
© American Association of Physics Teachers 1999, published in The American Journal of Physics 61 (1993) 222-232.

Student Programming in the
Introductory Physics Course:
M.U.P.P.E.T.
Edward F. Redish
Department of Physics and Astronomy
University of Maryland
College Park MD 20742-4111

and

Jack M. Wilson
Anderson Center for Innovation in Undergraduate Education
and Department of Physics
Rensselaer Polytechnic Institute
Troy, NY 12180-3590

May 31, 2001

Abstract
Since 1983, the Maryland University Project in Physics and
Educational Technology (M.U.P.P.E.T.) has been investigating the
implication of including student programming in an introductory
physics course for physics majors. Many significant changes can
result. One can rearrange some content to be more physically
appropriate, include more realistic problems, and introduce some
contemporary topics. We also find that one can begin training the
student in professional research-related skills at an earlier stage
than is traditional. We learned that the inclusion of carefully
considered computer content requires an increased emphasis on
qualitative and analytic thinking.

I. Introduction
Since 1983, in an effort we refer to as the Maryland Project in
Physics and Educational Technology1 (M.U.P.P.E.T.), the authors
and their colleagues at the University of Maryland have been
studying what the impact is of introducing beginning students to
programming at the start of the traditional calculus-based
introductory physics course.

The computer is more than simply a powerful calculator that allows
students to multiply and add more quickly. The computer adds
orders of magnitudes to the individual's computational abilities. As
we know well in physics, when scales change by orders of
magnitude, we have to look carefully for qualitatively new
phenomena.

The question we address in this paper is the following:

• What is the implication of the computer for teaching
physics majors at the introductory level?

To answer this we must considerthe answer to two related
questions:

• What is it we want our students to learn?

• In what ways is the current introductory physics
course inadequate?

We assume that the broad general goal of the introductory physics
course is to begin to prepare students to be professional physicists
as well as to introduce them to the basic physics content. We find
that having the computer as part of the course affects significantly
both the skills we can begin to train and the specific content.

__

Redish and Wilson 2 Student Programming in the Introductory Course

A. Problems with the traditional physics curriculum
The physics curriculum as presently taught was developed over
thirty years ago.2 Although that change was a significant advance
at the time, the curriculum has failed to develop since then.

This might not be a problem if physics were a static field. It is not.
In the past thirty years we have seen an explosion of new
understanding and power in a variety of subfields of physics
ranging in scale from the substructure of the proton to the
clustering of galaxies. There have even been major breakthroughs
in fields long thought to be understood. Current developments in
Newtonian mechanics are evolving into a theory of non-linear
systems and chaotic behavior that may produce profound changes
in the way we think about physics.3

It is not only the content of physics that has changed. The
computer has changed the way the physics professional carries out
his or her job. The introductory student rarely gets any hint of
modern developments or of the excitement of doing physics and
learning new things about the world that no one has known before.
The absence of active research and exciting new areas in the
introductory physics course is a serious distortion of the profession.

A second problem is that, although standard instruction introduces
students to the basic content of physics, it provides almost no
activities that illustrate how research is done -- the kind of work
that professional physicists do day-to-day. This problem has been
noted in more general circumstances by education specialists who
recommend a professional education that is more like an
apprenticeship than current college education.4 Although many
physics departments have programs to "get undergraduates into the
research lab", in most cases their goal is to "expose" students to
"real" research. That is, the students become part of an existing
research project. Unfortunately, since most of them don't know
enough physics to actually participate in designing the project or
making research decisions, their activities tend to be menial.

To decide what activities an undergraduate needs to do to begin to
understand how to become a professional scientist ,we have to
analyze the differences between the activities carried out by
professional research physicists and introductory students. Some
of these are summarized in Table 1.

Students: Professionals:

Solve narrow, pre-defined
problems of no personal
interest.

Solve broad, open-
ended and often self-
discovered problems.

Work with laws presented
by experts. Do not
"discover" them on their
own or learn why we
believe them. Do not see
them as hypotheses for
testing.

Work with models to
be tested and
modified. Know that
"laws" are constructs.

Use analytic tools to get
"exact" answers to inexact
models.

Use analytic and
numerical tools to get
approximate answers
to inexact models.

Rarely use a computer. Use computers often.

Table 1: Comparison of students' activities with those of a
professional physicist.

To professional physicists, much of the pleasure of doing physics is
associated with satisfying curiosity and learning surprising
relationships and analogies of structure. Stimulating and satisfying
one's curiosity requires starting with broad, naturally formulated
questions and refining them successively in response to observation
and analysis. Very little of this joy of the profession is present in

__

Redish and Wilson 3 Student Programming in the Introductory Course

the traditional introductory physics course. Many students entering
college today, even some of those identified as among the brightest
and highest achievers, have been trained to associate learning
physics with rote memorization and application of memorized laws
in narrowly defined situations. The traditional introductory course
does little to disabuse them of these views. Students who might
have become excellent research physicists change their majors
because they see physics as "solved": constraining, routine, and
dull.

A critical element in the activity of professional physicists, both
theoretical and experimental, is getting the physics right. This
means understanding which physical principles can be ignored and
which must be kept given the accuracy one wants to calculate or
measure. In physics, no theory or experiment ever calculates a
result or measures an observable exactly, in the sense of a
mathematical theorem. Physics is not an exact science, rather, it is
a science where we believe we understand the accuracy of our
approximation.5 The art and creativity of the profession lie in
viewing a complex situation and having the "empathy for the
phenomena" to extract the simple principles that dominate the
system. Because introductory students perceive that they are
working with laws and problems that have exact answers, they are
cut off from this fundamental aspect of the profession.

Removing the curiosity and creativity from physics often leaves it
dry, obscure, and poorly motivated to the beginning student. Only
the most inspiring and dedicated teachers are able to even display
the presence of these components of the profession in the
introductory course. To actually get the students to feel not only
that the field possesses these characteristics, but that they
themselves can actually perform innovative investigative physics
seems like an unmeetable challenge. Fortunately, many bright
students still choose physics as a profession. But fewer physics
Ph.D.'s are granted today than two decades ago. Competition from
sciences that didn't exist in 1960 is becoming increasingly strong.
Can we continue to attract the best students if we hide from them
the excitement of contemporary problems and the roles of curiosity
and creativity in the profession?

B. Enter the computer
The primary constraint that has kept the profession from
introducing more creative science at an early stage is the limited
mathematical ability of the introductory student. Creative and
open-ended problems using analytical tools require a level of
mathematical sophistication not usually obtained by students until
their third year of college. In the past decade, however, there has
been an immense growth in the power and availability of computer
tools and technology. More power is packed into a desktop
computer the size of a breadbox than was available in mainframes
thirty years ago. Programming environments have been
transformed from complex line editing with batch compiling in
FORTRAN to systems with full-screen editors, fast compilers, and
interactive debuggers in unified, easy-to-use environments in
Pascal and structured Basic. These developments open the
possibility that students could be given the computer power to
solve more interesting problems in the introductory course with
little training.

A second aspect of computer use is that the power of the computer
has become a major element in modern research physics. Doing
physics with the computer is not the same as solving analytic
problems and is not the same as learning to use the computer in a
computer science course. In order that our majors learn to use this
critical tool properly, it is important to give them an early start and
specific training in solving physics problems with computers.

II. What are our goals for teaching physics majors?
Our primary goal is to transform the introductory calculus-based
physics course so that students who have designated themselves as
prospective majors can begin to both get training in a wide range of
professional skills and develop an idea of what it would be like to
be a physicist. Although there is considerable discussion among
physics educators of what content to include, discussion of the
general skills we are trying to teach is much less common.

__

Redish and Wilson 4 Student Programming in the Introductory Course

A. Skill analysis
We analyzed the general skills we would want our students to have at
the point they begin research on a Ph.D. thesis. Certainly each
particular sub-discipline has particular content elements they would
like students to have (such as experience with a Camac crate or
ability to program fast Fourier transforms), but students who have a
good grounding in strong general skills are able to successfully do
research in almost any area that interests them. An outline of the
general process skills required is given in Table 2.

1. Basic skills
 A scientific framework
 Number awareness

2. Theoretical skills
 Analytic skills
 Estimation and natural

scales
 Approximation skills
 Numerical skills

3. Experimental skills
 Error analysis
 Mechanical skills
 Device experience
 Empathy for the apparatus

4. General skills
 Intuition
 Large-problem skills
 Communication skills

Table 2: Skill analysis for physics students.

We define two basic skills: having a scientific framework and
number awareness. By having a scientific framework we mean that
the student must understand the "story-line" of science -- that
science means observation, hypothesis, analysis, and testing against
observation. By number awareness, we mean that the student must
understand that aspects of the real world may be quantified by
measurement and that the results of our mathematical analysis can
tell us about what is happening (or will happen) in the real world.
This skill is a sine qua non of doing physics. It is often assumed
by the introductory physics teacher (incorrectly!) that students have
a reasonable scientific framework. Nunmber awareness is stressed
in some introductory courses.

We next add a set of theoretical or modeling skills. The first in this
group are analytic skills: students should be able to write equations
from word problems, to solve a variety of equations, and to
interpret their results in terms of the physical world. Some aspects
of these skills are stressed in traditional introductory courses.
Other theoretical skills needed by physicists tend to be
shortchanged in those courses, even when they are restricted to
majors: estimation, approximation, and numerical skills.

These skills are essential in learning to model physical systems and
to understand the implications of models built by others. Since
physics is not an exact science, the "art" in the science is knowing
what physical laws to apply under what circumstances and what
additional complicating factors can be safely neglected. We call
this "getting the physics right". It involves being able to estimate
the size of an effect and to calculate corrections by understanding
approximations. Today, it often involves putting physical insight
into and getting it out of a complex numerical calculation. Yet
these skills -- critical for both the professional physicist and the
engineer -- are almost completely ignored in traditional
introductory courses.

Since physics is a science whose results are continually tested and
evaluated against the real world, a physicist needs experimental
skills as well as theoretical ones. Majors are often trained in error
analysis, mechanical skills, and given experience with a variety of

__

Redish and Wilson 5 Student Programming in the Introductory Course

devices. An experimental skill that we hope our students will
develop as a concomitant part of their experimental experience is
an "empathy for the apparatus". By this we mean an understanding
of what is happening in an experiment, what is being measured, and
where the information lies.6 Yet this skill is primary to their
understanding of what even basic physics means and how the
equations we write down relate to the behavior of the real world.

Finally, there are a number of general skills that all professionals
must develop. They must build an intuition for their field -- the
ability to understand which tools apply in which circumstances and
to have the complex network of internal checks that let them look
at a wrong answer and have it not "feel" right. They must learn
large-problem skills; the ability to take a significant problem and
break it down into component, solvable parts in an appropriate
manner while keeping track of the overall goal. They must also
build communication skills. In physics, as in any field, it does not
suffice to do brilliant work in a notebook or in your head. Physics,
as is any field, is a social agreement of what it is we know. To
interact with the community, a physicist needs to be able to present
his or her results both in oral and written form in a clear and
compelling fashion. This cluster of general skills is largely
neglected in our professional training of physicists until they begin
research in the second or third year of graduate school!

B. Principles of computer use
Our approach to the use of the computer in the classroom is based
on three powerful principles:

1. It is not enough to use the computer to illustrate
examples from the current curriculum. We must rethink
the curriculum entirely from the ground up, now assuming
the availability of the computer. What can we teach with
it that we couldn't teach before?

2. The computer should not replace anything in the current
environment: not the textbook, not the teacher, and not the
laboratory.

3. The student should run the computer, not the other way
round.

In our approach the student must play an active role. Students must
learn to use the computer in an open ended way. The computer
must be a powerful servant for the student, not a master.

III.. The M.U.P.P.E.T. Environment
For physics majors, our view of appropriate computer use implies
that they will learn to program the computer themselves directly.
In the past, this has represented a formidable obstacle to the use of
the computer in physics courses. We could not expect all students
to come to the course prepared to develop interesting programs,
nor could we afford to devote much time to teaching programming
in the physics class.

In order to overcome this barrier, we have developed modular
programming materials that can be linked together by students to
create sophisticated programs. With these materials built in Pascal,
we were able to reduce the programming overhead for the student.
Good Pascal programs are easy to read and easy to set up, so the
physics and the structure of the analysis is easy to understand. We
set up utilities for interactive input and for graphics output, and we
provide self-documenting sample programs that allow even non-
programmers to learn by example and to begin to build programs
themselves without extensive training. (See Fig.1 for an advanced
example.) Once they master Pascal, students can make an easy and
straightforward transition to other professional languages such as
FORTRAN or C.

A. Description and history of the project
We began M.U.P.P.E.T. in 1983. Because physics majors at
Maryland are taught in small classes separated from majors in
engineering and other sciences, we decided to begin the project
with those classes. The introductory course for physics majors at
Maryland is a three-semester sequence (Physics 171, 272, and

__

Redish and Wilson 6 Student Programming in the Introductory Course

273). One semester of calculus is a pre-requisite. Many students
arrive at Maryland with enough calculus to begin the course as
first-semester freshmen. Physics 171 is offered in two sections in
the fall and one section in the spring.

The computer and student programming have been used in
introductory physics for majors at Maryland since 1985. Our
materials development culminated in 1988 with the production of a
supplementary manual, Physics with the Microcomputer.7 In the
past three years, the M.U.P.P.E.T. materials have been used with
more than 200 students in both lecture and lab sections. The
materials have been revised several times over the years as a result
of student and faculty input.

Informal polling of our students indicates that our physics majors
enter college with a broad variety of backgrounds. About one third
of our incoming majors have extensive programming experience:
they can program comfortably in two or more languages. Another
third can program in one language. The rest of the students have
little or no programming experience. Even this group has had
significant exposure to computers. Almost all the students were
able to master the required programming quickly and with enough
skill to do computer homework problems and projects.

Because our group is self-selected as physics majors, they tend to
be somewhat better prepared and have higher incoming SAT math
scores (average of verbal + math of about 1250) than our broader
group of engineering majors. This suggests that our results should
be interpreted and extended with some care.8

B. The utilities and libraries
The M.U.P.P.E.T. environment provides a set of utilities for
handling I/O and menus and a set of libraries to simplify various
tasks. The utilities package includes:

data input screen procedures -- These let the programmer include
exchange of data with a running program. The program
puts up a data window with variable fields. An example is

shown on the left side of Fig. 2. The programmer can
include default values and the user can modify one or
more of the fields using the keyboard or mouse. The user
can modify the fields in any order and return to fields
previously modified before choosing to go on with the
calculation. The code to produce this data screen is given
in the procedure MakeDataScreen shown in Fig. 1.

graph window procedures -- These let the programmer display
output in one or more windows. The programmer can plot
any number of curves in a window. The windows are
scaled to a unit screen so the user never has to worry
about details of pixel count and the variety of graphics
displays and resolutions available. Two graph windows
are shown on the right side of Fig. 2. The code to produce
them is given in the procedures GraphSetup and
PlotIt in Fig.1.

menuing procedures -- These let the programmer give the user
choices to branch the program in a variety of ways. A
sample of a menu appears at the top of the screen in Fig.
4.

parsing procedures -- These permit the programmer to let the user
enter algebraic expressions into a running program and
have the program interpret the results as strings of code,
rather than just as strings of letters.

The utility procedures are provided to the students in compiled
form.

A number of libraries have also been written and are provided to
the students. The include a variety of routines for solving Newton's
second law in one and two dimensions, a set of binary search
procedures for solving equations, and an animation library.9

__

Redish and Wilson 7 Student Programming in the Introductory Course

C. Sample programs
About 25 sample programs were developed at Maryland for this
project using the M.U.P.P.E.T. utilities and environment. These
programs were carefully designed to make them easy to read and to
modify. They have been structured to provide examples of clear
programming style.

The code for the program PROJ1D is shown in Fig. 1 and the
screen it produces is shown in Fig. 2. This is a fairly sophisticated
program and is used about halfway through the first semester.
Students are asked to fill in the dummy procedure StepEuler to
provide a solution using the Euler method. A fourth order Runge-
Kutta routine is provided later using a similar calling statement.

The sample programs play a critical role in the overall computer
use. Not only do they provide the students with concrete examples
of computer use, they are flexible enough to permit students with
limited programming experience to modify them to explore much
more complicated systems as part of their independent project
work.

D. Equipment required
The M.U.P.P.E.T. materials are designed to run on low end
computer systems so as to provide maximum accessibility. The
hardware required is:

• IBM compatible personal computer (XT, AT, or
PS/2) with

• two floppy drives or one floppy drive and a hard disk
• at least 384 K of memory
• graphics capability (CGA, EGA, VGA, or Hercules)
• DOS 2.1 or higher

The system will permit larger programs, run faster, and look
substantially better if it is used with:

• a full 640 K of memory

• EGA graphics or better
• a math co-processor.

In addition to the hardware, the user needs to supply Turbo
PascalTM in one of the versions 4.0, 5.0, 5.5, and 6.0. (A version
for Turbo Pascal for Windows known as Window on Physics is
also available but has not yet been class tested.) A complete
system running all of our M.U.P.P.E.T. programs and environment
is currently available for under $600.

IV. What can we do with the computer in an
introductory class?
With the computer and the environments described above, we
considered a variety of curriculum changes:

• First, the order of the elements in the course may be
changed to be more physically appropriate.

• Second, many of the professional skills traditionally short-
changed at the introductory level can be introduced.

• Third, more realistic problems may be treated than in the
traditional approach.

• Fourth, contemporary topics may be introduced at an early
stage.

• And fifth, students may begin designing and carrying out
their own research, even in the introductory course.

A. The order of elements may be rearranged to be
more appropriate
The order of the traditional curriculum is strongly controlled by the
mathematics the student takes in parallel. This often leads to
unnatural and unphysical presentations. The computer sometimes
allows us to bring the physics to the fore by introducing discrete
forms of the fundamental laws. These can be much simpler to
explain and understand than the continuous forms traditionally
presented.

__

Redish and Wilson 8 Student Programming in the Introductory Course

Example: Newton's Second Law

An example of this is the tradition of teaching uniformly
accelerated motion (referred to in M.U.P.P.E.T. as "flat-earth
gravity" to emphasize the approximate character of the model)
before Newton's second law. A plausible excuse for doing this is
that the former does not require any calculus for its solution, while
the latter is a differential equation. The student taking calculus at
the same time will be able to get some calculus done in math before
being required to look at a differential equation.

Unfortunately, this approach runs counter to the underlying
physics. Students find it very difficult to understand the motivation
for the motion of falling bodies without the concept of force. The
confusions developed at this early stage are likely to haunt the
students throughout the course.

In the M.U.P.P.E.T. course, because we introduce the computer
immediately, Newton's second law is introduced in a very simple
and intuitive discrete form first using impulses.10 The discussion of
falling bodies then uses the concept of force and the dynamic form
of Newton's second law.

B. Professional skills may be introduced at an
earlier stage than is usual
As discussed above, approximation plays a critical role in
understanding how physics works. We are forever making
simplified models of real-world systems. Yet for our
undergraduates, especially at the introductory level, because of
their lack of mathematical sophistication, we are forced to treat
most problems as mathematics rather than as physics problems.11
The presence of the computer lets us introduce corrections and
their sometimes striking effects.

Example: The large amplitude pendulum

One of the best examples of an approximate equation is the large
amplitude pendulum. An excellent model equation for an idealized

pendulum is derived in most texts and is within the reach of most
of our students:

d
dt

g
L

2

2 0θ θ+ =sin

This equation, unfortunately, requires advanced special functions
for its analytic solution.12 For small amplitudes, the equation
becomes

d
dt

g
L

2

2 0θ θ+ = ,

directly equivalent to the simple harmonic oscillator equation.
Essentially all introductory texts give both these equations. The
first is ignored except for the construction of the correct form of
the energy. Dynamics problems are done with the second equation.

In the M.U.P.P.E.T. class, we are able to consider the large
amplitude equation in more detail. Because we are solving Eq. (1)
numerically, we have the situation shown in Fig. 3. Many students
assume that, because the analytic expression can be expressed in
closed form, it is the "better" solution. We can bring them to a
dramatic contradiction of this viewpoint by asking them to consider
the analytic and numerical solutions for the cases:

 θ0 = 175 o ω0 = 30 o/s

 θ0 = 355 o ω0 = 0 o/s

In the first case, the correct (numerical) solution goes "over the
top", spinning round and round the pivot. The analytic solution
goes over the top some distance, stops in midair, turns around, goes
back over the top. The second case is a small angle oscillation, but
the "analytic" solution doesn't recognize this. Instead of falling and
oscillating through a small angle, it rises over the top, oscillating
back and forth nearly a full circle each time.

The explanation of these strange results is fairly simple. The small
angle approximation doesn't hold for large angles, so the analytic

__

Redish and Wilson 9 Student Programming in the Introductory Course

form shouldn't be applied. But these simple examples illustrate a
principle of great importance.

When approximate solutions are extrapolated beyond
their realm of validity they can give results that are
qualitatively wrong.

Again, this result is obvious to the professional physicist, but there
is essentially no example of this important result anywhere in the
traditional introductory curriculum. If our students are to learn the
art of approximation, they must have simple touchstone examples
that clearly illustrate the possible pitfalls.

One additional point is important and illustrative about this case.
Note that the mathematics of solving the approximate equation is
simpler. But from the students' point of view, the ideal pendulum
requires one extra logical step to set up its equation of motion and
is therefore conceptually more difficult than the realistic one.
Indeed, many students have a poor understanding of the small
angle approximation. With M.U.P.P.E.T., we can discuss the exact
case first.

C. More realistic problems may be treated than in
the traditional approach
The traditional curriculum is largely restricted to those problems
and methods that are analytically tractable. The powerful tools that
permit the solution of almost any problem are usually touched only
in passing since they require numerical methods. In a computer-
based course, they can be restored to their rightful importance.

Example: Projectile motion with air resistance

An example of the possibilities opened up by including the power
tools is the discussion of air resistance in the M.U.P.P.E.T. course.
The importance of including this topic goes far beyond the issue of
simply making our description of motion more realistic. With this
example, a large number of valuable reasoning tools can be

introduced that are usually ignored until much later in the
curriculum.

A combination of dimensional reasoning and symmetry principles
can be used to construct the Newton drag law:

 Fair res = - ηρR|v|v = -b|v|v

where η is a dimensionless parameter. This has interesting
consequences13 and further discussion can be given during the
section on kinetic theory.

We then use a M.U.P.P.E.T. program to study the behavior of an
object under the influence of this force. The total amount of
programming required from the student is to put in the equation for
the force law into the program Proj1D. The output of this
program is shown in Fig. 2.

The students can be asked to carry out an interesting mix of
qualitative and quantitative analyses. In studying the qualitative
behavior we can ask the student the following questions:

• What is the effect of including air resistance for an object thrown
straight up? When there is no air resistance, it takes a projectile the
same time to go up as to come down. Does this change when air
resistance is added? Give a qualitative argument to show which way it
should work and use the program to demonstrate the correctness of your
reasoning.

• What is the effect of including air resistance for an object thrown at an
angle? When there is no air resistance it travels the same horizontal
distance while rising to its maximum height as it does descending.
Does this change when air resistance is added? Give a qualitative
argument to show which way it should work and use the program to
demonstrate the correctness of your reasoning.

__

Redish and Wilson 10 Student Programming in the Introductory Course

• When the object is very light or the air resistance coefficient is large,
something strange happens to the velocity of a falling object. Use the
program to determine what this is.

Once the student has observed the phenomenon of terminal
velocity qualitatively on the computer, we can ask them to derive
the expression for terminal velocity analytically. With the
computer program in hand, we can ask the students to study some
interesting realistic cases. Here are two sample homework
problems that can be done at the end of the unit:

Sample problem 1: A 10 gm sheet of paper is crumpled up into a compact
ball with a radius of 4 cm. When dropped, it takes 1.0 sec to fall a distance
of 2 meters. Use this to determine the air resistance coefficient b in the
force law Fair res = - b|v|v. If a wooden and a steel ball are dropped from
the same height, how long would they each take to fall? What accuracy
would you need in your measurements to see the difference in the rates of
fall between the wooden and steel balls?

Sample problem 2: A ball of mass 0.14 kg is thrown straight up with a speed
of 20 m/s. It comes down 1 second earlier than expected, if air resistance is
ignored. Find the air resistance coefficient b for this object if the force has
the form

 F = - b v |v|.

Find the coefficient γ if the force has the form

 F = -γ v.

Design a simple experiment (with numbers!) using this ball to determine
which force gives a better description of the real world.

The example shows that the actual computational work and the
programming involved is a fairly small part of the unit. But having
it present permits us to bring in scale analysis, dimensional
analysis, and to demonstrate approximation techniques and ways of
extracting physics from computer programs. These are all skills

that the professional must know, but which we have had little
opportunity to teach in undergraduate courses.

D. Contemporary topics may be introduced
Once power tools are put in the student's hands, a much wider
variety of problems can be addressed. These include more realistic
problems than are usually handled, as well as ones of contemporary
interest.

Example: Chaos theory

Recent developments in the theory of classical mechanics have
stressed the sensitivity of non-linear classical problems to initial
conditions. Although this sensitivity has been known to workers in
the field, especially Lagrange and Poincare, when we teach
Newtonian mechanics we tend to tell only half the story. We
traditionally emphasize that:

In principle, classical systems are totally predictable once
starting conditions are specified.

However, it is equally important that the student understand the
contemporary lesson of chaos theory which emphasizes that:

In practice, it is usually impossible to predict the long-
term motions of any classical system with a finite
calculation since they are highly sensitive to the starting
conditions.

In the M.U.P.P.E.T. course, the presence of the computer allows us
to include a segment on chaos theory as a natural extension of
Newtonian dynamics at the end of the first semester. The students
find this topic of great interest, and many of them choose some
non-linear problem as a research topic in the second semester. A
screen from the M.U.P.P.E.T. sample program Iterate is shown in
Fig. 5. This program illustrates the phenomena of bifurcation,
period doubling, and repeatable randomness. The code for this

__

Redish and Wilson 11 Student Programming in the Introductory Course

program contains only 60 lines, many of which can be clipped from
the basic sample programs.

E. Students may begin research at an early stage
Introducing the computer to students at an early stage gives them
the power to investigate a wide variety of complex problems in an
open-ended inquisitive fashion and thereby begin to get a real
exposure to how science is done in practice. We have had
considerable success with first and second year physics majors
performing independent projects in the M.U.P.P.E.T. course.

When one of us (EFR) taught the M.U.P.P.E.T. course, he required
project work of every student in every semester. An earlier attempt
to require projects of sophomore physics majors in 1970-72 had
not been successful. Only about 15% of the students were able to
do projects that had any characteristics of normal scientific
research. Most students were severely hampered by not having
sufficiently strong analytic and mathematical skills to carry through
an open-ended investigation. However, in the M.U.P.P.E.T.
environment with freshman majors in 1986-1989, when each
student had access to a computer and the M.U.P.P.E.T. tools, the
results were strikingly different. About two thirds of the students
were able to do valuable and interesting projects.

The students were told to seek a topic they were interested in and
would like to know more about. It had to have some relation to the
content of the course, although we tended to be flexible if a student
showed strong interest in some other topic. They were told that
this was not to be a project where they read, organized, and
replayed other people's materials. They were supposed to design
their own project, carry out an investigation, and write a report.

In an ideal project, we believe that the student should carry out the
following activities:

• Formulate a question of broad general interest.
• Perform library research on the subject.

• Reformulate the question more sharply so it is amenable
to modeling or an experiment.

• Set up the calculation or experiment and run it.
• Check the results for consistency, accuracy, and

correctness.
• Extract some physical insight from the results.
• Propose further research based on the results.
• Present the results both in written and oral form.

The professional researcher does all of these. Consider for your
own undergraduate majors' curriculum: At what point in their
undergraduate training do each of your students get experience
with each of these kinds of tasks? Of course few of our freshman
projects succeeded in accomplishing all these goals. We were
surprised and delighted that some did, but we considered a project
successful if a student demonstrated five of the eight activities.

Some of the subjects investigated by students in conjunction with
our calculus-based physics course include:

Colliding galaxies Shepherd moons and Saturn's rings
Tethered satellites Capture of a planet by a wandering star
The flight of the frisbee Grain boundary growth in crystals
Pumping a pendulum swing Diffractive lens design
The Lyapunov exponent in Period doubling and chaos in the
 the Sinai billiard problem van der Pol oscillator
The effect of the backboard The planet Nemesis and its effect
 in basketball on the Oort cloud
The motion of a golf ball Designing an airplane wing
The evolution of light from galaxies
The motion of a spinning ping-pong ball

It would have been a substantial burden on the teacher of the class
to advise semester long research projects for even a class of 25
students. Fortunately, we had the support of the Maryland physics
department. In most cases, students were sent to other faculty with
particular relevant expertise for advice.14 This turned out to have a
substantial benefit. The undergraduate majors met faculty on a
personal basis at an early stage in their careers. This resulted in

__

Redish and Wilson 12 Student Programming in the Introductory Course

students making valuable contacts that often developed into
research projects when they became juniors and seniors. Since the
start of project work in the introductory courses, the number of
upperclass majors seeking to do independent research projects has
grown from essentially zero (1-2 per year) to a substantial fraction
of the class (10-12 per year).15

At universities with very high admission standards, it is well known
that freshman can do independent research (viz. winners of the
Westinghouse competition). What was not widely appreciated
before M.U.P.P.E.T. was that freshmen with a wide range of
abilities and backgrounds can begin to design their own research
projects and carry them out successfully if the physics course is
tied to the computer and the students empowered in its use.

Perhaps the most surprising result was the distribution of good
projects. Students who would have been identified as mediocre
students by their exam grades occasionally did outstanding
projects. A careful analysis of these students showed that they had
"stylistic" rather than content problems. They did not perform well
under exam pressure, but preferred to work slowly and carefully.
Some of them had extraordinary intensity and persistence when
they were interested and involved in a project. Others who did
well on exams could find no topic at all to interest them and turned
in very poor research projects. These observations raise the
question whether it is a good idea to use a student's performance on
traditional timed hour exams as a "first cut filter" to weed out
those who should not be physicists. This automated hoe may be
chopping some valuable flowers!

F. M.U.P.P.E.T. can be used in association with the
Laboratory
The M.U.P.P.E.T. approach has been used by one of us (JMW) to
provide modeling and analysis tools in conjunction with the
laboratory that accompanies the first semester introductory physics
course (mechanics).16 (M.U.P.P.E.T. can also be used in the
laboratory directly to serve as a user interface with the computer to
accumulate data directly from analog to digital converters.17) The

laboratory was taught by alternating between a traditional "hands-
on" laboratory one week and a computer modeling/data analysis
session the next. The students used M.U.P.P.E.T. to calculate
means and standard deviation and performing linear least square
fits. They also developed computer models and compared the
model's predictions with experimental observations.

For example, in one of the laboratories, students observed and took
data on the motion of a pendulum using a stroboscope and a
Polaroid camera. They then used their graphing and data analysis
package to plot the observed angle, and to calculate and plot the
angular velocity, angular acceleration, kinetic energy, potential
energy, and total energy vs. time. They then used M.U.P.P.E.T. to
build a mathematical model of the system on a template we
provided. With their program, they were able to compare the
prediction of a mathematical model with their observations and
make an estimate of the damping. With this model, students were
able to extend their analysis of their investigations to consider large
angle corrections, driving forces, and resonance.

Instead of listening to lectures about modeling and error analysis
(as had been the previous practice -- even in the lab section of the
class!) the students performed the activities themselves using our
computer tools. The students' projects were significantly improved
in quality and showed a better understanding of the phenomena
than when they worked in the traditional mode.

V. What did we have to leave out?
We are certain that many of our readers will respond to our claims
with skepticism. Everyone who has taught the traditional
introductory calculus-based physics course has had the problem of
having too much material to cover. How could we possibly teach
programming, add more realistic problems, include the large
amplitude pendulum, air resistance, random walks, and integrals
over non-simple charge distributions (among others)? What did we
leave out?

__

Redish and Wilson 13 Student Programming in the Introductory Course

Indeed, some materials were left out that are included in the
traditional course. Rigid body motion was suppressed, as was fluid
dynamics and much discussion of sound. In our three semester
sequence we did not do any modern physics or relativity, in part
since the sequence is followed immediately by a full two semester
sequence on modern physics.

The additional materials, however, did not take very much time to
include. The programming handouts were read in parallel with the
standard reading, a few pages per week. Less than 5% of the
lecture time was used to discuss programming. Two to three
lecture hours per semester were actually spent in the
microcomputer laboratory with the students getting started on some
of the more computer oriented homework assignments.

From this small basis of computer instruction, we were able to
include one to two homework problems per week that were
somehow associated with the computer. (These were occasionally
estimation, analytic, or qualitative problems.) These were done at
the cost of reducing the number of standard "plug-and-chug"
problems the students were assigned.

VI. Is M.U.P.P.E.T. transferable?
One question to consider is whether the M.U.P.P.E.T. environment
is transferable. Many educational developments work well as long
as they are taught by their creators, but do not succeed when taught
by anyone else. There is good evidence that M.U.P.P.E.T. is
usable elsewhere.

The University of Maryland is a reasonably typical university
environment.

The College Park campus of the University of Maryland is a large
state university with a large student body having a wide range of
interests, backgrounds, and levels of ability. Materials developed
and tested at Maryland should be usable at many campuses across
the nation.

M.U.P.P.E.T. at Maryland has not been restricted to its
developers.

The M.U.P.P.E.T. course for physics majors has been and is being
taught at Maryland by faculty not involved in the development of
M.U.P.P.E.T.

New courses have been developed with M.U.P.P.E.T. materials in
Australia.

Prof. Ian Johnston at the University of Sydney became acquainted
with the M.U.P.P.E.T. idea at the Raleigh Conference on
Computers in Physics Instruction in the summer of 1988.18 Since
then, he and his colleagues have developed materials for second
year physics majors on numerical methods and quantum
mechanics. In 1989-90, he used the M.U.P.P.E.T. environment to
integrate computational physics into the undergraduate courses at
Sydney University.19

Johnston tested M.U.P.P.E.T. in three successive semesters. In the
first test, 18 volunteers, chosen from a class of 200 second-year
students, were given six four-hour microlab sessions in addition to
the normal work in a course in quantum mechanics. In the second
test, this was repeated with 92 students out of a class of 202. The
third test involved 24 students in the third year class. These
students were asked to work through four computer modeling
problems in diverse areas of physics including solid state, kinetic
theory, plasma physics, and Fourier transforms. Johnston and
McPhedran conclude:

(1) Students do not need to be able to program before they can
handle these materials. Students who had no previous
programming experience (about 25% and 16% of the students in
the first two trials) had to work harder at first, but had little trouble
once they got started.

(2) The students' understanding of a number of traditional subjects
was significantly improved by adding computer modeling problems
as shown by grades in a comparison of the students in the test and

__

Redish and Wilson 14 Student Programming in the Introductory Course

traditional groups on traditional tests. This was because the
computer programs allowed students to explore many more cases
than they could by hand. For example, because the students in
these trials had seen the shapes of many different wave functions,
they could easily answer questions in ordinary texts dealing with
the geometrical property of eigenfunctions and performed
significantly better than students in the traditional group on such
questions in exams.

(3) In the last microlab, students were asked to investigate broadly
posed problems. They were able to successfully design and
complete projects in a one week period, thanks in a large part to the
ease of building models with the M.U.P.P.E.T. software package.
This confirms our experience with projects at Maryland.

We conclude from these experiences that the M.U.P.P.E.T.
environment is robust and survives being transferred to other users.

VII. Conclusions

Summary
We have reported on the development of the M.U.P.P.E.T. utilities
-- a flexible and powerful computing environment that permits
introductory students to add programming to their tools for solving
physics problems quickly and easily and with minimal overhead.
When these tools are added to the traditional calculus-based
introductory physics course, the students' power to solve problems
expands enormously. This opens many possibilities for changing
the curriculum. Elements may be rearranged in a more natural
order; professional skills may be introduced at an earlier stage than
is traditional; contemporary topics such as chaos and quantum
theory may be introduced; and students may begin research
immediately.

Our conclusion is that M.U.P.P.E.T. works well for majors in
small classes. We have not yet tested whether these methods can
be extended to large classes with other scientists such as chemists

and engineers. It may be possible if the infrastructure exists to
provide students with sufficiently accessible networked computer
resources. Success in this environment could also be aided
substantially by good coordination with other departments.

Future developments
As a result of its strength as an open environment capable of
growing as the student's strength grows (and as the power of the
computer grows), the M.U.P.P.E.T. utilities have been adopted as
the basis for two multi-university projects of national scale --
CUPS and CUPLE.

The Consortium for Undergraduate Physics Software (CUPS) is a
project based at George Mason University and funded by the NSF
to add computers to upperclass physics courses. A group of 27
physics faculty with software design experience are developing six
manuals to accompany upperclass physics courses. Each manual
contains nine simulations, each of which will add an element of
new physics, not easily includable without the computer.

The Comprehensive Unified Learning Environment20 (CUPLE) is a
project to bring together in a single unified computer environment
some of the successful attempts to reach more introductory physics
students and to train them more effectively and professionally.
CUPLE is bringing together sophisticated tools for handling
graphing, student programming, laboratories, and video with
modularized text materials and a database of information. The
M.U.P.P.E.T. environment is being upgraded for this project to an
object-oriented approach now called Window on Physics (or
WinPhys for short). WinPhys is built on Turbo Pascal for
WindowsTM and takes full advantage of the Graphical User
Interface (GUI) Microsoft WindowsTM 3.

Acknowledgments
M.U.P.P.E.T. was supported by the Fund for the Improvement of
Postsecondary Education. The project has involved a large number

__

Redish and Wilson 15 Student Programming in the Introductory Course

of faculty, students, and visitors who played various roles
throughout the years. We particularly acknowledge the
collaboration and efforts of those faculty members who
participated in the development of the original conception of
M.U.P.P.E.T. and who have contributed extensively to its
development: Profs. Charles Misner, Bill MacDonald, and Jordan
Goodman for concepts and fundamental ideas; James Harold, Ken
Hennacy, Gerhard Norkus and Madhura Nirke for developing
programs and utilities. Visitors to the program who made
important contributions include Ian Johnston (Sydney), Gordon
Aubrecht (Ohio State), Ed Taylor (MIT), Pat Cooney
(Millersville), Steve Hanzely (Youngstown), and Gunther Kurz
(Esslingen).

Endnotes

1 W. M. MacDonald, E. F. Redish, and J. M. Wilson, "The
M.U.P.P.E.T. Manifesto", Computers in Physics, 2(4), 23-30
(July/Aug 1988).

2 F. Verbrugge, "Conference on Introductory Physics Courses",
Amer. J. of Phys., 25, 127-128 (1957) ; "Improving the Quality
and Effectiveness of Introductory Physics Courses", ibid. 417-424;
F. Bitter et al., "Report of Conference on the Improvement of
College Physics Courses", ibid., 28(1960) p. 568-578.

3 R. L. Devaney, An Introduction to Chaotic Dynamical Systems
(Addison-Wesley, 1989).

4 J. S. Brown, A. Collins, and P. Duguid, "Situated cognition and
the culture of learning", Educational Researcher, p. 32-42 (Jan-
Feb 1989) .

5 The most precise comparison of theory and experiment occur in
quantum electrodynamics, where the g-2 value of the muon and the
binding energy of the helium atom can be calculated to more than
10 significant figures. At greater than this level of accuracy, one
runs into the problem of virtual production of strongly interacting
particles where the theory does not yet exist to permit further
improvements.

6 We are greatful to John Risley for a discussion of this idea.

7 E. F. Redish, J. M. Wilson, and I. P. Johnston, Physics with the
Microcomputer, to be published.

8 We have focussed in this work on the course for physics majors.
Some preliminary testing of the use of student programming in
large classes with engineering students was begun in the fall of '91.
This effort is to focus more on conceptual problems and building

__

Redish and Wilson 16 Student Programming in the Introductory Course

up a strong view of how one does physics than on developing
professional skills.

9 These last two libraries were developed by I. P. Johnston at the
University of Sydney.

10 E. F. Redish and Edwin Taylor, "Impulse Mechanics", AAPT
Announcer 17(4), 82 (Dec. 1987)

11 This tends to hold largely for textbook problems. The classic
laboratory in which the student measures the value of g to a high
accuracy with a pendulum and calculates many corrections
provides one of a number of excellent counter-examples to this
statement.

12 E. T. Whittaker and G. N. Watson, A Course of Modern
Analysis, Fourth Edition (Cambridge U. Press, 1952).

13 E. F. Redish, "The impact of the computer on the physics
curriculum", in Computers in Physics Instruction, E. F. Redish
and J. S. Risley, eds. (Addison-Wesley, 1990), p. 15-22.

14 In the sections taught by EFR, students were instructed: "Your
paper has to teach the teacher something he doesn't know in order
to earn an A." This had the effect of encouraging them to seek
advising elsewhere in the department.

15 The total number of upperclass majors has remained constant at
about 50.

16 J. M. Wilson, "Combining computer modeling with traditional
laboratory experiences in the introductory mechanics laboratory for
physics majors", AAPT Announcer, 17(2), 80 (May, 1987).

17 Ian Johnston, Sydney University, private communication.

18 The Conference on Computers in Physics Instruction,
Proceedings, E. F. Redish and J. S. Risley, eds. (Addison-Wesley,
1990)

19 I. D. Johnston and R. C. McPhedran, "Computational Physics in
the Undergraduate Curriculum", submitted to the The Australian
Physicist.

20 J. M. Wilson and E. F. Redish, "The Comprehensive Unified
Physics Learning Environment: Part I. Background and system
operation", Computers in Physics, 6(2) (Mar/April 1992), 202-209;
"..: Part II. The basis for integrated studies", ibid. 6(3) (May/June
1992), 282-286 .

Figure Captions

Fig. 1: The Pascal source for the program PROJ1D.

Fig. 2: The input and graphics screens produced by the program
PROJ1D.

Fig.3: The structure of the solutions to the large amplitude
pendulum equation

Fig. 4: The screen displaying large amplitude "over-the-top"
motion for a pendulum. From the M.U.P.P.E.T. sample program
Pendulum.

Fig. 5: Result of iterations of the logistic function in the chaotic
regime. From the M.U.P.P.E.T. sample program Iterate.

__

Redish and Wilson 17 Student Programming in the Introductory Course

PROGRAM Projectile1D; { proj1d.pas }

{***}
{* *}
{* Program to calculate motion of *}
{* a particle in 1D with gravity *}
{* and air resistance using RK2. *}
{* *}
{***}

USES
Crt,Dos,Graph,Printer,MUPPET;

CONST
numData : Integer = 200; {Number of points to

plot}
g : Real = 9.8; {m/sec/sec}

VAR
t,x : DataVector; { time, position }
v,a : DataVector; { velocity, accel }
x0,v0 : Real; { initial conds. }
m : Real; { mass }
b : Real; { air resis. coeff. }
dt : Real; { time step }
i : Integer; { loop variable }
IC : Screen; { data screen }
act : Char; { control character }

{ The types 'DataVector" and "Screen" are defined }
{ inside the unit MUPPET. }

{*------------ Physics Procedures -------------*}

FUNCTION Force(x,v,t:Real) : Real;
BEGIN

Force := -m*g - b*v*abs(v)
END;

{*---------- Mathematics Procedures -----------*}

{ Second order Runge-Kutta routine for stepping }
{ from variables at time t (In variables) to }
{ variables at time t+dt (Out variables). }

PROCEDURE StepRK2(xIn, vIn, tIn, aIn,tStep:Real;

VAR xOut,vOut,tOut,aOut:Real);
VAR

xHalf,vHalf : Real;
tHalf,aHalf : Real;

BEGIN
tHalf := tIn + 0.5*tStep;
xHalf := xIn + 0.5*vIn*tStep;
vHalf := vIn + 0.5*aIn*tStep;
aHalf := Force(xHalf,vHalf,tHalf)/m;
tOut := tIn + tStep;
xOut := xIn + vHalf*tStep;
vOut := vIn + aHalf*tStep;
aOut := Force(xOut,vOut,tOut)/m;

END;

{*--------- Data Screen Procedures ------------*}

PROCEDURE MakeDataScreen;
BEGIN

DefineInputport(0,0.45,0,0.9);
_A[01]:='"M.U.P.P.E.T." ';
_A[02]:='"University of Maryland" ';
_A[03]:=' ';
_A[04]:='"PROJECTILE PROGRAM: 1D" ';
_A[05]:='"F = -mg - bv*abs(v)" ';
_A[06]:=' ';
_A[07]:='"PARAMETERS" ';
_A[08]:=' "Mass m = " 0.14++ "kg" ';
_A[09]:=' ';
_A[10]:=' "Air Resistance" ';
_A[11]:=' "Coefficient, b = " 0+++++ "kg/m"';
_A[12]:=' ';
_A[13]:=' "Time step, dt = " 0.050+ "sec" ';
_A[14]:=' ';
_A[15]:='"INITIAL CONDITIONS" ';
_A[16]:=' "Position: x0 = " 0++++ "m" ';
_A[17]:=' "Velocity: v0 = " 30+++ "m/sec"';
LoadScreen(IC,17);

END;

PROCEDURE GetScreenData(VAR m,b,x0,v0,dt:Real);
BEGIN

ClearMUPPETport;
Message('Press <ENTER> to plot, <ESC> to quit');
Accept(IC); {displays screen}
m := Valu(IC,1); {puts 1st entry on IC into m}

__

Redish and Wilson 18 Student Programming in the Introductory Course

b := Valu(IC,2); {puts 2nd entry on IC into b}
dt := Valu(IC,3);
x0 := Valu(IC,4); {etc...}
v0 := Valu(IC,5);

END;

{*----------- Graphics Procedures -------------*}

PROCEDURE GraphSetUp;
BEGIN

GraphBackColor:=DarkGray;
DefineViewport(1, 0.55,1, 0.5,0.9); {Define

ViewPort 1}
DefineViewport(2, 0.55,1, 0.05,0.45);

{ViewPort 2}
DefineScale(1, 0, 10, -75.0, 75); {Define

Scale 1}
DefineScale(2, 0, 10, -75.0, 75); {Define

Scale 2}
END;

PROCEDURE PlotIt(viewPort,color:Integer; x,y:DataVector;
nameLabel:BigStr);

BEGIN
Setcolor(color);
SelectScale(viewPort);
OpenViewport(viewPort);
Axis(0,0,1,20);
PlotData(x,y,numData);
PutLabel(Inside,nameLabel);

END;

{*--------------- Main Program ----------------*}

BEGIN
MUPPETinit;
MakeDataScreen;
GraphSetUp;
REPEAT

GetScreenData(m,b,x0,v0,dt);
IF EscapedFrom(IC) THEN

BEGIN
MUPPETdone;
EXIT

END;

t[1] := 0; {initializes first
step}

x[1] := x0;
v[1] := v0;
a[1] := -g - b*v0*abs(v0)/m;

FOR i := 2 to numData DO {solve the
equation}

StepRK2(x[i-1],v[i-1],t[i-1],a[i-1],dt,
x[i], v[i], t[i], a[i]);

Message('Press <ENTER> for new data, <ESC> to
quit');

PlotIt(1, lightGreen, t, x, 'X vs T');
PlotIt(2, lightRed, t, v, 'V vs T');

act := ReadKey;
UNTIL ord(act) = 27;

MUPPETdone;

END.

Fig. 1

© American Association of Physics Teachers 1999, published in The American Journal of Physics 61 (1993) 222-232.

Fig. 2

Exact
Equation

Approximate
Equation

Numerical
Solution

Analytic
Solution

Fig. 3

Fig. 4

Fig. 5

