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This seminar is dedicated to the memory of Nobel Laureate Eugene P. Wigner, exceptional physicist, engineer, educator, and philosopher, on the occasion of the one hundredth anniversary of his birth, November 17, 1902. Although because of the nature of his scientific work he is not well recognized outside the physics academic community and even less by the general public, Wigner was unquestionably one of the great thinkers of the 20th  century. Born and educated in Hungary and trained as a chemical engineer in Hungary and Germany (he got his Doctor in Engineering degree in 1925), he developed an interest in physics (published his first paper in 1923) at a time physics was experiencing a profound conceptual revolution at the fundamental level, epitomized by the theory of relativity, the development of the nuclear model of the atom, and the quantum theory of matter and radiation, that affected profoundly science and technology. Eventually Wigner became one of the greatest physicists of all times, publishing about 590 papers and several seminal books, and receiving the Physics Nobel Prize in 1963, even though he never had a formal college physics education. It should be noted in passing that Wigner was one of a group of Hungarian physicists (John von Neumann, Leo Szilard, Edward Teller, Theodore von Karman, etc) that were educated in Hungarian schools, had exceptional Hungarian teachers, emigrated to the US in the 1930’s, collaborated during their professional lives, and made important scientific contributions, some of them Nobel Laureates. For that reason they are known collectively by the nickname The Martians1.

 It is very difficult to summarize in one lecture Wigner’s diverse scientific contributions. All that can be done is highlight some of his main contributions that though well known are worth reviewing, and briefly examine their far reaching consequences. I will review Wigner’s contributions to quantum theory (atomic spectra, angular momentum, invariance, symmetry, etc), nuclear physics (nuclear forces, nuclear reactions, neutron capture and diffusion, nuclear reactors, etc), and related topics of general interest (laws of nature, meaning and limits of science, consciousness, etc).

Quantum Theory.  During the early part of the 20th century the nuclear model of the atom became established as a result of Rutherford’s experiments. According to Bohr’s ideas, that were an extension of Planck’s quantization of the energy of oscillators, the nuclear model required to quantize the energy of atomic electrons, assuming they moved in stable non-radiative or stationary states. The frequency of the radiation emitted in a transition between two electronic stationary states was given by Bohr’s relation (E = h(, same as for Planck’s oscillators. In this way it was possible to explain the line spectra of H. What perhaps was most interesting was that a consequence (not the starting hypothesis) of Bohr’s theory was that the angular momentum of the atomic electrons also was quantized according to L = n
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.  Bohr’s theory had several limitations and to explain the spectra of atoms with more than one electron and of molecules several empirical ad hoc rules were formulated. It is interesting to note that Wigner’s two papers of 1925 and 1926 dealt with these problems. In particular in his 1925 paper2 Wigner wondered how the collision of two hydrogen atoms could result in molecules with discrete energy levels and rotating with an angular momentum quantized according to Bohr’s rule, and interpreted it as a broadening or uncertainty of the energy levels. Perhaps this was the start of Wigner’s interest in angular momentum.

Around 1926, with the work of Heisenberg, Born and Schrodinger, a new quantum theory emerged that eventually became based on Schrödinger’s differential equation  i
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2/2m)(2( + V(. This equation has two important properties. In the case of a central field it has spherical symmetry and therefore is invariant under transformations generated by the rotation group in 3D space that leave invariant the form x2 + y2 + z2 . A consequence of this symmetry is that the angular momentum L is a constant of motion. The second property is that the angular momentum is given by the operator L = ( i
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. The operator L commutes with the Hamiltonian in a central field and obeys the commutation relations L(L = i
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Lz, etc. The symmetries associated with Schrödinger equation and angular momentum led to the application of group theory to quantum mechanics. 

The importance of group theory as related to quantum mechanics was first recognized by Hermann Weyl and Eugene Wigner. Weyl emphasized in his papers of 1925-26 and in his book The Theory of Groups and QM (1928), the importance of group representation, both for finite and for continuous groups, stating that “the essence of … quantum mechanics is that there is associated with each physical system a set of quantities constituting a non-commutative algebra, the elements of which are the physical quantities themselves”, in accordance with Heisenberg original ideas. On his part Wigner fully developed the application of group theory to quantum mechanics and angular momentum to explain atomic structure, first in his papers of 1926-30, and then in his masterpiece Group Theory and its Application to the Quantum Mechanics of Atomic Spectra3 (1931), emphasizing the role of transformations and symmetry operations. In his 1927 paper, Wigner stated that “by simple symmetry considerations of the Schrodinger equation one can explain qualitatively an essential part of atomic spectra”, and in his book he stated that “a large part of the most relevant results can be deduced by considering the fundamental symmetry operations, … for which group theory is the adequate mathematical tool”.  Wigner developed the quantum theory of angular momentum and the associated algebra, in particular the group representation using rotation matrices that he defined, analyzed the importance of rotational symmetry for atomic spectroscopy, and applied it to the spectra of many-electron atoms, including the effects of electric and magnetic fields. For example, Wigner pointed out the fact that within a shell, the stationary states are characterized by the angular momentum and the associated symmetry, including parity, thus determining the nature of the allowed radiative transitions and other atomic properties. The further application of group theory and symmetry considerations to analyze molecular spectra (vibrational and rotational) and nuclear structure is well known.
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Wigner generalized the notion of angular momentum, defining the operator J that satisfies a commutation relation similar to that of the orbital angular momentum L, that is J(J = i
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Jz, from which it follows by algebraic calculations that J2 = j(j+1)
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, with j = 0, 1/2, 1, 3/2, 2,…and m = (j, ((j(1), ((j(2),…, that allowed to consider spin on the same basis as the orbital angular momentum. As Wigner elaborated in detail, the operators Ju, u =x,y,z, are the generators of the rotation group in 3D- space, and for a rotation with Euler angles (,(,(, the kets (jm> related to J transform according to R(((()(jm> = (m’(jm’> Djm’m((((), where R((,(,() is the rotation operator and  the matrices Dj((((), of order 2j+1, are the representations of the rotation group. If Ju = u.J, the operator corresponding to a rotation by an angle ( around the direction u is R((,u) = exp ((i( Ju), that for an infinitesimal rotation becomes R = 1( i(Ju. An operator H transforms under a rotation according to H’ = RHR+,  that for an infinitesimal rotation becomes H’ = H( i([Ju,H].  If H is invariant under the rotation then H’ = H. If Ju = u.J and H commute, then H’ = H, that is H is invariant under the rotation around u, that implies certain symmetry of H, and if H is the Hamiltonian, then Ju is a constant of motion. The dynamical consequences of this property are well known and will not be elaborated.  The important point is that these relations show the connection between angular momentum, invariance, rotational symmetry and constants of motion, something Wigner emphasized repeatedly as one of the relevant aspects of the laws of nature, but is often overlooked in physics courses. 

Wigner’s formalism for angular momentum, further developed by G. Racah and others, has had far reaching consequences as exemplified by its many applications to atomic, nuclear and particle physics and field theory. To mention a few results that Wigner considered were the most significant for the applications of the theory of angular momentum:  

1. The coupling of angular momenta, j = j1 + j2, with j = j1+j2. j1+j2(1,  …,(j1(j2(, is carried out  using the Wigner (or Clebsch-Gordan) coefficients <j1m1j2m2(j1j2jm>; Wigner indicated how to calculate them and extensive tables are available.  

2. An irreducible tensor TL of order L is a set of 2L+ 1 quantities TLm, where L = 0, ½, 1, 3/2, … and m = (L, ( (L-1), ( (L-2),…,  that transform under a rotation as T’Lm = RTLm R+, or T’Lm = (m’ T Lm’ DLm’m, where  the DL are matrices of order 2L + 1, representations of the rotation group; irreducible tensors comprise scalar, spinor, vector, tensor, etc, fields that have many applications (angular correlations, multipole radiation, etc)  

3. The Wigner-Eckart theorem separates the geometric from the physical features of an irreducible tensor TL, expressing the matrix element as  <j’m’(TLM(jm> = (2j’+1)-1 /2<jmLM(jLj’m’>(j’((TL((j), where the last factor is the reduced matrix element,  

4. The Projection theorem for vector operators, <jm’(T(jm> = [j(j+1)]-1<j(T.J(j><jm’(J(jm>, is an application of Wigner-Eckart theorem that beside showing that the matrix elements of vector operators are proportional to those of the total angular momentum, provides a theoretical justification to the vector model that had been introduced in the early 20s to explain several features of the atomic spectra (selection rules, effect of electric and magnetic fields, spin-orbit interaction, etc).

Another important contribution of Wigner was the application of group theory and angular momentum formalism to the Lorentz transformation that involves four variables x,y,z,t, a problem that had been considered earlier by group theorists and is important for relativistic quantum mechanics4. Rotations in a 4D space require a group, called the Lorentz group (that is part of the larger Poincare group), whose generators are four operators J((, with (,,( = x,y,z,t, that are the equivalent to the angular momentum operators in 3D space and correspond to rotations in directions perpendicular to the (( planes (that is transformations that leave invariant the expression x2 + y2 + z2 ( t2). These operators obey the commutation relations J(( J(( ( J(( J(( = i J((, that are the equivalent to those of the angular momentum operators in 3D space and generate a similar algebra. The  operator for a rotation of angle ( in a direction perpendicular to the plane (( is now R​(( = exp (i(J((). 

The group formalism and its application to describe fundamental transformation and symmetry properties, has proved to be very important in relativistic quantum mechanics, field theory (QCD and EW) and elementary particles (e.g. hadronic spectroscopy) , in which more elaborate groups, not related to rotations but to other symmetry operations, are used, as the many books and hundred of papers published on the subject show. This is sufficient to show that Wigner’s ideas about group theory and quantum mechanics have had a wider impact than the original application to atomic spectra. In fact the 1963 Nobel Prize was awarded to Wigner “for his contributions to the theory of the atomic nucleus and the elementary particles, particularly through the discovery and application of fundamental symmetry principles”.
 Although Wigner’s major contribution during this period was to the development of angular momentum formalism using group theory, he made several contributions to other areas of quantum physics. One area was the quantum theory of solids, dealing with problems such as Brillouin zones, crystal symmetry (his paper of 1924 dealt with rhombic structure of sulfur, showing an early interest in symmetry in solids), correlations of free electrons in metals, the effect of radiation in solids (Wigner effect), etc.  Some of these contributions can be found in the well known book by Fred Seitz5, who was Wigner’s first graduate student and one of his closest collaborators. 

Nuclear Physics. Wigner’s interest in nuclear physics dealt with understanding the atomic nucleus and the nuclear interaction, application of physics to the release of nuclear energy, and social issues related to living in the nuclear energy era. Although during the 30’s Wigner did some research in nuclear problems, such as the mass defect of helium, the first major contribution of Wigner to nuclear physics was to elucidate the nuclear force between nucleons. Since Chadwick’s discovery of the neutron in 1932 efforts were made to determine the force between nucleons (p-p,n-n,n-p) as different from the electric interaction between protons. Based on the analysis of n-p and p-p scattering experiments and the binding energies of the deuteron and 4He, Wigner proposed in 1933 that the nuclear force must be of very short range, of the order of 10(15m, charge and spin independent, and stronger than the p-p electric interaction. By similarity with the electric potential between charged particles, Wigner suggested to write the nuclear potential as VW(r) = V(r)[1 + a PM], where PM​ is the Majorana position exchange operator with the values ( 1, depending on whether the two nucleon state is symmetric or antisymmetric. Other expressions for the nuclear potential, including spin dependent and tensor forces have been proposed6. Now we know that the nuclear force is a residual force from the strong interaction among the quarks in the nucleons and that strictly speaking cannot be expressed in terms of an empirical potential function, but we may say that Wigner’s nuclear force was the beginning of theoretical nuclear physics and proved very useful to discuss the deuteron and low energy nuclear processes using potential wells. Wigner worked also on several problems related to nuclear structure. For example in 1937, jointly with E. Feenberg, Wigner applied group theory to analyze nuclei from 4He up to 16O, that later on he extended to nuclei beyond oxygen

Another of Wigner’s major contributions in nuclear physics, jointly with G. Breit, in 1936, was to the analysis of slow neutrons scattering and resonance capture. Soon after the discovery of the neutron, Fermi and his collaborators conducted experiments with neutrons that showed marked dependence of the cross-section on the energy of the neutrons, being particularly large for slow neutrons. Further experiments with neutrons and protons of different energies indicated that the energy dependence of  the reaction cross-section showed pronounced sharp and broad maxima, later on called resonances, for certain values of the energy of the incident particle. Breit and Wigner proposed6 that the reactions occurred in two steps, that is a capture with the formation of an intermediate “mysterious” state, and its subsequent decay, that is a + X ( C ( Y + b. The intermediate state became called the “compound” nucleus, after Bohr who elaborated this model and extended it to nuclear reactions not involving neutrons. The compound nucleus can decay into several other systems  or “reaction channels”, so that the outcome of the reaction is not unique. Thus the cross-section of a nuclear reaction depends on the probability of formation of the compound nucleus and the probability of its decay into the reaction products.

Extending the expression for the resonance scattering of radiation by an atom (that is similar to the response of a forced damped oscillator), Breit and Wigner showed7, by an elaborate calculation, that the cross-section of a nuclear process varies with energy roughly as [(E - E()2 + ((2/4](1, where E is the energy  of the initial system, E( is  the resonant energy of the compound nucleus state, and (( is the  energy width of the resonant state of the compound nucleus, that in turn depends on how fast it can decay into the reaction products, that is (( ( 
[image: image18.wmf]h

/ (t(, where (t( is the life-time of the resonant state. As it is well known the final expression depends inversely on the kinetic energy of the projectile (the slower the projectile the longer it stays within the target nucleus and the larger the probability of capture), the density of excited states of the compound nucleus (the closer the states, the larger is the capture probability and broader the resonance) and the relative probability of different decays (the compound nucleus has no memory of how it was formed), that is proportional to ((i /((, where i refers to one of the possible decay products, ((i is the partial width of the compound nucleus level for such decay, and (( = (i ((i.  Also if the compound nucleus has several energy levels, then the cross-section shows several maxima, that can be expressed in terms of the Wigner-Eisenbud many levels formula for the cross-section in terms of parameters of the compound nucleus. 

Breit-Wigner theory of nuclear reactions has been refined by Wigner himself and several of his collaborators and has proved to be a sound basis for studying many nuclear reactions. It also contributed to the formulation of the independent particle or shell model of nuclei by Mayer, Jensen and Suess around 1950 by showing that the energy levels of the compound nucleus are discrete . But even more important, the Breit-Wigner model has been fundamental for analyzing the behavior of neutrons in matter and for the development of the theory of neutron chain reactions, in which Wigner played an important role. Neutrons diffusing in a material suffer several processes, mainly elastic and inelastic scattering, losing kinetic energy (slowing down), and capture by the nuclei of the material. The relative probability for those processes depends on the neutron energy and the nature of the material, that in the case of a nuclear reactor is the “moderator” and the fissionable material. As it is well known a sustainable nuclear chain reaction depends not only on how neutrons diffuse and slow down in the moderator but also on how the moderator and the fissionable material are arranged, and on geometric factors (size, volume, shape, etc). Wigner, with the collaboration of A. Weinberg and others, carried out the necessary mathematical calculations in a relatively short time during 1940-1942. The theory has been presented in the comprehensive and monumental book by A. Weinberg and Wigner, “The Physical Theory of Neutron Chain Reactions”8, published in 1958. 

For the sake of completeness, it should be mentioned that around 1935 L. Szilard and Wigner had discussed the possibility of neutron chain reactions of the type (n,2n) in light nuclei (Szilard even obtained a patent in GB), but they did not pursue the idea because they thought it unfeasible, overlooking to consider that U nuclei are rich in neutrons and could be suitable for a chain reaction, and in addition nuclear fission was not discovered until 1938 by Hahn, Strassmann, Frisch and Meitner (even Fermi did not recognize that fission had occurred in some of his experiments in the early 1930’s in Rome); however soon after Bohr and Fermi reports on nuclear fission at the APS meeting in January 1939, Szilard, Wigner, Fermi and others saw the possibility of a neutron chain reaction based on uranium fission. It was the paper by N. Bohr and J.A. Wheeler on the liquid drop model of fission (Phys. Rev. 56,426 (1939)) in which the importance of the pairing energy was pointed out, showing the possibility of nuclear fission of  235U by slow neutrons, that made clear that a sustainable fission chain reaction was possible. Soon after it was recognized that 239Pu, a byproduct of the capture of neutrons by 238U, behaved as 235U for the same reason (both are even-odd nuclei rich in neutrons). Although it is well known, it should be mentioned that Wigner, together with L. Szilard and E. Teller, were instrumental in convincing Einstein, in August, 1939, to send President Roosevelt the historical letter that lead to the establishment in October 21 of the Advisory Committee on Uranium, in which Wigner participated. These were the initial steps toward the nuclear energy war effort in the US, that culminated in 1945 with the U and Pu bombs. The fascinating story of these events has been well documented and we do not need to repeat it here9. The important point for our purpose is that Wigner got involved from the very beginning in the theoretical work related to neutron chain reactions, and it is worth mentioning Wigner’s statement when the first nuclear chain reaction was achieved in December 2, 1942: ”Our equations worked”.

Wigner spent the years 1942-1945 at the Metallurgical Laboratory, at the University of Chicago, supervising the theoretical physics and nuclear reactor engineering group. This phase of Wigner’s life has been described beautifully by Alvin Weinberg10 in his paper “Eugene Wigner, Nuclear Engineer”, in Physics Today (October 2002, p. 42) and there is no point in repeating it here. Thus I will limit my exposition to highlight some points. Once it was demonstrated by E. Fermi and his collaborators on December 2, 1942, that a nuclear chain reaction is possible using graphite as moderator and natural U as the fissionable material, one of the next tasks was to design and build a nuclear reactor to produce plutonium. A closely related task was to study the effect of energetic neutrons and fission products on the materials of the reactor, that was essential to asses the useful life of the reactor. These tasks were carried at the Metallurgical Laboratory under Wigner’s guidance. (A parallel task was to enrich uranium in the 235U isotope, that was carried out at Oak Ridge).

 Soon after, it was decided to build Pu producing reactors at Hanford (It should be mentioned in passing that a key issue was to produce 239Pu while minimizing the production of 240Pu). Wigner, who in the 1920’s had been educated as a chemical engineer as mentioned earlier, was given the task to design the Hanford reactors. Wigner chose water as the coolant, and his design was used basically by E.I. du Pont de Nemours & Co. to build the three Hanford reactors, with a power  of 250 MW each. Wigner acted as consultant during the  construction of the reactors, reviewing changes in design when required. The Hanford reactors eventually produced the plutonium for the Trinity test in Alamo Gordo and one of the two bombs used in Japan (The other bomb used enriched uranium).   Wigner considered several other designs for nuclear reactors obtaining 37 engineering patents (!!), He was a strong proponent of breeder reactors (in fact he designed one) for optimizing the use of fissionable material and of nuclear power for generating electricity instead of using fossil fuels, since in his opinion assuring the supply of electric power was more important than the cost of producing it. 

Other activities. After the war Wigner proposed the establishment of what is now called the Oak Ridge National Laboratory (in Clinton, TN, where uranium enrichment was carried out during the war), served for one year as its research director, and established the Oak Ridge School of Reactor Technology, whose first director was Fred Seitz. Eventually Wigner returned to active academic life as a theoretical physicist in Princeton, where he had been during 1930-1936, as well as lecturing in several institutions around the world and publishing about 400 articles on physics and related subjects of public interest.  Wigner remained active practically until his death (his last research paper, Covariant Phase-Space Representation and Overlapping Distribution Functions, with Y.S.Kim, was published in 1989 in Phys.Rev.). Also he was in great demand to give lectures and seminars, proof that he was widely recognized as a great scientist, educator and thinker. I will mention some of Wigner ideas that concerned him most and that I consider of special interest for this event.

Wigner kept recurring to his favorite subject, the connection between symmetry, invariance, conservation principles and the “laws of nature”11, and insisted repeatedly that this should be brought to the attention of physics students. This subject is relevant to all areas of physics, specially nowadays in particle physics, e.g. to determine the angular momentum of a field or to organize the different fundamental particles according to the symmetries of their fields and interactions, for which different groups are required. Wigner made clear that symmetries and  invariance properties of a physical system are related to the geometric structure and dynamical laws of the system, and together with conservation laws determine the dynamical behavior of the system and restrict certain processes (such as the selection rules). Wigner distinguished symmetries and invariance properties of geometric nature (irrelevance of position, orientation, and time) from those of dynamical nature (invariance of the equation of motion under certain transformations such as Galileo, Lorentz, parity, charge conjugation, gauge transformations, etc), for which group theory is important, and was concerned that the two types of invariance appear disjoint and should be linked, for which he thought group theory should be an important tool. It should be pointed out that while symmetry in physics  is more related to the transformation properties of a system, symmetry is also important in chemistry for geometric reasons, and in art for aesthetic reasons.

To Wigner the laws of nature, that summarize the observed regularities and correlations in events (that are independent of the initial conditions) and the conservation principles and symmetries (that restrict the possible events), are the major results of the scientific endeavor (law of gravitation, Maxwell equations, quantum mechanics, etc). Quoting from his address at the Nobel Banquet, “science begins when a body of phenomena shows some coherence and regularities, and science consists in assimilating these regularities and in creating concepts which permit expressing these regularities in a coherent way”.  Accordingly Wigner insisted that physics does not endeavor to explain nature, only tries to explain and systematize the regularities observed in events and phenomena, that also show differences due to the diversity of initial conditions and structures (he used to mention planetary motion and atomic structure), for which “observation”, “measurement”, “concepts” and “principles” constitute the “epistemological” foundation (we may add that the construction of “models” is also very useful). 

 Wigner wrote extensively on issues that from the very beginning of QM were considered critical, such as the interpretation of QM and the problem of measurement, that have been the subject of many discussions that started with Heisenberg uncertainty principle and Schrodinger equation. Wigner was aware of the problem that measurement poses at the microscopic level and the role of the observer, because the “rules” of QM only permit probability connections between subsequent observations, and analyzed this  problem in great detail in several publications12. To present Wigner’s analysis in a modified and simplified form, the state vector ((( changes with time according to i
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d(((/dt  = H(((, where H is the Hamiltonian of the system. Since a measurement or an observation at time t1 is a special kind of interaction or discontinuous perturbation H1((t(t1) of the microscopic system that alters the normal time-evolution of the system, we may write i
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d(((/dt = (H + H1((t-t1))(((, that allows only a probabilistic estimate (uncertainty) of the effect of the observation /measurement on the state vector. Observations and/or measurements at successive times t2,t3, …, imply adding to the hamiltonian the terms H2((t(t2) + H3((t(t3) +…, that increase the uncertainty of the knowledge of the state vector. (The problem of observation and measurement is different at the macroscopic level). I believe these considerations are important to physics students.

Because he firmly believed in some unity in nature at the fundamental level and the need to reach an integrated understanding of the world, Wigner considered unsatisfactory to have four distinct types of interactions with widely different properties, a subject that is still of considerably interest in physics. (unification has been achieved partially with the electro-weak theory and research continues on GUT). For the same reason Wigner repeatedly insisted on the need to integrate or correlate the physical sciences (inert systems), the biological sciences (living systems), and the sciences of the “mind”, supporting more interdisciplinary research to reach a more unified understanding of the world as well as to make science more interesting expressing the hope that the idea to unify science, to make life more interesting, will be a recognized purpose of the world 13.  Although the goal of the “unity of the sciences” is highly desirable and many institutions have been established for this purpose, it has not been fully reached yet for reasons that can not be elaborated here, but one reason is because each science has its own set of problems (Wigner claimed that physicists had neglected life and mind sciences, but I would add the same is true in reverse). 

In particular it is interesting to note Wigner’s concern about the mind-body relation, or put in other terms whether there is a physical basis for consciousness (thoughts, desires, emotions), that he considered a most fundamental question14. He stated that consciousness and thought processes (the result or aggregate of physical impressions from the external world) are related to some physico-chemical structure (molecular, atomic, electronic) in each individual and that therefore quantum physics must play a role, somethimg that is not yet well understood in spite of the progress of neurosciences. Wigner made a remark in this respect that is worth mentioning: “although consciousness corresponds to the inner reality of an individual, the communication between the consciousness or inner realities of two individuals requires the intervention of the physical world or external reality, suggesting a connection between consciousness and the principles of physics”. The mind-body relation is a very complex issue that has been discussed for centuries and continues to be discussed by scientists, philosophers, theologians, etc, but it is still an open question and I believe physicists should pay more attention to it          

Wigner speculated over many other interesting subjects of epistemological or ethical character, many of them collected in Ref. 11. Because of time limitations I can only mention a few. One deals with the “limits of science”15, speculating on whether the growth of the collective store of knowledge about nature, that has changed and expanded considerably during the last century, is limited by the difficulties to advance in certain areas of science, by the human intellect, by economic or ethical reasons, or by nature itself. Another deals with the “effectiveness of mathematics”16 to express the laws of nature, or more specifically how mathematics enters physical theory and why some branches of mathematics are particularly useful in physics, when in his opinion mathematics is the science of logical operations, axioms and concepts invented for specific purposes, while physics deals with the regularities observed in nature for which ad hoc concepts and relations have to be formulated (I would add that mathematics allows to express the ideas and concepts in quantitative form and relate them in precise logical and symbolic form). Another subject is the problem of “reality”17 I already mentioned in connection with consciousness. Wigner claimed that each one of us face two realities, the content of our individual consciousness and the existence of everything else, a subject that has been discussed by many scholars. (I would add that the existence of “everything else” corresponds to the “objective” reality, while “individual consciousness” is the aggregate of the “observed” and “interpreted” realities). 

Wigner also discussed what he called the “scientist dilemma”: to know in advance that what he is doing may have far reaching consequences which he can not fully foresee, although he hopes it will be useful and benefit humankind. As he pointed out, although scientists are a small fraction of the world population (perhaps 3 %) scientists must be aware that their research efforts can affect the world by changing the modes of production, affecting the environment, and altering the way of life18. However scientists are visionaries that can not stop their search for knowledge because of that dilemma. This was the case of scientists working in the development of nuclear weapons. Wigner, who was fully aware that the work on nuclear chain reactions could end up in a most powerful weapon, commented to a friend (Andrew Szanton) a few years later: “we all wished that the nuclear chain reaction we had just achieved (in December 1942) could make man’s life happier and humankind less prejudiced” (quoted in Ref.1).

In this last respect it is appropriate to quote the New York Times obituary: Wigner was part of a remarkable group of  visionary scientists…who eventually transformed the modern world, to which it added that Wigner was the bold scientist who changed science’s perception of subatomic particles, or in more precise terms, our understanding of matter and fields.
I was honored and privileged to have known Wigner personally. That gave me the opportunity to appreciate  his exceptional qualities and brilliant intellect, and I wish to apologize for this incomplete summary of Wigner’s ideas. Also I am pleased to have participated in this event whose purpose has been to remind us of Wigner vision of the world, always very enlightening, though often expressed in the abstract language of mathematics, that is the tool of physics.

REFERENCES
1.George Marx, The Voice of the Martians. Hungarian Scientists Who Sshaped the 20th Century in the West. Akademiai Kiado, Budapest, 2001. Laszlo Kovac, Eugene P. Wigner and his Hungarian Teachers, Berzsenyi College, Szombathely, Hungary, 2002.

2. M. Polanyi and E.P.Wigner, Bildung und Zerfall von Molekulen, Zeit. fur Phys. 33,429 (1925) 

3. Eugene P, Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra, Academic Press, New York, 1959. Translation from original Gruppentheorie und ihre Anwendung auf die Quantemechanik der Atomspektren (1931). L.C.Biedenharn & H.Van Dam, Quantum Theory of Angular Momentum (Collection of original papers from 1927-1962), Academic Press, NY (1965). L.C.Biedenharn & J.D.Louck, Angular Momentum in Quantum Physics (Advanced comprehensive reference), Addison-Wesley (1981). E.U.Condon & G.H.Shortley, The Theory of Atomic Spectra, Cambridge Univ.Press (!935) (comprehensive treatment using angular momentum operators without reference to group theory)  For general didactical expositions see M.E.Rose, ElementaryTheory of Angular Momentum, John Wiley, NY (1957), or M.Alonso & H. Valk, Quantum Mechanics. Principles and Applications, Addison-Wesley, (1973).

4. E.P.Wigner, Annals of Math., 40, 149, (1939), Revs. Mod. Phys., 29, 255 (1957); V. Heine, Group Theory in Quantum Mechanics, Pergamon Press, (1960), Ch. 8. The Lorentz group was discussed earlier by H. Weyl in his book., and by B.L.van der Warden, Gruppentheoretische Methode in der Quantenmechanik, Springer Verlag (1932)

5. See e.g. their first joint papers, E. Wigner and F,Seitz, On the Constitution of Metallic Sodium, Phys. Rev. 43,804,(1933) and 46,509 (1934). Also F. Seitz, Modern Theory of Solids, McGraw-Hill, NY (1940). 

6. L.Eisenbud & E.P.Wigner, Nuclear Structure, Princeton Univ. Press (1958), Ch. 5; J.M.Blatt & V.F.Weisskopf, Theoretical Nuclear Physics,J. Wiley & Sons, NY (1952), Ch. 3.

7. G. Breit & E.P.Wigner, Capture of Slow Neutrons, Phys. Rev. 49, 519 (1936), and succeeding papers; also references quoted in 6.  

8. A.Weinberg & E.P.Wigner, The Physical Theory of Neutron Chain Reactors, University of Chicago Press (1958)

 9. See eg,  A.Pais, Niels Bohr’s Times, Clarendon Oxford, 1991, Ch. 20; R. Rhodes, The Making of the Atomic Bomb, Simon & Schuster, NY, 1986. For more personal narratives see eg. A.H.Compton, Atomic Quest: A Personal Narrative, Oxford Univ. Press, 1956; E. Teller, Memoirs, Perseus Publishing, 2001, Chs. 14-18; L. Fermi, Atoms in the Family, Chicago Univ. Press, 1954. 

 10. A. Weinberg, Eugene Wigner, Nuclear Engineer, Physics Today, October 2002, p. 42 

 11. E,P.Wigner, Symmetries and Reflections. Scientific Essays, Oxbow Press, Woodbridge (1979), Essays. 1-5. Also Wigner essays in J.A.Wheeler & W.Zurek, Quantum Theory of Measurement, Princeton Univ. Press, 1983 

 12. See eg. Essay 12 in Ref. 11.

 13. E.P.Wigner address at ICUS XII, 1983 

 14. E.P.Wigner, Essays 12 and 13 in Ref. 11, and The Existence of Consciousness, ICUS VII, 1977

 15. E. P. Wigner, Essay 16 in Ref. 11, and The Problems, Future and Limits of Science, ICUS VI, 1976

 16. E.P. Wigner, The Unreasonable Effectiveness of Mathematics in the Natural Sciences. Essay 17 in Ref.11

 17. E.P.Wigner, Essay 14 in Ref. 11

 18. E.P.Wigner, Essays 19 and 24 in Ref. 11, and Reflections on the Purpose and Role of Science, ICUS           XIII, 1984, and  IJUS, Vol.1. 1988 

 04/10/03

PAGE  
1

_1107177684.unknown

_1109840158.unknown

_1109928445.unknown

_1109928591.unknown

_1109840190.unknown

_1107196669.unknown

_1107866815.unknown

_1109789212.unknown

_1107867093.unknown

_1107336223.unknown

_1107196488.unknown

_1107196586.unknown

_1107177781.unknown

_1107177373.unknown

_1107177609.unknown

_1107177629.unknown

_1107177582.unknown

_1107175062.unknown

_1107175169.unknown

_1107174146.unknown

