Preliminary studies for anapole moment measurements in rubidium and francium.

D. Sheng and L. A. Orozco
Joint Quantum Institute, Department of Physics, University of Maryland and National Institute of Standards and Technology, College Park, MD 20742-4111, USA
E-mail: lorozco@umd.edu

E. Gomez
Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78290, México

Abstract. The calculated anapole moments in a chain of Fr isotopes are highly correlated with indirect measurements of the hyperfine anomaly on the same isotopes. The same correlation appears on a chain of Rb isotopes where hyperfine anomalies are directly measured. The anapole moment predictions in Rb include a change in sign for the two stable isotopes 85Rb and 87Rb. The correlation shows that the nuclear magnetization plays an important role on the single-particle model of the anapole model. Preparations for the anapole measurement in Fr indicate the possibility of performing a similar measurement in a chain of Rb. The sensitivity analysis to magnetic fields shows new regions of operation at much lower fields than found before. The anapole moment effect in Rb corresponds to an equivalent electric field that is eighty times smaller than Fr, but the stability of the isotopes and the current performance of the dipole trap in the apparatus are encouraging for pursuing the measurement.

PACS numbers: 31.30.jp, 32.10.FN, 21.60-n

Keywords: Parity non conservation, anapole moment, blue detuned dipole trap.

1. Introduction

The constraints obtained from Atomic Parity Non-Conservation (PNC) on the weak interaction and its manifestation both at high energy and in hadronic environments are unique [1]. The information it provides is complementary to that obtained with high energy experiments. The last twenty years have seen steady progress in the experimental advances [2, 3, 4, 5] together with theoretical calculations [6, 7, 8] having a precision better than 1% [9, 10, 11].

As we prepare for a new generation of PNC experiments with radioactive isotopes [12, 13], we continue to study the measurement strategy and find advances both in the understanding of the parameters and on the specific experimental approaches that we are taking to achieve the ultimate goal. This paper presents progress on both fronts. We explore the possibility of measurements in Rb and Fr in our current apparatus and study our results on precision spectroscopy that extract the hyperfine anomaly together with the calculated anapole moments using current single particle nuclear models. We find the possible constraints in the nuclear weak interaction parameters that such measurements can bring and present the current performance of our atomic trap.

The general approach for the PNC experiments under consideration is the interference between an allowed transition and the weak interacting PNC transition [14, 15]. These experiments are going to take place in atomic traps and will require access to accelerators that can deliver the different isotopes.

2. The anapole moment in atoms

We start reviewing the basics of the anapole moment following very closely the work we have done in planning the experiment in Fr [13]. Parity nonconservation in atoms appears through two types of weak interaction: Nuclear spin independent and nuclear spin dependent [16]. Nuclear spin dependent PNC occurs in three ways [17, 18, 11]: An electron interacts weakly with a single valence nucleon (nucleon axial-vector current $A_n V_e$), the nuclear chiral current created by weak interactions between nucleons (anapole moment), and the combined action of the hyperfine interaction and the spin-independent Z^0 exchange interaction from nucleon vector currents ($V_n A_e$). [19, 20, 21].

Assuming an infinitely heavy nucleon without radiative corrections, the Hamiltonian is [22]:

$$H = \frac{G}{\sqrt{2}} (\kappa_{1i} \gamma_5 - \kappa_{nsd,i} \sigma_n \cdot \alpha) \delta(r),$$

(1)

where $G = 10^{-5}$ m$_p^{-2}$ is the Fermi constant, m$_p$ is the proton mass, γ_5 and α are Dirac matrices, σ_n are Pauli matrices, and κ_{1i} and $\kappa_{nsd,i}$ (nuclear spin dependent) with $i = p, n$ for a proton or a neutron are constants of the interaction. At tree level $\kappa_{nsd,i} = \kappa_{2i}$, and in the standard model these constants are given by

$$\kappa_{1p} = \frac{1}{2} (1 - 4 \sin^2 \theta_W), \quad \kappa_{1n} = -\frac{1}{2},$$
Preliminary study for anapole moment measurements in rubidium and francium

$$\kappa_{2p} = -\kappa_{2n} = \kappa_2 = -\frac{1}{2}(1 - 4 \sin^2 \theta_W)\eta,$$

(2)

with $\sin^2 \theta_W \sim 0.23$ the Weinberg angle and $\eta = 1.25$. κ_{1i} (κ_{2i}) represents the coupling between nucleon and electron currents when the electron (nucleon) is the axial vector.

The first term of Eq. 1 gives a contribution that is independent of the nuclear spin and proportional to the weak charge (Q_W) in the approximation of the shell model with a single valence nucleon of unpaired spin. For the standard model values, the weak charge is almost equal to minus the number of neutrons N that we take to be proportional to the number of protons Z. The second term is nuclear spin dependent and due to the pairing of nucleons its contribution has a weaker dependence on Z [23]:

$$H_{PNC}^{nsd} = \frac{G}{\sqrt{2}} \frac{KI \cdot \alpha}{I(I + 1)} \kappa_{nsd} \delta(r),$$

(3)

where

$$K = (I + 1/2)(-1)^{I+1/2-l},$$

(4)

with l the nucleon orbital angular momentum, I is the nuclear spin. The terms proportional to the anomalous magnetic moment of the nucleons and the electrons are neglected.

The interaction constant is then:

$$\kappa_{nsd} = \kappa_a - \frac{K - 1/2}{K} \kappa_2 + \frac{I + 1}{K} \kappa_{QW},$$

(5)

where $\kappa_2 \sim -0.05$ from Eq. 2 is the tree level approximation, and we have two corrections, the effective constant of the anapole moment κ_a, and κ_{QW} that is generated by the nuclear spin independent part of the electron nucleon interaction together with the hyperfine interaction.

Flambaum and Murray show that [23]:

$$\kappa_a = \frac{9}{10} g \frac{\alpha \mu}{m_p r_0} A^{2/3},$$

$$\kappa_{QW} = -\frac{1}{3} Q_W \frac{\alpha \mu_N}{m_p r_0} A^{2/3},$$

(6)

where α is the fine structure constant, μ and μ_N are the magnetic moment of the external nucleon and of the nucleus respectively in nuclear magnetons, $r_0 = 1.2$ fm is the nucleon radius, $A = Z + N$, and g gives the strength of the weak nucleon-nucleon potential with $g_p \sim 4$ for protons and $0.2 < g_n < 1$ for neutrons [22]. For a heavy nucleus like francium, the anapole moment contribution is the dominant one ($\kappa_{a,p}/\kappa_{QW} = 14$ and $\kappa_{a,p}/\kappa_{2,n} = 9$). Rubidium is heavy enough that the anapole moment contribution still dominates ($\kappa_{a,p}/\kappa_{QW} = 20$ and $\kappa_{a,p}/\kappa_{2,n} = 5$).

Vetter et al. [2] set an upper limit on the anapole moment of Thallium and Wood et al. [3, 24] measured with an uncertainty of 15% the anapole moment of 133Cs by extracting the dependence of atomic PNC on the hyperfine levels involved. Following Khriplovich [22] the anapole moment is:

$$a = -\pi \int d^3rr^2 J(r),$$

(7)
with \mathbf{J} the electromagnetic current density.

Flambaum, Khriplovich and Sushkov [18] by including weak interactions between nucleons in their calculation of the nuclear current density, estimate the anapole moment from Eq. 7 of a single valence nucleon to be

$$a = \frac{1}{e} \frac{G K j}{\sqrt{2} j(j+1)} \kappa_a = C^\text{an} \mathbf{j}, \quad (8)$$

where j is the nucleon angular momentum. The calculation is based on the shell model for the nucleus, under the assumption of homogeneous nuclear density and a core with zero angular momentum leaving the valence nucleon carrying all the angular momentum. Dimitrev and Telitsin [25, 26] have looked into many body effects in anapole moments and find strong compensations among many-body contributions, making the resulting values of the anapole moment close to the initial single-particle ones.

We estimate with Eqs. 6 and 8 the anapole moments of five francium isotopes on the neutron deficient side with approximately one minute lifetimes and five rubidium isotopes that lie on both sides of the stability region. We have studied the Fr isotopes extensively in Ref. [27]. In even-neutron isotopes, the unpaired valence proton generates the anapole moment, whereas in the odd-neutron isotopes both the unpaired valence proton and neutron participate. In the latter case, one must add vectorially the contributions from both the proton and the neutron to obtain the anapole moment as follows.

$$a = C^\text{an}_p \mathbf{j}_p \cdot \mathbf{I} + C^\text{an}_n \mathbf{j}_n \cdot \mathbf{I}, \quad (9)$$

with $C^\text{an}_i \mathbf{j}_i$ the anapole moment for a single valence nucleon i in a shell model description as given by Eq. 8, with the appropriate values of j_p and j_n depending on the isotope and using $g_p=4$ and $g_n=1$. Then we can use as an operational definition for the anapole moment constant the following equation:

$$a = \frac{1}{e} \frac{G (I + 1/2)}{\sqrt{2} I(I+1)} \kappa_a \mathbf{I}, \quad (10)$$

This way of defining the anapole moment absorbs the angular momentum constant K from Eq. 4 in κ_a.

Figure 1 shows the effective constant for the anapole moment for five different isotopes of francium (triangles) and rubidium (open squares). Fr has an unpaired $\pi h_9/2$ proton for all the isotopes considered; the odd neutron in 208,210Fr is an $\nu f_{5/2}$ orbit, while in 212Fr the extra neutron is on a $\nu p_{1/2}$ orbital. There is a clear even-odd neutron number alternation in Fr due to the pairing of neutrons. For Rb, the alternation is no longer evident due to changes in the orbitals for the valence nucleons. In particular the value of κ_a has a different sign for the two stable isotopes of rubidium (85Rb and 87Rb). The nucleon orbitals used for rubidium are $\pi f_{5/2}$ for isotopes 84 and 85, $\pi p_{3/2}$ for 86-88, $\nu g_{9/2}$ for 84 and 86 and $\nu f_{5/2}$ for 88 [28]. The two neutron holes in 85Rb deform the nucleus very slightly and change the order of the proton orbitals from $\pi p_{3/2}$ in 87Rb to $\pi f_{5/2}$ in 85Rb. The result is that the spin and orbital contributions to the angular
momentum are anti-aligned in ^{85}Rb and they are aligned in ^{87}Rb. The alignment is responsible for the sign change in κ_a. The authors of Ref. [29] use Eq. 2 to calculate the anapole moment constant and find no sign change between ^{87}Rb and ^{85}Rb. We consider even and odd isotopes with the vector sum of Eq. 9. The sign change that we get comes from the contribution of K (Eq. 4) in our operational definition of the anapole moment Eq. 10. The quantity measured experimentally, the amplitude of the $E1$ PNC transition, also contains the sign change.

3. Hyperfine anomaly

Precise measurements of hyperfine structure can probe the nuclear magnetization distribution. The hyperfine splitting is due mainly to the coupling between the magnetization of the nucleus with the magnetic field created by the electrons. The point-like coupling has corrections usually called hyperfine anomalies, that arise from the finite magnetic and charge distributions of the nucleus. Bohr and Weisskopf (BW) [30, 31] first discussed the finite magnetization effect in the anomaly. The modified charge potential that the valence electron sees as it gets closer to the nucleus, the Breit-Crawford-Schawlow (BCS) [32] effect, is the other source for a hyperfine anomaly (see Ref. [33] for an overview.

The hyperfine shift for a level with electronic angular momentum $J = 1/2$ is given by $E_{HF} = A(F(F+1) - I(I+1) - J(J+1))/2$ where F is the total angular momentum, A is the magnetic dipole constant, and I is the nuclear spin. Derivations of A assume...
that the nucleus is a point particle with magnetic moment μ_N and charge Z. The value of the magnetic dipole constant has to be modified to include the effect of the charge and magnetic distribution on the electronic wave function. We can write A for an extended (ext) nucleus as a function of the point value (point) as [34]

$$A_{\text{ext}} = A_{\text{point}}(1 + \epsilon_{\text{BCS}})(1 + \epsilon_{\text{BW}})$$

$$A_{\text{point}} = \frac{16\pi}{3} \frac{\mu_0}{4\pi\hbar} g_I \mu_N \mu_B |\psi(0)|^2 f_R,$$

(11)

where $\psi(0)$ is the electronic wave function evaluated at the center of the nucleus, μ_B is the Bohr magneton, μ_N is the nuclear magneton, g_I is the nuclear g-factor, and f_R represents the relativistic enhancement. The last two terms of the expression for A_{ext} correspond to the Breit-Crawford-Schawlow and Bohr-Weisskopf effects respectively.

The fractional difference in the mean charge radius among the Rb isotopes is less than 10^{-3} and justifies neglecting the BCS correction [35, 36]. ^{87}Rb has a closed-neutron shell that makes the nuclear charge distribution insensitive to the addition or subtraction of neutrons [35].

The magnetic moments and the A coefficients of the Rb nuclei are well known [35, 37, 38, 39]. We can use a ratio to extract the Bohr-Weisskopf effect difference between isotope i and ^{85}Rb:

$$g^{85} A^i g^{85} A^{85} \simeq 1 + \delta_{85}.$$

(12)

We recently showed that it is possible to extract an anomaly not only on the ground state but also on an electronic excited state using this procedure [40, 41].

There are only two measurements of the magnetic moment of Fr [42, 43]. The first is for ^{211}Fr and the second for ^{210}Fr. They give consistent numbers, but their uncertainty does not allow their use in the direct measurement of hyperfine anomalies. We have used a different approach: Precision measurements of the hyperfine structure in atomic states with different radial distributions [44]. Ref. [27] presents our measurements of hyperfine anomaly differences of the ground state in Fr comparing the ratio of the hyperfine splittings of the $7P_{1/2}$ (which has a small anomaly) and the $7S_{1/2}$ (which has the large anomaly) done by Coc et al. [45, 46].

Recent theoretical work by Brown et al. [47] demonstrates that the neutron skin contributions, in a series of isotopes, to the spin independent part of atomic PNC is well understood and should not limit the extraction of limits to the Standard Model [1]. The present work opens the question about the spin dependent part of atomic PNC experiments in a series of isotopes that should provide information on the weak interaction in the presence of the strong interaction, through the nuclear anapole moment [19].

Figure 2 shows our results on the hyperfine anomaly δ with Fr [27] normalized to ^{210}Fr. The results for Rb are referenced to ^{85}Rb based on our work [40, 41] and that of Thibault et al. and the compilation of Stone [35, 39].

The nuclear distribution of both Fr and Rb for the isotopes in Fig. 2 is well understood [28]. Fig. 3 in Ref. [27] shows the predictions using the method of Stroke [31]
Figure 2. Hyperfine anomalies for different isotopes of francium (triangles) and rubidium (open squares). See text for references to the numbers. The error bars of Fr are comparable to the size of the triangles. The error bar of 85Rb indicates the uncertainty in the magnetic moment measurement of this normalizing isotope.

with the nuclear wavefunctions from Brown [28] that give the anomaly with comparable accuracy to our measurements. The numbers for Rb should be similar.

We calculate the linear correlation r between the normalized hyperfine anomaly δ and the anapole moment κ_a for the two chains of isotopes. We find that r(Fr) = 0.956 ± 0.042 and r(Rb) = 0.986 ± 0.132. These numbers are strong evidence that that the nuclear anapole moment, as we have calculated it, reflects details on the structure of the nucleus.

The existence of this strong correlation most likely comes from the angular momentum constant in the anapole moment (Eqs. 4,10) that is also the way the nuclear magnetization influences the hyperfine anomaly. Both parameters are proportional to the nuclear magnetic moment of the isotope, but there is no simple linear correlation between the magnetic moment and the anomaly or the anapole moment. The correlation presented here is an open question. It brings again the nuclear structure to the front of the discussion in a similar way as Fortson and coworkers have done in Ref. [48, 49]; but this time the effects are on the spin dependent part of atomic PNC and its influence on the measurements in a chain of isotopes. It would be great to have a study, such as the one recently published by Brown, Flambaum, and Derevianko [47] about the nuclear structure effects in the extraction of standard model limits from the spin independent part of atomic PNC.
4. Constraints to weak meson-nucleon interaction constants from anapole measurements

The anapole moment constant (κ_a) depends on the strength of the weak nucleon-nucleus potential, characterized by g_p for a proton and g_n for a neutron. Equation 18 of Ref. [23] gives a relation between the weak nucleon-nucleus constants (g_p and g_n) that appear in the expression for the anapole moment (Eq. 6) and the meson-nucleon parity nonconserving interaction constants formulated by Desplanques, Donoghue, and Holstein (DDH) [50]. Evaluating the relations with the DDH “best” values for the weak meson-nucleon constants we arrive at the following expressions

$$Y = 3.61(-X + 1.77g_p + 0.26),$$ \hspace{1cm} (13)

$$Y = 2.5(X + 2.65g_n - 0.29),$$ \hspace{1cm} (14)

with $X = (f_\pi - 0.12h^1_\rho - 0.18h^1_\omega) \times 10^7$ and $Y = -(h^0_\rho + 0.7h^0_\omega) \times 10^7$ combinations of weak meson-nucleon constants. Figure 3 shows the expected constraints on the weak meson-nucleon constants from an anapole moment measurement using Eqs. 13 and 14. The figure is analogous to Fig. 8 in Ref. [19] that shows the constraints obtained from different experiments. This figure complements the one that appears in the review of Behr and Gwinner [1] as it adds the rubidium numbers to the constraints obtained from the anapole moment measurement in Cs considering only the experimental uncertainty [3, 24] and the calculations for Fr.

The main contribution to the anapole moment in neutron even alkali atoms comes from the valence proton, and the experiment provides a measurement of g_p. Using Eq. 13 we obtain constraints in the direction of the Cs result of Fig. 3. The fractional experimental uncertainty in g_p is the same as the measurement one. The actual final uncertainty for g_p is considerably higher and depends on the accuracy of the theoretical calculations [23]. A measurement in any other neutron even alkali atom generates constraints in the same direction as the Cs result, with a confidence band size proportional to the measurement uncertainty. Fig. 3 shows the expected constraint from a 3% measurement in a neutron even atom (rubidium or francium). The neutron odd alkali atoms have contributions from the valence neutron. The constraints obtained (Eq. 14) are not colinear to those of Cs and generate a crossing region in Fig. 3. The size of the error band depends on the relative contributions of the valence proton and neutron to the anapole moment which depends on the atom. Fig. 3 shows the expected constraints for a 3% measurement in francium and rubidium. All the calculations assume $g_p = 4$ and $g_n = 1$.

5. Experimental requirements

This section presents the experimental requirements to measure the anapole moment in chains of Rb and Fr isotopes. Most of the details are in Ref [13], but here we focus on the differences for Rb and new ways that we have to perform the measurement.
Figure 3. Constraints to DDH weak meson-nucleon interaction constants from an anapole moment measurement in Rb and Fr. The isotopes with even number of neutrons give constraints aligned with the 15% Cs result [3], while those with odd number of neutrons give constraints in a different direction. Cs result (small dashed line), Fr 3% measurement (solid line) and Rb 3% measurement (long dashed line).

The measurement relies on driving an anapole allowed electric dipole (E1) transition between hyperfine levels of the ground state. The transition probability is very small and is enhanced by interfering it with an allowed Raman (or magnetic dipole (M1)) transition. The excitation is coherent and allows for long interaction times. The signal to noise ratio is linear with time (up to the coherence time). We report on the progress towards an anapole measurement and the possibility of making the measurement in rubidium.

5.1. Source of atoms

The work with radioactive atoms requires on-line trapping with an accelerator to have access to reasonably short lifetime isotopes. We take the numbers for the production of unstable isotopes from what is available at TRIUMF in the Isotope Separator and Accelerator (ISAC), where we are an approved experiment. A 500 MeV proton beam collides with an uranium carbide target to produce francium as fission fragments. A voltage up to 60 kV extracts the atoms as ions from the target. The beam goes through a mass separator and into the trapping area. The yield is up to \(2 \times 10^{11} \text{ s}^{-1}\) for Rb, and \(2 \times 10^{6} \text{ s}^{-1}\) for Fr, but it is expected to reach \(10^{8}-10^{9}\) for Fr once the accelerator runs at full capacity.
Our current apparatus to go on-line with the accelerator has a vacuum chamber to capture atoms in a high efficiency magneto-optical trap (MOT) operating in batch mode with a neutralizer, as described in Ref. [51]. A second science chamber, with controlled electric and magnetic environments for the PNC experiments, connects with the first through differential pumping. Tests for the transfer of atoms (Rb) between the two show efficiencies above 50% that allows accumulation of atoms for a longer time.

5.2. Measurement

The anapole moment constant scales with the atomic mass number as $A^{2/3}$ (Eq. 6). The anapole induced electric dipole ($E1$) transition scales faster due to additional enhancement factors [13]. It is about 83 times larger in Fr than in Rb. The magnetic dipole ($M1$) transition between hyperfine levels, on the other hand, has about the same value for both species. The $M1$ transition gives the main systematic error contribution, and the figure of merit is the ratio of the two transition amplitudes $|A_{E1}/A_{M1}| \sim 1 \times 10^{-9}$ for francium and $|A_{E1}/A_{M1}| \sim 1 \times 10^{-11}$ for rubidium. In order to do a measurement in rubidium it becomes more important to understand and suppress the $M1$ contribution.

The experiment starts by optical pumping all the atoms to a particular level $|F_1,m_1\rangle$. The atoms interact with two transitions for a fixed time. One corresponds to a Raman transition (parity conserving) and the other to the anapole induced electric dipole ($E1$) transition (parity violating). Both are resonant with the ground state hyperfine transition $|F_1,m_1\rangle \rightarrow |F_2,m_2\rangle$ in the presence of a static magnetic field. This triad of vectors defines the coordinate axis. The interference of both transitions gives a signal linear in the anapole moment [13]. The field driving the $E1$ transition is inside a microwave Fabry-Perot cavity. The signal to measure is the population in $|F_2,m_2\rangle$ at the end of the interaction with a given handedness of the system.

The specific magnetic field and transition levels reduce the sensitivity to fluctuations. There is an operating point where the transition frequency varies quadratically with the magnetic field for a $|\Delta m|=1$ transition. The operating field grows with the hyperfine separation and it is larger in Fr than in Rb. Table 1 shows the magnetic field for different isotopes of Fr and Rb. The transition $m_1 = 0.5 \rightarrow m_2 = -0.5$ in odd neutron isotopes has a small magnetic field. The electronic contribution to the linear Zeeman effect cancels for the two levels at low magnetic fields, but the nuclear magnetic contribution remains since the two states belong to different hyperfine levels. The magnetic field for odd neutron Fr isotopes is smaller than previously reported (~ 2000 G) [13].

The dimensions of the microwave cavity scale with the wavelength of the transition ($\lambda_m \sim 6$ mm for Fr and $\lambda_m \sim 6$ cm for Rb). The mirror separation of the Fabry-Perot cavity should be at least 20 cm for Rb. The anapole signal remains unchanged between Fr and Rb by putting more power in the microwave cavity to compensate for the loss in the nuclear size.

We hold the atoms in place for the measurement using a far off resonance trap
Table 1. Operating point for the magnetic field (B_0), resonant frequency (ν_m) and Zeeman sublevels (m_1, m_2) for the transition.

<table>
<thead>
<tr>
<th>Atom</th>
<th>Isotope</th>
<th>Spin</th>
<th>m_1</th>
<th>m_2</th>
<th>B_0 (G)</th>
<th>ν_m (Mhz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rb</td>
<td>84</td>
<td>2</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.2</td>
<td>3084</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>5/2</td>
<td>0</td>
<td>-1</td>
<td>186.1</td>
<td>2992</td>
</tr>
<tr>
<td></td>
<td>86</td>
<td>2</td>
<td>0.5</td>
<td>-0.5</td>
<td>0.3</td>
<td>3947</td>
</tr>
<tr>
<td></td>
<td>87</td>
<td>3/2</td>
<td>0</td>
<td>-1</td>
<td>654.2</td>
<td>6602</td>
</tr>
<tr>
<td></td>
<td>88</td>
<td>2</td>
<td>0.5</td>
<td>-0.5</td>
<td>0.03</td>
<td>1191</td>
</tr>
<tr>
<td>Fr</td>
<td>208</td>
<td>7</td>
<td>0.5</td>
<td>-0.5</td>
<td>3.3</td>
<td>49880</td>
</tr>
<tr>
<td></td>
<td>210</td>
<td>6</td>
<td>0.5</td>
<td>-0.5</td>
<td>3.4</td>
<td>46768</td>
</tr>
<tr>
<td></td>
<td>212</td>
<td>5</td>
<td>0.5</td>
<td>-0.5</td>
<td>4.5</td>
<td>49853</td>
</tr>
</tbody>
</table>

(FORT) [52]. Changes in the FORT wavelength allow its use for both rubidium and francium. The dipole trap causes an ac Stark shift that is different for the two hyperfine levels. The differential shift causes a change of the resonant frequency and eventually leads to decoherence. The Stark shift in a FORT is in the same direction for both hyperfine levels but of different size due to the different detuning. The differential shift is proportional to the hyperfine splitting, and it is reduced by an order of magnitude in rubidium.

The measurement in both species depends on the effectiveness of the suppression mechanisms [13]. The first suppression mechanism works by having the atoms in the magnetic field node (electric field antinode). The reduction depends on the magnitude of the field at the edges of the atomic cloud. Since the wavelength increases by an order of magnitude in rubidium, the suppression improves by the same amount. The second suppression mechanism works by forcing the $M1$ transition to have the wrong polarization for the levels considered. It remains unchanged in rubidium. The atoms oscillate around the magnetic field node for the third suppression mechanism. The suppression is proportional to the $M1$ field, and since it gets reduced because of the better positioning in the node, we can gain an order of magnitude (assuming no increase in the driving field power). The suppression mechanisms work better in rubidium than in francium by two orders of magnitude because of better positioning to the magnetic field node. The improvement compensates the two orders of magnitude loss in the figure of merit ($|A_{E1}/A_{M1}|$).

We compare the requirements in rubidium to those established on Table III of Ref. [13] for francium. We assume an increase in the microwave power to keep the same $E1$ transition amplitude. The magnetic field stability is still about 10^{-5} but since now the magnetic field is smaller this means that the field has to be contolred to about 10 μG. The requirements on all the systematic effects that depend on the $M1$ transition produced by the microwave cavity increase by two orders of magnitude. This is because by increasing the microwave field we increase the $E1$ and $M1$ transition by the same amount. The systematic effects introduced by the dipole trap or Raman beams remain
6. Optical Dipole trap

We report on the experimental implementation of the optical dipole trap in the science chamber. The dipole trap design aims to decrease the photon scattering and differential ac Stark shift introduced by the laser forming the trap [53, 54]. We use a FORT to reduce the photon scattering rate. The ac Stark shift depends on the position in the trap and the atomic state. The shift changes with time as the atoms move in the trap. We choose a blue detuned trap where the atoms are confined on the dark region of the trap.

We use a rotating dipole trap because we can control the shape and size dynamically. A laser rotating faster than the motion of the atoms creates a time averaged potential equivalent to a hollow beam potential [55]. The laser beam propagating in the z direction goes through two acousto-optical modulators (AOMs) placed back-to-back in the x and y directions respectively. We use the beam that corresponds to the first diffraction order in both directions, the (1,1) mode. We scan the modulation frequency of both AOMs with two phase-locked function generators (Stanford Research SR345) to generate different hollow beam shapes.

The general expression of the time averaged potential $U(\rho, z)$ in the radial direction for linearly polarized light and a detuning larger than the hyperfine structure splitting, but smaller than the fine structure splitting is [56]:

$$
U(\rho, z) = \frac{\hbar \gamma}{24 I_S} \left[\frac{1}{\delta_{1/2}} + \frac{2}{\delta_{3/2}} \right] \oint_{\rho'} I(\rho - \rho', z) dl
$$

where γ is the natural linewidth, I_S is the saturation intensity defined as $I_S = 2\pi^2 \hbar c \gamma / (3\lambda^3)$, and $I(\rho, z)$ is the Gaussian beam intensity at position (ρ, z). The integral over the contour of the rotating laser beam gives the time averaged potential. The detunings $\delta_{1/2}$ and $\delta_{3/2}$ in units of γ.

Tightly focusing the laser at the position of the atoms confines them along the beam axis. Fig. 4 shows the shape of the potential both along the radial and axial directions for a circular shaped trap.

We study the lifetime and spin relaxation rate of such a circular trap with a beam of 400 mW and blue detuned 2.5 nm from the 87Rb D_2 line. The spin relaxation is critical for the anapole measurement. The beam rotating frequency is 50 kHz, which is much faster than the oscillation frequency of the trap (≤ 1 kHz). The trap has a transverse diameter of 150 μm, an axial diameter of 24 mm, and a potential depth of 60 μK (normalized potential value of 0.4 in Fig 4). We measure the atom number in the dipole trap after a pre-set hold time by shining a 100 μs long resonant pulse and imaging the fluorescence into a photomultiplier tube (Fig. 5a). We image the fluorescence from a region of radius of 2 mm. We see a rapid decay during the first 100 ms from fast atoms that can not be confined in the radial direction. The rapid decay is followed by a slower decay (2.5 s lifetime). The slow decay is shorter than the MOT lifetime (30
s) and corresponds to the continuous diffusion of the atoms out of the imaging region. This is supported by the calculation shown in Fig. 5a that gives the remaining number of atoms in the imaging area using the expected temperature of the atoms. We follow the method of Ref. [57] to measure the spin relaxation rate. We load the atoms from a magneto-optical trap (MOT) to the dipole trap, turn off the magnetic field and MOT beams and pump the atoms to the \(F = 1 \) ground state. We get the relaxation rate due to the interaction of the atoms with the dipole trap laser by comparing the populations of the atoms in both hyperfine levels as a function of time. Figure 5b shows the fraction of atoms in the \(F = 2 \) ground state as a function of time. An exponential fit to the data gives a spin relaxation time of 840 ms, similar to previous measurements [57]. This is a first step towards the 20 ms coherent interaction of the proposed data taking cycle in Ref. [13].

We reduce the diffusion of the atoms in the axial direction by adding a one-dimensional (1D) blue detuned standing wave with a frequency different from the one used for the rotating trap. The combination of tight radial confinement from the rotating trap and confinement in the axial direction from the standing wave gives a higher density dipole trap (Fig. 6). It also opens the possibility to study the motion of atoms in 2D billiards with arbitrary transverse shape [58].

The symmetry of the trap is an important point for the anapole moment measurement. As we scan the beam, there will be diffraction power changes on the AOMs. This has been pointed out in the study with Bose-Einstein condensates where the uniformity is required to avoid parametric excitation [59]. We feedforward on the
Figure 5. a) Lifetime measurement of the atoms in the dipole trap, filled squares experimental data, dashed line atoms escaping model, continuous line exponential fit. b) Measurement of the spin relaxation time by plotting the fraction of the atoms in the $F = 2$ state in the dipole trap. The continuous line is the exponential fit (lifetime 840 ms).
Figure 6. Fluorescence image of the atoms 35 ms after turning off the magnetic field and MOT beams. a) rotating dipole trap. b) rotating dipole trap and 1D blue detuned standing wave. Gravity (g) goes into the paper in the figure.

RF power to reduce the diffraction variations [60]. Fig. 7 shows the increase stability in the diffraction power as we rotate the beams using this method.

Figure 7. Intensity profile of the diffracted light showing a few oscillation periods that generate the trap with (solid line) and without (dashed line) feedforward on the RF power to the AOMs.
7. Conclusions

There is a strong correlation between the current predictions for the anapole moment based on a single particle model and the measured hyperfine anomalies in chains of isotopes in Fr and Rb. The measurement of the anapole moment in a chain of isotopes can constrain the values of the DDH weak meson-nucleon interaction constants. The measurement of the anapole moment is possible in any of the heavy alkali atoms (rubidium, cesium or francium) but it becomes increasingly difficult with decreasing atomic number. The anapole moment for the two Rb naturally available isotopes has the opposite sign which can be useful for the study of systematic effects. Neutron odd isotopes have transitions insensitive to magnetic field fluctuations at small static values of the magnetic field. We have a working rotating blue detuned dipole trap necessary to hold the atoms for the duration of the anapole moment measurement. The trap shows a spin relaxation time of 840 ms. The dipole trap will be used in future measurements in both francium and rubidium.

Acknowledgments

Work supported by NSF. E. G. acknowledges support from CONACYT (cooperacion bilateral). We would like to thank J. A. Behr, B. A. Brown N. Davidson, S. Schnelle, G. D. Sprouse, for helpful discussions and A. Perez Galvan for his work on the apparatus and interest on this project.

Preliminary study for anapole moment measurements in rubidium and francium

[40] A Perez-Galvan, Y Zhao, L A Orozco, E Gomez, F J Baumer, A D Lange, and G D Sprouse. Comparison of hyperfine anomalies in the \(5S_{1/2} \) and \(6S_{1/2} \) levels of \(^{85}\text{Rb} \) and \(^{87}\text{Rb} \). *Phys. Lett. B*, 655:114, 2007.

[42] C Ekström, L Robertsson, and A Rosén. Nuclear and electronic g-factors of \(^{211}\text{Fr} \), nuclear ground spin of \(^{207}\text{Fr} \) and the nuclear single-particle structure in the range \(^{207}--^{228}\text{Fr} \). *Physica Scripta*, 34:624, 1986.

