 Why use a research-based survey?
 Surveys and the goals of a class
 Delivering a survey in your class
Understanding What a Survey Measures: Validity and Reliability
 Validity
 Reliability
Content Surveys
 The FCI
 The FMCE
 The MBT
Attitude Surveys
 The MPEX
 MPEX Results
 Analyzing the MPEX
 Getting improvements on the MPEX
 The VASS
 Scientific dimension of the VASS
 Cognitive dimensions of the VASS
 The EBAPS

Chapter 6 Instructional Implications: Some effective teaching methods

Introduction
Research-Based Curricula
Models of the Classroom
 The traditional instructor-centered environment
 The active-engagement student-centered environment
The Population Considered: Calculus-Based Physics
 Characteristics of calculus-based physics students
 The hidden curriculum and problem solving
Some Active-Engagement Student-Centered Curricula

Chapter 7 Lecture-Based Methods

The Traditional Lecture
 A more interactive approach to the traditional lecture
Demonstrations
Peer Instruction / ConcepTests
Interactive Lecture Demonstrations (ILDs)
Just-in-Time Teaching (JiTT)

Chapter 8 Recitation and Laboratory-Based Methods

The Traditional Recitation
 A more interactive approach to the traditional recitation
Helping your teaching assistants give better recitations
Tutorials in Introductory Physics
 The structure of Tutorials
 Tutorials often focus on important but subtle points.
 Should you post solutions to Tutorial pretests and homework?
 What does it take to implement Tutorials?
 Tutorials produce substantially improved learning gains.
 Changing recitations to Tutorials doesn’t hurt problem solving.
 Students need to get used to Tutorials.
ABP Tutorials
 ABP Tutorials are mathematically and technologically oriented.
 Concept learning can be tied to the use of math.
Cooperative-Problem Solving
 Cooperative Problem Solving (CPS) relies on context-rich problems.
 Group interactions play a critical role.
Table of Contents

The work of the group is better than the work of the best student in it
Techniques for improving group interactions30

The Traditional Laboratory
Goals of the laboratory
Often, less actually happens in traditional labs than we might hope.
A more interactive approach to the traditional laboratory

RealTime Physics
RTP uses cognitive conflict and technology to build concepts.
RTP relies on psychological calibration of technology.
RTP labs are effective in building concepts.

Chapter 9 Workshop and Studio Methods

Physics by Inquiry
In PbI, students learn a few topics deeply.
Students may need help in changing their expectations for PbI.
Evaluations of PbI show it to be very effective.

Workshop Physics
Students in WP build their concepts using technology.
WP is developed through and informed by education research.
WP changes the frame in which students work.
Evaluations of WP show it to be highly effective in building concepts.

Chapter 10 Using The Physics Suite

The Idea of The Physics Suite
The Principles Behind The Physics Suite
The Elements of The Physics Suite
The Suite’s narrative text: Understanding Physics
Using the Suite in lab: RealTime Physics
Using the Suite in lecture: Interactive Lecture Demonstrations
Using the Suite in recitation sections: Tutorials
Putting it all together: Workshop Physics
Homework and exams: Problems and Questions

Evaluating instruction: The Action Research Kit
Suite compatible elements:
 Peer Instruction, JITT, and Cooperative Problem Solving
Using The Physics Suite in Different Environments6
The role of room layout
The role of facilitators
Four Case Studies: Adopting and Adapting Suite Elements
Using Suite elements at a small institution
 Gettysburg High School
 Pacific University
Using Suite elements at a large institution
 The University of Illinois
 North Carolina State University

Conclusion

Bibliography
Appendix (on Resource CD)

Sample Problems for Homework and Exams
 Estimation Problems
 Multiple-Choice and Short Answer Problems
 Representation Translation Problems
 Ranking Tasks
 Open-Ended Reasoning Problems
 Context-rich Reasoning Problems
 Essay Questions
 JiTT Problems (courtesy, Ellen Patterson)

Action Research Kit
 The Mathematical Modeling Conceptual Evaluation (MMCE)
 The Vector Evaluation Test (VET)
 Test of Understanding Graphics (TUG-K)
 Force Concept Inventory (FCI)
 Force-Motion Concept Evaluation (FMCE)
 The Mechanics Baseline Test (MBT)
 Energy Concept Survey (ECS)
 Conceptual Survey of Electricity and Magnetism (CSEM)
 The Electric Circuits Concept Evaluation (ECCE)
 Rate and Potential Test, versions A and B (RAPT)
 Wave Diagnostic Test (WDT)
 Determining and Interpreting Resistive Electric Circuits Concept Test (DIRECT)
 The Small Particle Model Assessment (SPMA)
 The Measurement Uncertainty Quiz (MUQ)
 Maryland Physics Expectations Survey (MPEX)
 The Views about Science Survey (VASS)

Bibliographic Resources

Useful Books: A list of books that contain discussions of student learning, innovative teaching methods, and interesting problems.