
Wigner’s little group for massless particles

If we use the four-vector convention xµ = (x, y, z, t), the gener-

ators of rotations around and boosts along the z axis take the

form

J3 =


0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

 , K3 =


0 0 0 0

0 0 0 0

0 0 0 i

0 0 i 0

 , (1)

respectively. We can also write the four-by-four matrices for J1
and J2 for the rotations around the x and y directions, as well

as K1 and K2 for Lorentz boosts along the x and y directions

respectively. These six generators satisfy the following set of

commutation relations.

[Ji, Jj] = iϵijkJk, [Ji, Kj] = iϵijkKk, [Ki, Kj] = −iϵijkJk. (2)

This closed set of commutation relations is called the Lie alge-

bra of the Lorentz group. The three Ji operators constitute a

closed subset of this Lie algebra. Thus, the rotation group is a

subgroup of the Lorentz group.

In addition, Wigner in 1939 [1] considered a group generated

by

J3, N1 = K1 − J2, N2 = K2 + J1. (3)

These generators satisfy the closed set of commutation relations

[N1, N2] = 0, [J3, N1] = iN2, [J3, N2] = −iN1. (4)

As Wigner observed in 1939 [1], this set of commutation rela-

tions is just like that for the generators of the two-dimensional

Euclidean group with one rotation and two translation gener-

ators, as illustrated in Fig. 1. However, the question is what

aspect of the massless particle can be explained in terms of this

two-dimensional geometry.



L3 =


0 0 0

i 0 0

0 0 0

 , P1 =


0 0 i

0 0 0

0 0 0

 , P2 =


0 0 0

0 i 0

0 0 0

 , (5)

applicable to the three-dimensional (x, y, z) space.

The L3 matrix generate rotations around the z axis. As for

the P1 and P2 matrices, they commute with each other, and

exp {− (uP1 + vP2)} =


1 0 u

0 1 v

0 0 1

 . (6)

If this matrix is applied to the (x, y, z) space,
1 0 u

0 1 v

0 0 1



x

y

z

 = .


x+ uz

y + yz

z

 . (7)

Thus P1 and P2 generate translations along the x and y directions

respectively.

Thus, the three matrices L3, P1, and P3 are the generators of

the two-dimensional Euclidean group. Furthermore, they satisfy

the following closest set of commutation relations.

[P1, P2] = 0, [L3, P1] = iP2, [L3, P2] = −iP1. (8)

Thus, the three matrices L3, P1, and P3 are the generators of the

two-dimensional Euclidean group, or the E(2) group. Let us

replace these generators by J3, N1, and N2 respectively. This set

of commentators become that for the little group of the massless

particle given in Eq.(8).

Wigner observed this in his 1939 paper. Thus the little group

for massless particles is locally isomorphic to E(2). However,

what physical transformations do these translation-like N1 and

N2 perform? Wigner did not provide the answer to this question.
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Figure 1: Transformations of the E(2) group and the cylindrical group. They share the

same Lie algebra, but only the cylindrical group leads to a geometrical interpretation of

the gauge transformation.

Without realizing this as a Wigner problem, Kuperzstych in

1976 noted that they generate gauge transformations [2]. Then

what happens to the E(2) group with two-independent transla-

tional degrees of freedom? In order to answer this question, we

note the commutation relations for the E(2) remains invariant

under the following replacements.

P1 → Q1 = −P †
1 , P2 → Q2 = −P †

2 , (9)

with

Q1 =


0 0 0

0 0 0

i 0 0

 , Q2 =


0 0 0

0 0 0

i 0 0

 . (10)

These generators lead to the
1 0 0

0 1 0

u v 1



x

y

z

 = .


x

y

z + ux+ vy

 . (11)

Indeed this transformation leave the x and y variable invariant,

but changes the z component.

Indeed, this question has a stormy history, and was not an-

swered until 1987. In their paper of 1987 [3], Kim and Wigner

considered the surface of a circular cylinder as shown in Fig. 1.
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For this cylinder, rotations are possible around the z axis. It is

also possible to make translations along the z axis as shown in

Fig. 1. We can write these generators as

L3 =


0 −i 0

i 0 0

0 0 0

 , Q1 =


0 0 0

0 0 0

i 0 0

 , Q2 =


0 0 0

0 0 0

0 i 0

 , (12)

applicable to the three-dimensional space of (x, y, z). They then

satisfy the closed set of commutation relations

[Q1, Q2] = 0, [L3, Q1] = iQ2, [L3, Q2] = −iQ1. (13)

which becomes that of Eq.(8) when Q1, Q2, and L3 are replaced

by N1, N2, and J3 of Eq.(3) respectively. Indeed, this cylindrical

group is locally isomorphic to Wigner’s little group for massless

particles.

Let us go back to the generators of Eq.(3). The role of J3
is well known. It is generates rotations around the momentum

and corresponds to the helicity of the massless particle. The N1

and N2 matrices take the form

N1 =


0 0 −i i

0 0 0 0

i 0 0 0

i 0 0 0

 , N2 =


0 0 0 0

0 0 −i i

0 i 0 0

0 i 0 0

 . (14)

The transformation matrix is

D(u, v) = exp {−i (uN1 + vN2)}

=


1 0 −u u

0 1 −v v

u v 1− (u2 + v2)/2 (u2 + v2)/2

u v −(u2 + v2)/2 1 + (u2 + v2)/2

 . (15)

If this matrix is applied to the electromagnetic wave propagating

along the z direction,

Aµ(z, t) = (A1, A2, A3, A0)e
iω(z−t), (16)
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which satisfies the Lorentz condition A3 = A0, the D(u, v) matrix

can be reduced to

D(u, v) =


1 0 0 0

0 1 0 0

u v 1 0

u v 0 1

 . (17)

If A3 = A0, the four-vector (A1, A2, A3, A3) can be written as

(A1, A2, A3, A0) = (A1, A2, 0, 0) + λ(0, 0, ω, ω), (18)

with A3 = λω. The four-vector (0, 0, ω, ω) represents the four-

momentum. If the D matrix of Eq.(17) is applied to the above

four vector, the result is

(A1, A2, A3, A0) = (A1, A2, 0, 0) + λ′(0, 0, ω, ω), (19)

with λ′ = λ + (1/ω) (uA1 + vA3). Thus the D matrix performs a

gauge transformation when applied to the electromagnetic wave

propagating along the z direction.
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