Relativistic Contents in the Poisson Bracket

Let us consider the two-dimensional phase space consisting of x and p coordinates. Then, the linear canonical transformations consists of the rotation around the origin, namely

$$
\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)\binom{x}{p},
$$

and the squeeze along the x direction:

$$
\left(\begin{array}{cc}
e^{\eta} & 0 \\
0 & e^{-\eta}
\end{array}\right)\binom{x}{p}
$$

The rotation and squeeze are generated is generated by

$$
\sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \text { and } \quad i \sigma_{3}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)
$$

respectively. In order to construct a set of closed set of commutation relations, we have to introduce another matrix, namely

$$
i \sigma_{1}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)
$$

These three matrices are all imaginary, and they generate transformation matrices with real elements. These transformation matrices squeeze and rotate the two dimensional objects. They are area-preserving transformations, and are called canonical transformations.

Let us introduce new notations:

$$
J_{2}=\frac{1}{2} \sigma_{2}, \quad K_{3}=\frac{i}{2} \sigma_{3}, \quad K_{i}=\frac{i}{2} \sigma_{1},
$$

Then they satisfy the following closed set of consummation relations

$$
\left[J_{2}, K_{3}\right]=i K_{i}, \quad\left[J_{2}, K_{1}\right]=-i K_{2}, \quad\left[K_{1}, K_{3}\right]=i J_{2} .
$$

This set of commutation relations is exactly the same as the set for the group of Lorentz transformations applicable to two spacelike and one time-like directions. The generators applicable to the coordinate are given in Table ??

Table 1: Two-by-two and four-by-four representations of the $\mathrm{Sp}(2)$ group. The two-by-two representation is applicable to the two-dimensional phase space of x and p. The four-by-four matrices generate Lorentz group applicable to the space of (x, y, z, t).

	Sigma	Phase Space	Minkowski Space
J_{2}	$\frac{1}{2} \sigma_{2}$	$\frac{1}{2}\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$	$\left(\begin{array}{cccc}0 & 0 & i & 0 \\ 0 & 0 & 0 & 0 \\ -i & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
K_{3}	$\frac{i}{2} \sigma_{3}$	$\frac{1}{2}\left(\begin{array}{ll}i & 0 \\ 0 & 0\end{array}\right)$	$\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & i \\ 0 & 0 & i & 0\end{array}\right)$
	rotation	rotation around y	
K_{1}	$\frac{i}{2} \sigma_{1}$	$\frac{1}{2}\left(\begin{array}{cc}0 & i \\ i & 0\end{array}\right)$	$\left(\begin{array}{cccc}0 & 0 & 0 & i \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ i & 0 & 0 & 0\end{array}\right)$
boot along z			

In the four-by-four Minkowskian space, J_{2} generates rotations around the y axis:

$$
e^{-i \phi J_{2}}=\left(\begin{array}{cccc}
\cos \phi & 0 & \sin \phi & 0 \\
0 & 1 & 0 & 0 \\
-\sin \phi & 0 & \cos \phi & 0 \\
0 & 0 & 0 & 1
\end{array}\right),
$$

and the K_{3} and K_{1} matrices lead to Lorentz boost matrices

$$
e^{-i \eta K_{3}}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cosh \eta & \sinh \eta \\
0 & 0 & \sinh \eta & \cosh \eta
\end{array}\right)
$$

and

$$
e^{-i \lambda K_{1}}=\left(\begin{array}{cccc}
\cosh \lambda & 0 & 0 & \sinh \lambda \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\sinh \lambda & 0 & 0 & \cosh \lambda
\end{array}\right)
$$

along the z and x directions respectively.
These transsformations are illustrated in Fig. ??. These transformations in the Minkowskian space leave the y axis unchanged.

Figure 1: Rotation and squeezes in the two-dimensional space of x and P . The rotaton corresponds to the rotation around the y axis, while the squeezez correspond to the Lorentz-boosts along the z and x directions in the Minkowskian space, respectively.

