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Abstract 
Since 1983, the Maryland University Project in Physics and 
Educational Technology (M.U.P.P.E.T.) has been investigating the 
implication of including student programming in an introductory 
physics course for physics majors.  Many significant changes can 
result.  One can rearrange some content to be more physically 
appropriate, include more realistic problems, and introduce some 
contemporary topics.  We also find that one can begin training the 
student in professional research-related skills at an earlier stage 
than is traditional.  We learned that the inclusion of carefully 
considered computer content requires an increased emphasis on 
qualitative and analytic thinking.   

 

 

I. Introduction 
Since 1983, in an effort we refer to as the Maryland Project in 
Physics and Educational Technology1 (M.U.P.P.E.T.),  the authors 
and their colleagues at the University of Maryland have been 
studying what the impact is of introducing beginning students to 
programming at the start of the traditional calculus-based 
introductory physics course.   

The computer is more than simply a powerful calculator that allows 
students to multiply and add more quickly.  The computer adds 
orders of magnitudes to the individual's computational abilities.  As 
we know well in physics, when scales change by orders of 
magnitude, we have to look carefully for qualitatively new 
phenomena.   

The question we address in this paper is the following:   

•  What is the implication of the computer for teaching 
physics majors at the introductory level? 

To answer this we must considerthe answer to two related 
questions:  

•  What is it we want our students to learn? 

•  In what ways is the current introductory physics 
course inadequate? 

We assume that the broad general goal of the introductory physics 
course is to begin to prepare students to be professional physicists 
as well as to introduce them to the basic physics content.  We find 
that having the computer as part of the course affects significantly 
both the skills we can begin to train and the specific content. 
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A. Problems with the traditional physics curriculum 
The physics curriculum as presently taught was developed over 
thirty years ago.2  Although that change was a significant advance 
at the time, the curriculum has failed to develop since then.   

This might not be a problem if physics were a static field.  It is not.  
In the past thirty years we have seen an explosion of new 
understanding and power in a variety of subfields of physics 
ranging in scale from the substructure of the proton to the 
clustering of galaxies.  There have even been major breakthroughs 
in fields long thought to be understood.  Current developments in 
Newtonian mechanics are evolving into a theory of non-linear 
systems and chaotic behavior that may produce profound changes 
in the way we think about physics.3   

It is not only the content of physics that has changed.  The 
computer has changed the way the physics professional carries out 
his or her job.  The introductory student rarely gets any hint of 
modern developments or of the excitement of doing physics and 
learning new things about the world that no one has known before.  
The absence of active research and exciting new areas in the 
introductory physics course is a serious distortion of the profession. 

A second problem is that, although standard instruction introduces 
students to the basic content of physics, it provides almost no 
activities that illustrate how research is done -- the kind of work 
that professional physicists do day-to-day.  This problem has been 
noted in more general circumstances by education specialists who 
recommend a professional education that is more like an 
apprenticeship than current college education.4   Although many 
physics departments have programs to "get undergraduates into the 
research lab", in most cases their goal is to "expose" students to 
"real" research.  That is, the students become part of an existing 
research project.  Unfortunately, since most of them don't know 
enough physics to actually participate in designing the project or 
making research decisions, their activities tend to be menial. 

To decide what activities an undergraduate needs to do to begin to 
understand how to become a professional scientist ,we have to 
analyze the differences between the activities carried out by 
professional research physicists and introductory students.  Some 
of these are summarized in Table 1.   

Students:  Professionals: 

Solve narrow, pre-defined 
problems of no personal 
interest.  

Solve broad, open-
ended and often self-
discovered problems. 

Work with laws presented 
by experts.  Do not 
"discover" them on their 
own or learn why we 
believe them.  Do not see 
them as hypotheses for 
testing. 

Work with models to 
be tested and 
modified.  Know that 
"laws" are constructs. 

Use analytic tools to get 
"exact" answers to inexact 
models. 

Use analytic and 
numerical tools to get  
approximate answers 
to inexact models.  

Rarely use a computer. Use computers often. 

 

Table 1: Comparison of students' activities with those of a 
professional physicist. 

To professional physicists, much of the pleasure of doing physics is 
associated with satisfying curiosity and learning surprising 
relationships and analogies of structure.  Stimulating and satisfying 
one's curiosity requires starting with broad, naturally formulated 
questions and refining them successively in response to observation 
and analysis.  Very little of this joy of the profession is present in 
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the traditional introductory physics course.  Many students entering 
college today, even some of those identified as among the brightest 
and highest achievers, have been trained to associate learning 
physics with rote memorization and application of memorized laws 
in narrowly defined situations.  The traditional introductory course 
does little to disabuse them of these views.  Students who might 
have become excellent research physicists change their majors 
because they see physics as "solved": constraining, routine, and 
dull. 

A critical element in the activity of professional physicists, both 
theoretical and experimental, is getting the physics right.  This 
means understanding which physical principles can be ignored and 
which must be kept given the accuracy one wants to calculate or 
measure.  In physics, no theory or experiment ever calculates a 
result or measures an observable exactly, in the sense of a 
mathematical theorem.  Physics is not an exact science, rather, it is 
a science where we believe we understand the accuracy of our 
approximation.5  The art and creativity of the profession lie in 
viewing a complex situation and having the "empathy for the 
phenomena" to extract the simple principles that dominate the 
system.  Because introductory students perceive that they are 
working with laws and problems that have exact answers, they are 
cut off from this fundamental aspect of the profession. 

Removing the curiosity and creativity from physics often leaves it 
dry, obscure, and poorly motivated to the beginning student.  Only 
the most inspiring and dedicated teachers are able to even display 
the presence of these components of the profession in the 
introductory course.  To actually get the students to feel not only 
that the field possesses these characteristics, but that they 
themselves can actually perform innovative investigative physics 
seems like an unmeetable challenge.  Fortunately, many bright 
students still choose physics as a profession.  But fewer physics 
Ph.D.'s are granted today than two decades ago.  Competition from 
sciences that didn't exist in 1960 is becoming increasingly strong.  
Can we continue to attract the best students if we hide from them 
the excitement of contemporary problems and the roles of curiosity 
and creativity in the profession?  

B. Enter the computer 
The primary constraint that has kept the profession from 
introducing more creative science at an early stage is the limited 
mathematical ability of the introductory student.  Creative and 
open-ended problems using analytical tools require a level of 
mathematical sophistication not usually obtained by students until 
their third year of college.   In the past decade, however, there has 
been an immense growth in the power and availability of computer 
tools and technology.   More power is packed into a desktop 
computer the size of a breadbox than was available in mainframes 
thirty years ago.  Programming environments have been 
transformed from complex line editing with batch compiling in 
FORTRAN to systems with full-screen editors, fast compilers, and 
interactive debuggers in unified, easy-to-use environments in 
Pascal and structured Basic. These developments open the 
possibility that students could be given the computer power to 
solve more interesting problems in the introductory course with 
little training. 

A second aspect of computer use is that the power of the computer 
has become a major element in modern research physics.  Doing 
physics with the computer is not the same as solving analytic 
problems and is not the same as learning to use the computer in a 
computer science course.  In order that our majors learn to use this 
critical tool properly, it is important to give them an early start and 
specific training in solving physics problems with computers. 

II. What are our goals for teaching physics majors? 
Our primary goal is to transform the introductory calculus-based 
physics course so that students who have designated themselves as 
prospective majors can begin to both get training in a wide range of 
professional skills and develop an idea of what it would be like to 
be a physicist.  Although there is considerable discussion among 
physics educators of what content to include, discussion of the 
general skills we are trying to teach is much less common. 
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A. Skill analysis 
We analyzed the general skills we would want our students to have at 
the point they begin research on a Ph.D. thesis.  Certainly each 
particular sub-discipline has particular content elements they would 
like students to have (such as experience with a Camac crate or 
ability to program fast Fourier transforms),  but students who have a 
good grounding in strong general skills are able to successfully do 
research in almost any area that interests them.  An outline of the 
general process skills required is given in Table 2. 

 

 
1. Basic skills 
 A scientific framework 
 Number awareness 
 
2. Theoretical skills 
 Analytic skills 
 Estimation and natural 

scales 
 Approximation skills 
 Numerical skills 
 
3. Experimental skills 
 Error analysis 
 Mechanical skills 
 Device experience 
 Empathy for the apparatus 
 
4. General skills 
 Intuition 
 Large-problem skills 
 Communication skills 
 

 

Table 2: Skill analysis for physics students. 

We define two basic skills: having a scientific framework and 
number awareness.  By having a scientific framework we mean that 
the student must understand the "story-line" of science -- that 
science means observation, hypothesis, analysis, and testing against 
observation.  By number awareness, we mean that the student must 
understand that aspects of the real world may be quantified by 
measurement and that the results of our mathematical analysis can 
tell us about what is happening (or will happen) in the real world.  
This skill is a sine qua non of doing physics.  It is often assumed 
by the introductory physics teacher (incorrectly!) that students have 
a reasonable scientific framework.  Nunmber awareness is stressed 
in some introductory courses. 

We next add a set of theoretical or modeling skills.  The first in this 
group are analytic skills: students should be able to write equations 
from word problems, to solve a variety of equations, and to 
interpret their results in terms of the physical world.  Some aspects 
of these skills are stressed in traditional introductory courses.  
Other theoretical skills needed by physicists tend to be 
shortchanged in those courses, even when they are restricted to 
majors: estimation, approximation, and numerical skills.   

These skills are essential in learning to model physical systems and 
to understand the implications of models built by others.  Since 
physics is not an exact science, the "art" in the science is knowing 
what physical laws to apply under what circumstances and what 
additional complicating factors can be safely neglected.  We call 
this "getting the physics right".  It involves being able to estimate 
the size of an effect and to calculate corrections by understanding 
approximations.  Today, it often involves putting physical insight 
into and getting it out of a complex numerical calculation.  Yet 
these skills -- critical for both the professional physicist and the 
engineer -- are almost completely ignored in traditional 
introductory courses. 

Since physics is a science whose results are continually tested and 
evaluated against the real world, a physicist needs experimental 
skills as well as theoretical ones.  Majors are often trained in error 
analysis, mechanical skills, and given experience with a variety of 
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devices.  An experimental skill that we hope our students will 
develop as a concomitant part of their experimental experience is 
an "empathy for the apparatus".  By this we mean an understanding 
of what is happening in an experiment, what is being measured, and 
where the information lies.6  Yet this skill is primary to their 
understanding of what even basic physics means and how the 
equations we write down relate to the behavior of the real world. 

Finally, there are a number of general skills that all professionals 
must develop.  They must build an intuition for their field -- the 
ability to understand which tools apply in which circumstances and 
to have the complex network of internal checks that let them look 
at a wrong answer and have it not "feel" right.  They must learn 
large-problem skills; the ability to take a significant problem and 
break it down into component, solvable parts in an appropriate 
manner while keeping track of the overall goal.  They must also 
build communication skills.  In physics, as in any field, it does not 
suffice to do brilliant work in a notebook or in your head.  Physics, 
as is any field, is a social agreement of what it is we know.  To 
interact with the community, a physicist needs to be able to present 
his or her results both in oral and written form in a clear and 
compelling fashion.  This cluster of general skills is largely 
neglected in our professional training of physicists until they begin 
research in the second or third year of graduate school! 

B. Principles of computer use 
Our approach to the use of the computer in the classroom is based 
on three powerful principles: 

1. It is not enough to use the computer to illustrate 
examples from the current curriculum.  We must rethink 
the curriculum entirely from the ground up, now assuming 
the availability of the computer.  What can we teach with 
it that we couldn't teach before? 

2. The computer should not replace anything in the current 
environment: not the textbook, not the teacher, and not the 
laboratory. 

3. The student should run the computer, not the other way 
round. 

In our approach the student must play an active role.  Students must 
learn to use the computer in an open ended way.  The computer 
must be a powerful servant for the student, not a master. 

III.. The M.U.P.P.E.T. Environment 
For physics majors, our view of appropriate computer use implies 
that they will learn to program the computer themselves directly.  
In the past, this has represented a formidable obstacle to the use of 
the computer in physics courses.  We could not expect all students 
to come to the course prepared to develop interesting programs, 
nor could we afford to devote much time to teaching programming 
in the physics class. 

In order to overcome this barrier, we have developed modular 
programming materials that can be linked together by students to 
create sophisticated programs.  With these materials built in Pascal, 
we were able to reduce the programming overhead for the student.  
Good Pascal programs are easy to read and easy to set up, so the 
physics and the structure of the analysis is easy to understand.  We 
set up utilities for interactive input and for graphics output, and we 
provide self-documenting sample programs  that allow even non-
programmers to learn by example and to begin to build programs 
themselves without extensive training.  (See Fig.1 for an advanced 
example.)  Once they master Pascal, students can make an easy and 
straightforward transition to other professional languages such as 
FORTRAN or C.  

A. Description and history of the project 
We began M.U.P.P.E.T. in 1983.  Because physics majors at 
Maryland are taught in small classes separated from majors in 
engineering and other sciences, we decided to begin the project 
with those classes.  The introductory course for physics majors at 
Maryland is a three-semester sequence (Physics 171, 272, and 
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273).  One semester of calculus is a pre-requisite.  Many students 
arrive at Maryland with enough calculus to begin the course as 
first-semester freshmen.  Physics 171 is offered in two sections in 
the fall and one section in the spring.   

The computer and student programming have been used in 
introductory physics for majors at Maryland since 1985.  Our 
materials development culminated in 1988 with the production of a 
supplementary manual,  Physics with the Microcomputer.7  In the 
past three years, the M.U.P.P.E.T. materials have been used with 
more than 200 students in both lecture and lab sections.  The 
materials have been revised several times over the years as a result 
of student and faculty input. 

Informal polling of our students indicates that our physics majors 
enter college with a broad variety of backgrounds.  About one third 
of our incoming majors have extensive programming experience:  
they can program comfortably in two or more languages.  Another 
third can program in one language.  The rest of the students have 
little or no programming experience.  Even this group has had 
significant exposure to computers.  Almost all the students were 
able to master the required programming quickly and with enough 
skill to do computer homework problems and projects. 

Because our group is self-selected as physics majors, they tend to 
be somewhat better prepared and have higher incoming SAT math 
scores (average of verbal + math of about 1250) than our broader 
group of engineering majors.  This suggests that our results should 
be interpreted and extended with some care.8 

B. The utilities and libraries 
The M.U.P.P.E.T. environment provides a set of utilities for 
handling I/O and menus and a set of libraries to simplify various 
tasks.  The utilities package includes: 

data input screen procedures --  These let the programmer include 
exchange of data with a running program.  The program 
puts up a data window with variable fields.  An example is 

shown on the left side of Fig. 2.  The programmer can 
include default values and the user can modify one or 
more of the fields using the keyboard or mouse.  The user 
can modify the fields in any order and return to fields 
previously modified before choosing to go on with the 
calculation.  The code to produce this data screen is given 
in the procedure MakeDataScreen shown in Fig. 1. 

graph window procedures -- These let the programmer display 
output in one or more windows.  The programmer can plot 
any number of curves in a window.  The windows are 
scaled to a unit screen so the user never has to worry 
about details of pixel count and the variety of graphics 
displays and resolutions available.  Two graph windows 
are shown on the right side of Fig. 2.  The code to produce 
them is given in the procedures GraphSetup and 
PlotIt in Fig.1. 

menuing procedures -- These let the programmer give the user 
choices to branch the program in a variety of ways.  A 
sample of a menu appears at the top of the screen in Fig. 
4.   

parsing procedures -- These permit the programmer to let the user 
enter algebraic expressions into a running program and 
have the program interpret the results as strings of code, 
rather than just as strings of letters.   

The utility procedures are provided to the students in compiled 
form. 

A number of libraries have also been written and are provided to 
the students.  The include a variety of routines for solving Newton's 
second law in one and two dimensions, a set of binary search 
procedures for solving equations, and an animation library.9 
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C. Sample programs 
About 25 sample programs were developed at Maryland for this 
project using the M.U.P.P.E.T. utilities and environment.  These 
programs were carefully designed to make them easy to read and to 
modify.  They have been structured to provide examples of clear 
programming style.   

The code for the program PROJ1D is shown in Fig. 1 and the 
screen it produces is shown in Fig. 2.  This is a fairly sophisticated 
program and is used about halfway through the first semester.  
Students are asked to fill in the dummy procedure StepEuler to 
provide a solution using the Euler method.  A fourth order Runge-
Kutta routine is provided later using a similar calling statement.   

The sample programs play a critical role in the overall computer 
use.  Not only do they provide the students with concrete examples 
of computer use, they are flexible enough to permit students with 
limited programming experience to modify them to explore much 
more complicated systems as part of their independent project 
work. 

D. Equipment required 
The M.U.P.P.E.T. materials are designed to run on low end 
computer systems so as to provide maximum accessibility.  The 
hardware required is: 

•  IBM compatible personal computer (XT, AT, or 
PS/2) with 

•  two floppy drives or one floppy drive and a hard disk 
•  at least 384 K of memory 
•  graphics capability (CGA, EGA, VGA, or Hercules) 
•  DOS 2.1 or higher 

The system will permit larger programs, run faster, and look 
substantially better if it is used with: 

• a full 640 K of memory 

•  EGA graphics or better 
•  a math co-processor. 

In addition to the hardware, the user needs to supply Turbo 
PascalTM  in one of the versions 4.0, 5.0, 5.5, and 6.0.   (A version 
for Turbo Pascal for Windows known as Window on Physics is 
also available but has not yet been class tested.)  A complete 
system running all of our M.U.P.P.E.T. programs and environment 
is currently available for under $600. 

IV. What can we do with the computer in an 
introductory class? 
With the computer and the environments described above, we 
considered a variety of curriculum changes:  

•  First, the order of the elements in the course may be 
changed to be more physically appropriate.  

•  Second, many of the professional skills traditionally short-
changed at the introductory level can be introduced.   

•  Third, more realistic problems may be treated than in the 
traditional approach.   

•  Fourth, contemporary topics may be introduced at an early 
stage.   

•  And fifth, students may begin designing and carrying out 
their own research, even in the introductory course.   

A. The order of elements may be rearranged to be 
more appropriate 
The order of the traditional curriculum is strongly controlled by the 
mathematics the student takes in parallel.  This often leads to 
unnatural and unphysical presentations.  The computer sometimes 
allows us to bring the physics to the fore by introducing discrete 
forms of the fundamental laws.  These can be much simpler to 
explain and understand than the continuous forms traditionally 
presented. 
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Example: Newton's Second Law 

An example of this is the tradition of teaching uniformly 
accelerated motion (referred to in M.U.P.P.E.T. as "flat-earth 
gravity" to emphasize the approximate character of the model) 
before Newton's second law.  A plausible excuse for doing this is 
that the former does not require any calculus for its solution, while 
the latter is a differential equation.  The student taking calculus at 
the same time will be able to get some calculus done in math before 
being required to look at a differential equation. 

Unfortunately, this approach runs counter to the underlying 
physics.  Students find it very difficult to understand the motivation 
for the motion of falling bodies without the concept of force.  The 
confusions developed at this early stage are likely to haunt the 
students throughout the course.   

In the M.U.P.P.E.T. course, because we introduce the computer 
immediately, Newton's second law is introduced in a very simple 
and intuitive discrete form first using impulses.10  The discussion of 
falling bodies then uses the concept of force and the dynamic form 
of Newton's second law.  

B. Professional skills may be introduced at an 
earlier stage than is usual 
As discussed above, approximation plays a critical role in 
understanding how physics works.  We are forever making 
simplified models of real-world systems.  Yet for our 
undergraduates, especially at the introductory level, because of 
their lack of mathematical sophistication, we are forced to treat 
most problems as mathematics rather than as physics problems.11  
The presence of the computer lets us introduce corrections and 
their sometimes striking effects. 

Example: The large amplitude pendulum 

One of the best examples of an approximate equation is the large 
amplitude pendulum.  An excellent model equation for an idealized 

pendulum is derived in most texts and is within the reach of most 
of our students: 

d
dt

g
L

2

2 0θ θ+ =sin  

This equation, unfortunately, requires advanced special functions 
for its analytic solution.12  For small amplitudes, the equation 
becomes 

d
dt

g
L

2

2 0θ θ+ = , 

directly equivalent to the simple harmonic oscillator equation.  
Essentially all introductory texts give both these equations.  The 
first is ignored except for the construction of the correct form of 
the energy.  Dynamics problems are done with the second equation. 

In the M.U.P.P.E.T. class, we are able to consider the large 
amplitude equation in more detail.  Because we are solving Eq. (1) 
numerically, we have the situation shown in Fig. 3.  Many students 
assume that, because the analytic expression can be expressed in 
closed form, it is the "better" solution.  We can bring them to a 
dramatic contradiction of this viewpoint by asking them to consider 
the analytic and numerical solutions for the cases: 

 θ0 = 175 o ω0 = 30 o/s 

 θ0 = 355 o ω0 = 0  o/s 

In the first case, the correct (numerical) solution goes "over the 
top", spinning round and round the pivot.  The analytic solution 
goes over the top some distance, stops in midair, turns around, goes 
back over the top.  The second case is a small angle oscillation, but 
the "analytic" solution doesn't recognize this.  Instead of falling and 
oscillating through a small angle, it rises over the top, oscillating 
back and forth nearly a full circle each time. 

The explanation of these strange results is fairly simple.  The small 
angle approximation doesn't hold for large angles, so the analytic 
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form shouldn't be applied.  But these simple examples illustrate a 
principle of great importance. 

When approximate solutions are extrapolated beyond 
their realm of validity they can give results that are 
qualitatively wrong. 

Again, this result is obvious to the professional physicist, but there 
is essentially no example of this important result anywhere in the 
traditional introductory curriculum.  If our students are to learn the 
art of approximation, they must have simple touchstone examples 
that clearly illustrate the possible pitfalls. 

One additional point is important and illustrative about this case.  
Note that the mathematics of solving the approximate equation is 
simpler.  But from the students' point of view, the ideal pendulum 
requires one extra logical step to set up its equation of motion and 
is therefore conceptually more difficult than the realistic one.  
Indeed, many students have a poor understanding of the small 
angle approximation.  With M.U.P.P.E.T., we can discuss the exact 
case first.   

C. More realistic problems may be treated than in 
the traditional approach 
The traditional curriculum is largely restricted to those problems 
and methods that are analytically tractable. The powerful tools that 
permit the solution of almost any problem are usually touched only 
in passing since they require numerical methods.  In a computer-
based course, they can be restored to their rightful importance. 

Example: Projectile motion with air resistance 

An example of the possibilities opened up by including the power 
tools is the discussion of air resistance in the M.U.P.P.E.T. course. 
The importance of including this topic goes far beyond the issue of 
simply making our description of motion more realistic.  With this 
example, a large number of valuable reasoning tools can be 

introduced that are usually ignored until much later in the 
curriculum.   

A combination of dimensional reasoning and symmetry principles 
can be used to construct the Newton drag law: 

 Fair res = - ηρR|v|v = -b|v|v 

where η is a dimensionless parameter.  This has interesting 
consequences13 and further discussion can be given during the 
section on kinetic theory. 

We then use a M.U.P.P.E.T. program to study the behavior of an 
object under the influence of this force.  The total amount of 
programming required from the student is to put in the equation for 
the force law into the program Proj1D.  The output of this 
program is shown in Fig. 2. 

The students can be asked to carry out an interesting mix of 
qualitative and quantitative analyses.  In studying the qualitative 
behavior we can ask the student the following questions: 

•  What is the effect of including air resistance for an object thrown 
straight up?  When there is no air resistance, it takes a projectile the 
same time to go up as to come down.  Does this change when air 
resistance is added?  Give a qualitative argument to show which way it 
should work and use the program to demonstrate the correctness of your 
reasoning. 

•  What is the effect of including air resistance for an object thrown at an 
angle?  When there is no air resistance it travels the same horizontal 
distance while rising to its maximum height as it does descending.  
Does this change when air resistance is added?  Give a qualitative 
argument to show which way it should work and use the program to 
demonstrate the correctness of your reasoning. 
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•  When the object is very light or the air resistance coefficient is large, 
something strange happens to the velocity of a falling object. Use the 
program to determine what this is. 

Once the student has observed the phenomenon of terminal 
velocity qualitatively on the computer, we can ask them to derive 
the expression for terminal velocity analytically.  With the 
computer program in hand, we can ask the students to study some 
interesting realistic cases.  Here are two sample homework 
problems that can be done at the end of the unit: 

Sample problem 1: A 10 gm sheet of paper is crumpled up into a compact 
ball with a radius of 4 cm.  When dropped, it takes 1.0 sec to fall a distance 
of 2 meters.  Use this to determine the air resistance coefficient b in the 
force law Fair res = - b|v|v.  If a wooden and a steel ball are dropped from 
the same height, how long would they each take to fall?  What accuracy 
would you need in your measurements to see the difference in the rates of 
fall between the wooden and steel balls? 

Sample problem 2: A ball of mass 0.14 kg is thrown straight up with a speed 
of 20 m/s. It comes down 1 second earlier than expected, if air resistance is 
ignored.  Find the air resistance coefficient b for this object if the force has 
the form 

  F = - b v |v|. 

Find the coefficient γ if the force has the form 

  F = -γ v. 

Design a simple experiment (with numbers!) using this ball to determine 
which force gives a better description of the real world. 

The example shows that the actual computational work and the 
programming involved is a fairly small part of the unit.  But having 
it present permits us to bring in scale analysis, dimensional 
analysis, and to demonstrate approximation techniques and ways of 
extracting physics from computer programs.  These are all skills 

that the professional must know, but which we have had little 
opportunity to teach in undergraduate courses. 

D. Contemporary topics may be introduced 
Once power tools are put in the student's hands, a much wider 
variety of problems can be addressed.  These include more realistic 
problems than are usually handled, as well as ones of contemporary 
interest.     

Example: Chaos theory 

Recent developments in the theory of classical mechanics have 
stressed the sensitivity of non-linear classical problems to initial 
conditions.  Although this sensitivity has been known to workers in 
the field, especially Lagrange and Poincare, when we teach 
Newtonian mechanics we tend to tell only half the story.  We 
traditionally emphasize that: 

In principle, classical systems are totally predictable once 
starting conditions are specified. 

However,  it is equally important that the student understand the 
contemporary lesson of chaos theory which emphasizes that: 

In practice, it is usually impossible to predict the long-
term motions of any classical system with a finite 
calculation since they are highly sensitive to the starting 
conditions. 

In the M.U.P.P.E.T. course, the presence of the computer allows us 
to include a segment on chaos theory as a natural extension of 
Newtonian dynamics at the end of the first semester.  The students 
find this topic of great interest, and many of them choose some 
non-linear problem as a research topic in the second semester.  A 
screen from the M.U.P.P.E.T. sample program Iterate is shown in 
Fig. 5.  This program illustrates the phenomena of bifurcation, 
period doubling, and repeatable randomness.  The code for this 
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program contains only 60 lines, many of which can be clipped from 
the basic sample programs. 

E. Students may begin research at an early stage 
Introducing the computer to students at an early stage gives them 
the power to investigate a wide variety of complex problems in an 
open-ended inquisitive fashion and thereby begin to get a real 
exposure to how science is done in practice.  We have had 
considerable success with first and second year physics majors 
performing independent projects in the M.U.P.P.E.T. course.   

When one of us (EFR) taught the M.U.P.P.E.T. course, he required 
project work of every student in every semester.  An earlier attempt 
to require projects of sophomore physics majors in 1970-72 had 
not been successful.  Only about 15% of the students were able to 
do projects that had any characteristics of normal scientific 
research.  Most students were severely hampered by not having 
sufficiently strong analytic and mathematical skills to carry through 
an open-ended investigation.  However, in the M.U.P.P.E.T. 
environment with freshman majors in 1986-1989, when each 
student had access to a computer and the M.U.P.P.E.T. tools, the 
results were strikingly different.  About two thirds of the students 
were able to do valuable and interesting projects. 

The students were told to seek a topic they were interested in and 
would like to know more about.  It had to have some relation to the 
content of the course, although we tended to be flexible if a student 
showed strong interest in some other topic.  They were told that 
this was not to be a project where they read, organized, and 
replayed other people's materials.  They were supposed to design 
their own project, carry out an investigation, and write a report.  

In an ideal project, we believe that the student should carry out the 
following activities: 

•  Formulate a question of broad general interest. 
•  Perform library research on the subject. 

•  Reformulate the question more sharply so it is amenable 
to modeling or an experiment. 

•  Set up the calculation or experiment and run it. 
•  Check the results for consistency, accuracy, and 

correctness. 
•  Extract some physical insight from the results. 
•  Propose further research based on the results. 
•  Present the results both in written and oral form. 

The professional researcher does all of these.  Consider for your 
own undergraduate majors' curriculum: At what point in their 
undergraduate training do each of your students get experience 
with each of these kinds of tasks?  Of course few of our freshman 
projects succeeded in accomplishing all these goals.  We were 
surprised and delighted that some did, but we considered a project 
successful if a student demonstrated five of the eight activities.   

Some of the subjects investigated by students in conjunction with 
our calculus-based physics course include: 

Colliding galaxies Shepherd moons and Saturn's rings 
Tethered satellites Capture of a planet by a wandering star 
The flight of the frisbee Grain boundary growth in crystals 
Pumping a pendulum swing Diffractive lens design  
The Lyapunov exponent in  Period doubling and chaos in the  
 the Sinai billiard problem  van der Pol oscillator  
The effect of the backboard  The planet Nemesis and its effect  
 in basketball  on the Oort cloud 
The motion of a golf ball Designing an airplane wing  
The evolution of light from galaxies  
The motion of a spinning ping-pong ball 

It would have been a substantial burden on the teacher of the class 
to advise semester long research projects for even a class of 25 
students.  Fortunately, we had the support of the Maryland physics 
department.  In most cases, students were sent to other faculty with 
particular relevant expertise for advice.14  This turned out to have a 
substantial benefit.  The undergraduate majors met faculty on a 
personal basis at an early stage in their careers.  This resulted in 
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students making valuable contacts that often developed into 
research projects when they became juniors and seniors.  Since the 
start of project work in the introductory courses, the number of 
upperclass majors seeking to do independent research projects has 
grown from essentially zero (1-2 per year) to a substantial fraction 
of the class (10-12 per year).15   

At universities with very high admission standards, it is well known 
that freshman can do independent research (viz. winners of the 
Westinghouse competition).  What was not widely appreciated 
before M.U.P.P.E.T. was that freshmen with a wide range of 
abilities and backgrounds can begin to design their own research 
projects and carry them out successfully if the physics course is 
tied to the computer and the students empowered in its use.   

Perhaps the most surprising result was the distribution of good 
projects.  Students who would have been identified as mediocre 
students by their exam grades occasionally did outstanding 
projects.  A careful analysis of these students showed that they had 
"stylistic" rather than content problems.  They did not perform well 
under exam pressure, but preferred to work slowly and carefully.  
Some of them had extraordinary intensity and persistence when 
they were interested and involved in a project.  Others who did 
well on exams could find no topic at all to interest them and turned 
in very poor research projects.  These observations raise the 
question whether it is a good idea to use a student's performance on 
traditional timed hour exams as a  "first cut filter" to weed out 
those who should not be physicists.  This automated hoe may be 
chopping some valuable flowers! 

F.  M.U.P.P.E.T. can be used in association with the 
Laboratory 
The M.U.P.P.E.T. approach has been used by one of us (JMW) to 
provide modeling and analysis tools in conjunction with the 
laboratory that accompanies the first semester introductory physics 
course (mechanics).16  (M.U.P.P.E.T. can also be used in the 
laboratory directly to serve as a user interface with the computer to 
accumulate data directly from analog to digital converters.17)  The 

laboratory was taught by alternating between a traditional "hands-
on" laboratory one week and a computer modeling/data analysis 
session the next.  The students used  M.U.P.P.E.T. to calculate 
means and standard deviation and performing linear least square 
fits.  They also developed computer models and compared the 
model's predictions with experimental observations. 

For example, in one of the laboratories, students observed and took 
data on the motion of a pendulum using a stroboscope and a 
Polaroid camera.  They then used their graphing and data analysis 
package to plot the observed angle, and to calculate and plot the 
angular velocity, angular acceleration, kinetic energy, potential 
energy, and total energy vs. time.  They then used M.U.P.P.E.T. to 
build a mathematical model of the system on a template we 
provided.  With their program, they were able to compare the 
prediction of a mathematical model with their observations and 
make an estimate of the damping.  With this model, students were 
able to extend their analysis of their investigations to consider large 
angle corrections, driving forces, and resonance. 

Instead of listening to lectures about modeling and error analysis 
(as had been the previous practice -- even in the lab section of the 
class!) the students performed the activities themselves using our 
computer tools.  The students' projects were significantly improved 
in quality and showed a better understanding of the phenomena 
than when they worked in the traditional mode. 

V. What did we have to leave out? 
We are certain that many of our readers will respond to our claims 
with skepticism.  Everyone who has taught the traditional 
introductory calculus-based physics course has had the problem of 
having too much material to cover.  How could we possibly teach 
programming, add more realistic problems, include the large 
amplitude pendulum, air resistance, random walks, and integrals 
over non-simple charge distributions (among others)?  What did we 
leave out? 
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Indeed, some materials were left out that are included in the 
traditional course.  Rigid body motion was suppressed, as was fluid 
dynamics and much discussion of sound.  In our three semester 
sequence we did not do any modern physics or relativity, in part 
since the sequence is followed immediately by a full two semester 
sequence on modern physics. 

The additional materials, however, did not take very much time to 
include.  The programming handouts were read in parallel with the 
standard reading, a few pages per week.  Less than 5% of the 
lecture time was used to discuss programming.  Two to three 
lecture hours per semester were actually spent in the 
microcomputer laboratory with the students getting started on some 
of the more computer oriented homework assignments. 

From this small basis of computer instruction, we were able to 
include one to two homework problems per week that were 
somehow associated with the computer.  (These were occasionally 
estimation, analytic, or qualitative problems.)  These were done at 
the cost of reducing the number of standard "plug-and-chug" 
problems the students were assigned.  

VI. Is M.U.P.P.E.T. transferable? 
One question to consider is whether the M.U.P.P.E.T. environment 
is transferable.  Many educational developments work well as long 
as they are taught by their creators, but do not succeed when taught 
by anyone else.  There is good evidence that M.U.P.P.E.T. is 
usable elsewhere. 

The University of Maryland is a reasonably typical university 
environment. 

The College Park campus of the University of Maryland is a large 
state university with a large student body having a wide range of 
interests, backgrounds, and levels of ability.  Materials developed 
and tested at Maryland should be usable at many campuses across 
the nation. 

M.U.P.P.E.T. at Maryland has not been restricted to its 
developers. 

The M.U.P.P.E.T. course for physics majors has been and is being 
taught at Maryland by faculty not involved in the development of 
M.U.P.P.E.T.   

New courses have been developed with M.U.P.P.E.T. materials in 
Australia. 

Prof. Ian Johnston at the University of Sydney became acquainted 
with the M.U.P.P.E.T. idea at the Raleigh Conference on 
Computers in Physics Instruction  in the summer of 1988.18  Since 
then, he and his colleagues have developed materials for second 
year physics majors on numerical methods and quantum 
mechanics.  In 1989-90, he used the M.U.P.P.E.T. environment to 
integrate computational physics into the undergraduate courses at 
Sydney University.19 

Johnston tested M.U.P.P.E.T. in three successive semesters.   In the 
first test, 18 volunteers, chosen from a class of 200 second-year 
students, were given six four-hour microlab sessions in addition to 
the normal work in a course in quantum mechanics.  In the second 
test, this was repeated with 92 students out of a class of 202.  The 
third test involved 24 students in the third year class.  These 
students were asked to work through four computer modeling 
problems in diverse areas of physics including solid state, kinetic 
theory, plasma physics, and Fourier transforms.  Johnston and 
McPhedran conclude: 

(1) Students do not need to be able to program before they can 
handle these materials.  Students who had no previous 
programming experience (about 25% and 16% of the students in 
the first two trials) had to work harder at first, but had little trouble 
once they got started.   

(2) The students' understanding of a number of traditional subjects 
was significantly improved by adding computer modeling problems 
as shown by grades in a comparison of the students in the test and 
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traditional groups on traditional tests.  This was because the 
computer programs allowed students to explore many more cases 
than they could by hand.  For example, because the students in 
these trials had seen the shapes of many different wave functions, 
they could easily answer questions in ordinary texts dealing with 
the geometrical property of eigenfunctions and performed 
significantly better than students in the traditional group on such 
questions in exams. 

(3) In the last microlab, students were asked to investigate broadly 
posed problems.  They were able to successfully design and 
complete projects in a one week period, thanks in a large part to the 
ease of building models with the M.U.P.P.E.T. software package.  
This confirms our experience with projects at Maryland. 

We conclude from these experiences that the M.U.P.P.E.T. 
environment is robust and survives being transferred to other users. 

VII. Conclusions 

Summary 
We have reported on the development of the M.U.P.P.E.T. utilities 
-- a flexible and powerful computing environment that permits 
introductory students to add programming to their tools for solving 
physics problems quickly and easily and with minimal overhead.  
When these tools are added to the traditional calculus-based 
introductory physics course, the students' power to solve problems 
expands enormously.  This opens many possibilities for changing 
the curriculum.  Elements may be rearranged in a more natural 
order; professional skills may be introduced at an earlier stage than 
is traditional; contemporary topics such as chaos and quantum 
theory may be introduced; and students may begin research 
immediately. 

Our conclusion is that  M.U.P.P.E.T. works well for majors in 
small classes.  We have not yet tested whether these methods can 
be extended to large classes with other scientists such as chemists 

and engineers.  It may be possible if the infrastructure exists to 
provide students with sufficiently accessible networked computer 
resources.  Success in this environment could also be aided 
substantially by good coordination with other departments. 

Future developments 
As a result of its strength as an open environment capable of 
growing as the student's strength grows (and as the power of the 
computer grows), the M.U.P.P.E.T. utilities have been adopted as 
the basis for two multi-university projects of national scale -- 
CUPS and CUPLE. 

The Consortium for Undergraduate Physics Software (CUPS) is a 
project based at George Mason University and funded by the NSF 
to add computers to upperclass physics courses.  A group of 27 
physics faculty with software design experience are developing six 
manuals to accompany upperclass physics courses.  Each manual 
contains nine simulations, each of which will add an element of 
new physics, not easily includable without the computer. 

The Comprehensive Unified Learning Environment20 (CUPLE) is a 
project to bring together in a single unified computer environment 
some of the successful attempts to reach more introductory physics 
students and to train them more effectively and professionally.  
CUPLE is bringing together sophisticated tools for handling 
graphing, student programming, laboratories, and video with 
modularized text materials and a database of information.  The 
M.U.P.P.E.T. environment is being upgraded for this project to an 
object-oriented approach now called Window on Physics (or 
WinPhys for short).  WinPhys is built on Turbo Pascal for 
WindowsTM  and takes full advantage of the Graphical User 
Interface (GUI) Microsoft WindowsTM  3. 
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Figure Captions 
 

Fig. 1: The Pascal source for the program PROJ1D. 

Fig. 2: The input and graphics screens produced by the program 
PROJ1D. 

Fig.3: The structure of the solutions to the large amplitude 
pendulum equation 

Fig. 4: The screen displaying large amplitude "over-the-top" 
motion for a pendulum.  From the M.U.P.P.E.T. sample program 
Pendulum. 

Fig. 5: Result of iterations of the logistic function in the chaotic 
regime.  From the M.U.P.P.E.T. sample program Iterate. 
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PROGRAM Projectile1D; { proj1d.pas }

{***********************************************}
{* *}
{* Program to calculate motion of *}
{* a particle in 1D with gravity *}
{* and air resistance using RK2. *}
{* *}
{***********************************************}

USES
Crt,Dos,Graph,Printer,MUPPET;

CONST
numData : Integer = 200; {Number of points to

plot}
g : Real = 9.8; {m/sec/sec}

VAR
t,x : DataVector; { time, position }
v,a : DataVector; { velocity, accel }
x0,v0 : Real; { initial conds. }
m : Real; { mass }
b : Real; { air resis. coeff. }
dt : Real; { time step }
i : Integer; { loop variable }
IC : Screen; { data screen }
act : Char; { control character }

{ The types 'DataVector" and "Screen" are defined }
{ inside the unit MUPPET. }

{*------------ Physics Procedures -------------*}

FUNCTION Force(x,v,t:Real) : Real;
BEGIN

Force := -m*g - b*v*abs(v)
END;

{*---------- Mathematics Procedures -----------*}

{ Second order Runge-Kutta routine for stepping }
{ from variables at time t (In variables) to }
{ variables at time t+dt (Out variables). }

PROCEDURE StepRK2(xIn, vIn, tIn, aIn,tStep:Real;

   

VAR xOut,vOut,tOut,aOut:Real);
VAR

xHalf,vHalf : Real;
tHalf,aHalf : Real;

BEGIN
tHalf := tIn + 0.5*tStep;
xHalf := xIn + 0.5*vIn*tStep;
vHalf := vIn + 0.5*aIn*tStep;
aHalf := Force(xHalf,vHalf,tHalf)/m;
tOut := tIn + tStep;
xOut := xIn + vHalf*tStep;
vOut := vIn + aHalf*tStep;
aOut := Force(xOut,vOut,tOut)/m;

END;

{*--------- Data Screen Procedures ------------*}

PROCEDURE MakeDataScreen;
BEGIN

DefineInputport(0,0.45,0,0.9);
_A[01]:='"M.U.P.P.E.T." ';
_A[02]:='"University of Maryland" ';
_A[03]:=' ';
_A[04]:='"PROJECTILE PROGRAM: 1D" ';
_A[05]:='"F = -mg - bv*abs(v)" ';
_A[06]:=' ';
_A[07]:='"PARAMETERS" ';
_A[08]:=' "Mass m = " 0.14++ "kg" ';
_A[09]:=' ';
_A[10]:=' "Air Resistance" ';
_A[11]:=' "Coefficient, b = " 0+++++ "kg/m"';
_A[12]:=' ';
_A[13]:=' "Time step, dt = " 0.050+ "sec" ';
_A[14]:=' ';
_A[15]:='"INITIAL CONDITIONS" ';
_A[16]:=' "Position: x0 = " 0++++ "m" ';
_A[17]:=' "Velocity: v0 = " 30+++ "m/sec"';
LoadScreen(IC,17);

END;

PROCEDURE GetScreenData(VAR m,b,x0,v0,dt:Real);
BEGIN

ClearMUPPETport;
Message('Press <ENTER> to plot, <ESC> to quit');
Accept(IC); {displays screen}
m := Valu(IC,1); {puts 1st entry on IC into m}
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b := Valu(IC,2); {puts 2nd entry on IC into b}
dt := Valu(IC,3);
x0 := Valu(IC,4); {etc...}
v0 := Valu(IC,5);

END;

{*----------- Graphics Procedures -------------*}

PROCEDURE GraphSetUp;
BEGIN

GraphBackColor:=DarkGray;
DefineViewport(1, 0.55,1, 0.5,0.9); {Define

ViewPort 1}
DefineViewport(2, 0.55,1, 0.05,0.45);

{ViewPort 2}
DefineScale(1, 0, 10, -75.0, 75); {Define

Scale 1}
DefineScale(2, 0, 10, -75.0, 75); {Define

Scale 2}
END;

PROCEDURE PlotIt(viewPort,color:Integer; x,y:DataVector;
nameLabel:BigStr);

BEGIN
Setcolor(color);
SelectScale(viewPort);
OpenViewport(viewPort);
Axis(0,0,1,20);
PlotData(x,y,numData);
PutLabel(Inside,nameLabel);

END;

{*--------------- Main Program ----------------*}

BEGIN
MUPPETinit;
MakeDataScreen;
GraphSetUp;
REPEAT

GetScreenData(m,b,x0,v0,dt);
IF EscapedFrom(IC) THEN

BEGIN
MUPPETdone;
EXIT

END;

   

t[1] := 0; {initializes first
step}

x[1] := x0;
v[1] := v0;
a[1] := -g - b*v0*abs(v0)/m;

FOR i := 2 to numData DO {solve the
equation}

StepRK2(x[i-1],v[i-1],t[i-1],a[i-1],dt,
x[i], v[i], t[i], a[i]);

Message('Press <ENTER> for new data, <ESC> to
quit');

PlotIt(1, lightGreen, t, x, 'X vs T');
PlotIt(2, lightRed, t, v, 'V vs T');

act := ReadKey;
UNTIL ord(act) = 27;

MUPPETdone;

END. 
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