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Chapter 1

Introduction

1.1 Introduction

Calculations of experimental observables influenced by Quantum Chronodynamics (QCD) have

always been difficult due to the large value of the strong coupling constant, αs. The resummation

technique developed by Collins, Soper, and Sterman (CSS)[1] allows the inclusion of

contributions from large logarithms of the form lnn(pT /Q) (where pT is the component of the

momentum of the produced system transverse to the beam axis and Q is the four-momentum

transfered) arising from unsuppressed soft and collinear radiation, to all orders of perturbation

theory. Recent studies of data from deep inelastic scattering (DIS) experiments[2] [3] indicate

that the resummed form factor may need to be modified for processes involving a

small-Bjorken-x parton in the initial state. In [4], the authors discuss how such a modification

would influence the pT distributions of vector and Higgs bosons produced in hadronic collisions.

A precision measurement of the mass of the W boson is one of the most sensitive indirect

measures of the Higgs mass, and the pT distribution of W bosons is an important systematic

uncertainty in this measurement.

In this thesis, we present an experimental measurement of the pT distribution of Z/γ∗ bosons

produced in pp̄ collisions with a center-of-mass energy of 1.96 TeV using data taken with the DØ

detector at the Tevatron Collider. At leading order in αs, Z/γ∗ bosons are produced through the

annihilation of a quark and an anti-quark, with the partons in the proton and anti-proton

carrying momentum fractions x1 and x2, respectively. The parton momentum fractions are in

turn directly related to the rapidity of the boson, defined y = 1
2 ln E+pL

E−pL
, where E is the energy of

the boson and pL is the component of its momentum along the beam direction, by x1,2 = MZ√
s
e±y.

Here, MZ is the mass of the boson, and
√

s is the center of mass energy. Bosons with rapidity
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between 2.0 and and the kinematic limit, 3.0, thus probe processes involving a parton with

Bjorken-x between 0.002 and 0.006, and can be used as a test of the resummed form factor at

small x.

Regardless of the resummation technique, the results of the calculation depend on a

parameterization of non-perturbative long-distance effects. We use the inclusive distribution to

provide a more precise measurement of these effects following the formalism developed in [5].

The resulting parameterization can be used to reduce uncertainties in the W mass measurement.

Z/γ∗ pT distributions have been published previously by the DØ [6] and CDF [7] collaborations

using 100 pb−1 of data and thus have a much larger statistical uncertainty than this measurement.

This measurement is also the first to present a distribution for forward-rapidity bosons.

This is a thesis in experimental elementary particle physics. Elementary particle physics is the

study of the elementary constituents of matter and radiation, and the interactions between them.

All the particles and their interactions observed to date can be described by a quantum field

theory called the Standard Model (SM). Being a thesis in experimental physics, this document

will involve the measurement of a specific physical quantity. In particular, I will describe the

measurement of the transverse momentum of electron pairs produced in proton-antiproton

collisions. The result of this measurement will be compared with the predictions of the Standard

Model. Before describing the details of this measurement, I will first give a basic description of

the Standard Model.

1.2 The Standard Model

In the standard model, all matter is composed of quarks and leptons. These are the fundamental

and indivisible particles in the theory. There are six types of quarks and six types of leptons, as

is shown in Fig. 1.1.

There are four types of fundamental forces in nature that govern the interactions among the

fundamental particles: the gravitational, the strong, the weak and the electromagnetic

interactions. These forces are transmitted by specific fields or particles (which are equivalent
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concepts in relativistic quantum field theory [8]). All the fundamental forces, and the particles

that transmit these forces, are summarized in Table 1.1.

The Standard Model describes the strong interaction, the weak interaction and the

electromagnetic interaction. The SM is a quantum field theory that is based on the gauge

symmetry SU(3)C × SU(2)L × U(1)Y . This gauge group includes the symmetry group of the

strong interactions (SU(3)C) and the symmetry group of the electroweak interactions

(SU(2)L ×U(1)Y ). The symmetry group of the electromagnetic interactions (U(1)em) appears in

the SM as a subgroup of SU(2)L × U(1)Y , and it is in this sense that the weak and

electromagnetic interactions are unified.

In the 1960s, Glashow, Salam and Weinberg unified the electromagnetic and weak interactions

into the electroweak theory [9] by using the concept of spontaneous symmetry breaking in a

nonabalian gauge theory based on the symmetry group SU(2)L × U(1)Y . The group SU(2)L

describes a symmetry based on doublets in weak isospin space; the group U(1)Y describes a

symmetry in weak hypercharge space. Spontaneous symmetry breaking takes place when a

system that is symmetric with respect to some symmetry group goes into a vacuum state that is

not symmetric. A scalar field with a non-vanishing vacuum expectation value can break the

group SU(2)L ×U(1)Y spontaneously to U(1)em, leaving an electromagnetic force transmitted by

a massless photon and a weak force transmitted by three spin-1, massive bosons, W ± and Z.

In the year 1983, an exciting event happened in the history of particle physics. The W and Z

bosons were discovered by the UA1 and UA2 collaborations at the CERN pp̄ collider in Geneva,

Switzerland [10] . Their measured masses and other properties were close to the theoretical

predictions.

The theory of the strong interaction is known as Quantum Chromodynamics (QCD). In this

theory, the strong force is ascribed to the exchange of gluons, the quanta of the color field

responsible for the strong force. QCD is based on the SU(3) symmetry group. SU(3) is a

symmetry representation of three-component color fields which are transmitted by eight massless

gluons. The most important feature of QCD is that the interaction strength gets smaller as the
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energy scale of the interaction increases. This property of QCD, called asymptonic freedom,

means that at high energies (short distances), quarks and gluons within a hadron behave almost

independently of one another.

This picture of particle physics based on the existence of quarks and leptons interacting via

photons, gluons, W and Z bosons has withstood many experimental tests so far. However, the

Standard Model is not perfect yet. For example, in electroweak theory, in order to have

spontaneous symmetry breaking, there should exist a Higgs particle associated with the scalar

field, but no such particle has yet been observed.

Force Force Carrier Symbol Charge (|e|) Spin Mass (GeV/c2)

Strong Gluon g 0 1 0

Electromagnetic Photon γ 0 1 0

Weak W-boson W± ±1 1 80.423± 0.039

Z-boson Z0 0 1 91.1876± 0.0021

Gravitational Graviton G 0 2 0

Table 1.1: Fundamental forces and force carriers of the Standard Model.

1.3 Z Boson production in pp̄ collisions

In the pp̄ collisions at the center-of-mass energy (
√

s)=1.96 TeV produced at Run II of the

Tevatron, Z bosons are produced predominantly through quark-antiquark annihilation. The

lowest order diagrams for Z boson production is shown in Fig. 1.3.

In the parton model1, Zs are produced in collisions of q and q̄ constituents within the proton and

antiproton. The momenta of these constituents are assumed to be parallel to the momentum of

the parent hadron, and consequently the component of the Z’s momentum transverse to the

1The parton model was developed by Feynman and Bjorken in the late 1960s to explain data from deep inelastic

scattering of electrons on nucleons. This model views nucleons are containing point-like constituents(called partons)

and provides a simple framework to calculate scattering cross sections.
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Figure 1.1: Elementary particles. The lepton and quark families are shown as well as the force-

carrying bosons. The mass of the particles increases with generation number (with the possible

exception of neutrinos).

beam axis (transverse momentum: pT ) must be zero. The magnitude of the transverse

momentum is invariant to Lorentz boosts along the beam axis. The fact that, experimentally, Z

bosons are found to have non-zero pT must be attributed to QCD gluon radiation prior to

quark-antiquark annihilation into the Z.

A useful quantity for particle physicists is the cross section, which is a measure of the likelihood

of interaction between particles. The production cross section is related to the rate of particle

production for any particular final state.

In the framework of QCD, the production rate of Z bosons can be calculated by multiplying the

constituent cross section (the short-distance or perturbative physics) by the parton luminosities

(the long-distance or non-perturbative physics). This prescription for the theoretical calculation

is called the factorization theorem of QCD [11]. The short distance contribution can be

5



u

u
–

Z0

d

d
–

Z0

Figure 1.2: Lowest-order Feynman diagram for Z boson production in hadronic collisions.

calculated perturbatively order-by-order in the strong coupling constant αS . The long distance

part has to be parameterized and fit to experimental data.

The differential cross section for pp̄ → V + X(V is W or Z, X gives the rate for anything that is

produced along with V) is given by:

d2σV

dpT dy
=

∑

i,j

∫

dx1dx2fi(x1)fj(x2)
d2σ(ij → V )

dpT dy
(1.1)

where y is the rapidity of V; x1 and x2 are the momentum fractions of the colliding partons;

f(x1) and f(x2) are the parton distribution functions 2 (PDFs) for the incoming partons;

σ(ij → V ) is the partonic cross section for production of the state V. The sum is over the

contributing parton flavors.

For relatively high Z boson pT (pT ∼ MZ), the production cross section can be calculated using

standard perturbative methods. The leading-order Feynman diagrams are shown in Fig. 1.3. The

result has the form

d2σV

dpT dy
∼ αW αS(a1 + a2αS + a3α

2
S + ...) (1.2)

2The parton distribution functions are the probability density for finding a particle with longitudinal momentum

fraction x and momentum transfer Q2
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where αW is the weak interaction strength and αS is the strong interaction strength. This is

called a fixed-order perturbative result. The result up to o(α2
S) has been calculated by Arnold and

Reno [12].

The dominant contributions to the perturbative result beyond leading order are of the form

d2σV

dpT dy
∼ αW αS

p2
T

ln(
Q2

p2
T

)[ν1 + ν2αSln2(
Q2

p2
T

) + ν3α
2
Sln4(

Q2

p2
T

) + ...] (1.3)

where Q2 is the square of the mass of the dilepton system (in our case, MZ). Note that when

pT →0, this calculation diverges due to the 1
p2

T

ln(Q2

p2

T

) terms.

This problem is addressed using a technique called resummation, which sums the leading and the

next-to-leading ln(Q2

p2

T

) for each power of αS to get an exponential factor. The

Collins-Soper-Sterman (CSS) resummation formalism [1] gives the form

d2σV

dp2
T

∼
∫

d2bei ~pT ·~bW (b, Q) + Y (1.4)

where b is the impact parameter; W (b, Q) sums to all orders the terms that are at least as

singular as (1/p2
T ) (as pT → 0); the Y term is a correction based on the fixed-order perturbative

result.

The W term has the form

W (b, Q) ∼ e−S(b,Q) (1.5)

The exponent, S(b, Q), is called the Sudakov factor.

When pT approaches λQCD , the perturbative techniques fail. Instead, a parameterization, that

attempts to include non-perturbative effects, is used as a replacement of W (b, Q),

W (b, Q) → W (b∗, Q)e−SNP (b,Q) (1.6)

where

b∗ =
b

√

1 + ( b
bmax

)2
(1.7)

7



is always greater than bmax and SNP (b, Q) is the non-perturbative function that controls W(b,Q)

for b � bmax.

SNP (b, Q) should satisfy the following requirements. When b →0(corresponding to pT → ∞), the

non-perturbative effects must decrease, so SNP must →0. Large values for b (b → ∞) should not

contribute to the cross section, so SNP should → ∞ as b → ∞. The value of bmax is usually

taken to be ∼ 0.5 GeV−1 [13].

The parameterization of SNP has the following form

SNP (b, Q) = h1(b, xA) + h1(b, xB) + h2(b)ln(
Q

2Q0
) (1.8)

where xA and xB are the momentum fractions of the colliding quarks; Q0 is an arbitrary

momentum scale; and h1(b, xA), h1(b, xB), and h2(b) are functions to be determined from

experiment. In the Ladinsky-Yuan form[5], SNP is

SNP (b, Q) = g1b
2 + g1b

2ln(
Q2

Q2
0

) + g1g3b ln(100xixj) (1.9)

where xi,xj are the momentum fractions of the colliding partons. The values of g1, g2 and g3 are

determined by fitting to the pT distribution of vector bosons like the W , Z, or Photon. This has

been done using Tevatron Run I results from Z data[14].

u,d

u
−
,d
−

u
−
,d
−

g

Z
u,d

u
−
,d
−

g
u
−
,d
−

Z

Figure 1.3: Initial state gluon radiation and Compton scattering in Z production.

8



1.4 Motivation for the Measurement of the Z Boson Transverse Momentum

There are several reasons for measuring the Z boson differential cross section dσ/dpT .

First, the transverse momentum distribution of the Z boson is sensitive to the resummation

calculation of the differential cross section, especially at low pT . Second, in the high pT region,

the cross section tests the perturbative QCD part of the calculation. Third, the W boson shares

the same production formalism as the Z boson, so the result of this measurement will also

improve the knowledge of the production of W bosons, and thus reduce the theory uncertainty

on the W mass measurement, which is a very important measurement since it can be used with

other measurements to predict the Higgs mass. Although there are about ten times more W s

than Zs produced in the semi-leptonic channels which are detectable in hadronic collisions, it is

hard to directly reconstruct the pT distribution of W → eν events, since a good measurement of

the missing energy due to the neutrino is difficult.

The pT distribution observed in experiments that scatter electrons off from nuclei (semi-inclusive

deep inelastic scattering: SIDIS) is substantially wider than predicted by a conventional CSS

calculation when x < 0.01. Stefan Berge et al.[4] modified the CSS formalism by introducing an

extra x-dependent term in the Sudakov exponent. The interpretation of this term is that it

mimics higher-order contributions of the form αm
s lnn(1/x), which are not included in the

resummed cross section. They also predicted the Z pT distribution in forward Z boson

production at the Tevatron Run II should be broadened as well, as shown in Fig. 1.4. With

about 1 fb−1 data, we have more than 5000 Z bosons with y >2, and we can perform a

preliminary test of this prediction.
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Figure 1.4: Theoretical predictions for the Z pT spectrum at Tevatron Run II. The solid lines

represent pT spectrum calculated without small-x correction. The dashed lines represent those

with the small-x correction.
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Chapter 2

Fermilab Accelerator and DØ Detector

2.1 The Accelerator

The Fermi National Accelerator Laboratory is located at a western suburb of Chicago, Illinois. It

is the site of the world’s highest center-of-mass energy proton-antiproton colliding beam

accelerator, the Tevatron. The Tevatron is a circular particle accelerator (or synchrotron) and

consists of several stages to increase the energy of the protons and antiprotons. Figure 2.1 shows

the layout of the accelerator system. A detailed description of the Tevatron can be found in [15].

The first step of the acceleration process begins with producing the hydrogen ions(H−) from

hydrogen gas using a Cockcroft-Walton accelerator. The Cockcroft-Walton accelerator then

accelerates the H−’s to an energy of 750 KeV before they are injected into a linear accelerator

(the Linac), where they are accelerated to an energy of 400 MeV.

In the next step, the ions enter the Booster, a circular synchrotron nearly half a kilometer in

circumference. They are directed through a thin carbon foil which strips off the electrons, leaving

a beam of H+ ions, which are bare protons. The steady beam of protons travels around the

Booster, collecting more protons with each turn. After six revolutions, the Booster contains

about 3× 1012 protons, and the Linac ceases suppling them. The Booster then restores the

bunch structure to the beam and accelerates the protons to 8 GeV.

In the third step, the protons are injected into a larger synchrotron, the Main Injector. The Main

Injector is about two miles in circumference, was completed in 1999 and replaced the Main Ring

that was used in the Tevatron Run I(1992-1996). With the Main Injector there is a factor of

three increase in the number of protons that can be delivered to the Tevatron over what was

possible in Run I.

In the Main Injector, part of the protons are accelerated from 8 GeV to 150 GeV before they are
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injected into the Tevatron. The rest of the protons are accelerated to 120 GeV and directed onto

a nickel target to produce antiprotons. For every about 10,000 incident protons, one antiproton is

produced. The antiprotons are produced with a wide range of momenta. They are focused and

stored in the Debuncher and Accumulator rings, where the beams are cooled, creating a beam of

8 GeV antiprotons to be injected into the Main Injector, and accelerated to 150 GeV. The 150

GeV antiprotons are then injected into the Tevatron in the direction opposite to the proton beam.

The Tevatron is a synchrotron ring with a four mile circumference. It contains nearly 1,000

superconducting magnets which operate at a temperature of 4.6 Kelvin and provide a field of 4.2

Tesla. Once protons and antiprotons are accelerated to 980 GeV, low-beta quadrupole magnets

squeeze the beams to small transverse dimensions. The beams are then brought into collision at

two interaction points: BØ, where the CDF detector was built and DØ, the location of the other

multi-purpose detector, also called DØ, since it was named after its interaction point.

120 GeV  p

_

_

F0

A0

E0 C0_

_

B0

D0

_

P1

A1

P8

P3

P2

Figure 2.1: The general layout of the collider facility at Fermilab.

The bunch structure for Run I and Run II is shown in Fig. 2.2. In Run I, the accelerator
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delivered 6 bunches of protons and antiprotons (“6 × 6” bunches), separated by a 3.5 µs gap.

This gap was used to form the trigger and sample the detector baselines prior to the next

crossing. In Run II, the proton and antiproton bunches circulate in superbunches of 4.36 µs

duration, with a 2.64 µs gap spacing between them. The spacing between each bunch is 396 ns

(“36× 36” bunches).

Figure 2.2: Tevatron bunch scheme for Run I (top) and Run II (bottom).

2.2 DØ Detector

The DØ detector is a multi-purpose particle detector designed for the study of high mass and

large transverse energy phenomena. It consists of several different types of sub-detectors layered

one-by-one around the expected interaction point.

The initial operation of the DØ detector started in 1992 with Run I of the Tevatron accelerator;

it has played a key role in experimental high energy physics [17]. One example of this was the

discovery of the top quark in 1995 with the CDF detector [18].

The Tevatron accelerator complex has been upgraded for the Run II which started in 2001 and

the instantaneous luminosity was increased from 1031 cm−2s−1 in Run I to 1032 cm−2s−1 in Run

II. Also the Tevatron beam energy was increased from 900 GeV to 980 GeV, increasing the pp̄
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center-of-mass collisions from 1.8 TeV to 1.96 TeV.

To take advantage of these improvements in the Tevatron and extend the physics reach of the

experiment, the DØ detector went through a major upgrade. The details of the updated DØ

detector are described in [16]. The upgraded DØ detector consists of three major subsystems: a

tracking system with superconducting solenoid magnet, a nearly 4π solid angle uranium liquid

argon calorimeter with two additional preshower detectors, and a muon toroidal spectrometer.

Figure 2.3 shows an overview of the entire DØ detector.

2.2.1 The DØ Coordinate System

A right-handed coordinate system is defined with the origin at the center of the detector along

the beam axis. The direction of the protons is the positive z direction, the positive x direction

points away from the center of the Tevatron ring and thus the positive y direction points up. In

spherical coordinates, the polar angle θ=0 is set as the positive z direction and φ=0 is set as the

positive x direction. In cylindrical coordinates, r is defined as the distance to the beam line.

The rapidity y of a particle is defined as

y =
1

2
ln

(

E + pz

E − pz

)

(2.1)

The advantage of using rapidity is that it is invariant under the Lorentz transformation. If the

energy of a particle is much larger than its mass (m/E → 0), a handy variable called

pseudo-rapidity is a good approximation to y. It is defined as:

η = −log tan(θ/2) (2.2)

To describe a conical region, it is convenient to define a variable:

R =
√

(∆η)2 + (∆φ)2 (2.3)

where ∆η and ∆φ are the η and φ differences between the compared objects.

Many of the particles produced in the pp̄ collision, for example the remnants of the proton not

participating in the hard-scattering interaction, escape down the beam pipe. Hence the
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longitudinal boost of the center of mass system of the hard scattering partons cannot be

measured. The transverse momentum of the particles that escape down the beam pipe is

negligible compared to the detector resolution, making it possible to apply conservation of energy

and momentum in the transverse plane. This makes the transverse momentum extensively used

in hadron collider physics. It is defined as:

pT = psinθ (2.4)

2.2.2 Tracking System

The central tracking system is designed to precisely measure the position of charged particles as

they pass through the detector layers. The central tracking system in DØ Run II is composed of

the silicon strip tracker(SMT) and the central fiber tracer(CFT), and is surrounded by a 2 Tesla

superconducting solenoidal magnet. Fig. 2.4 shows the various components of the inner tracking

detectors in DØ. The solenoid magnet bends the paths of charged particles with a curvature

inversely proportional to their transverse momenta. Observing the curvature of a particle’s path

allows for a precise measurement of its momentum, as well as the sign of the particle’s charge.

The Silicon Microstrip Tracker

The detector nearest to the interaction region is the Silicon Microstrip Tracker (SMT), which

provides the high resolution position measurements of the charged particle paths that are used to

reconstruct tracks and determine the vertex information [20]. Figure 2.5 shows an overview of

the SMT detector. The SMT consists of six 12 cm long barrels, with interspersed disks (12

F-disks and 4 H-disks), and has approximately 793,000 readout channels with a rφ hit resolution

of approximately 10 µm. The tracks for high η particles are reconstructed in three dimensions

primarily by the disks, while particles at small η are detected primarily by the barrels.

The Central Fiber Tracker

The Central Fiber Tracker (CFT) surrounds the silicon detector, extends out to the solenoid

magnet, and is used to aid the SMT in the reconstruction of charged particle tracks [21]. The

CFT makes use of 76,800 scintillating fibers and can detect charged particles up to |η| of 1.7.

15



Figure 2.3: A view of the DØ Run II upgraded detector.
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Figure 2.4: Cross-sectional view of the DØ tracking volume.

Each ionizing particle produces an average of about 10 photons in each fiber, which are then

detected using a Visible Light Photon Counter (VLPC) that converts the photons into an

electrical pulse. There are 8 super-layers, with each super-layer completely covered by two

doublet layers of scintillating fibers. The innermost doublet layer is mounted along the axial

direction to provide the φ information (called the x layer), and a stereo doublet-layer is on the

top to provide the η (called the u/v layer, the u layer tilts 3 degree from the z axis clockwise and

the v layer tilts 3 degree counter-clockwise). Each fiber is 835 microns in diameter and the

position resolution is on the order of 100 µm, corresponding to a φ resolution of 2× 10−4 radians.

Fig. 2.6 shows a view of the CFT as well as an illustration of the doublet layer configuration.

2.2.3 Preshower Detectors

The preshower detectors aid in electron identification and background rejection during both

triggering and offline reconstruction. There are two preshower detectors located just before the
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Figure 2.5: DØ Run II Silicon Microstrip Tracker detector.

calorimeters: a central preshower covering |η| < 1.3 (CPS), and a forward preshower covering

1.5 < |η| < 2.5 (FPS) (shown in Fig. 2.7 and Fig. 2.8). The preshower detectors can provide

discrimination between electrons/photons and hadronic jets by exploiting the differences between

their energy loss mechanisms in showers.

The detectors function as a calorimeter by providing an early energy sampling and as a tracker

by providing precise position measurements. The central system [22] consists of a lead radiator of

two radiation lengths thickness at η = 0, followed by three layers of scintillating material

arranged in an axial, u − v geometry with a 22.50 stereo angle. The forward system [23] also

consists of a lead radiator with a thickness of two radiation lengths, sandwiched between two

layers of scintillating material. Each layer is made from two thinner layers of scintillating fibers,

arranged in a u − v geometry with a 22.50 stereo angle. Electrons are recognized based on the

fact that muons and charged pions traversing the radiator will only deposit energy due to

ionization, while electromagnetic particles will shower in the radiator.
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(b) A magnified r - φ end view of the two doublet layer configuration for two different barrels.

2.2.4 Calorimeters

The DØ calorimeters have been designed to provide excellent measurement of the energy of

photons, electrons and hadronic jets, by inducing them to create showers of energy using large

amounts of dense material. The energy in the showers is then sampled at many points, to

determine its shape and energy. Next, I will first describe the energy measurement in the

calorimeter, then describe the calorimeter and its performance.

Energy Measurement

Electrons and photons interact with materials primarily via two processes: pair production

(γ → e+e−) and bremsstrahlung (e → eγ). For each successive interaction the number of

secondary particles increases while the average energy per particle decreases. It is the collection

and measurement of these secondary particles that gives us information about the original EM

object’s energy. Because of these interactions, the energy of the original particle is expected to

drop exponentially:

E(x) = E0e
−x/X0 (2.5)

where E0 is the particle’s original energy, x is the distance traveled, and X0 is the radiation
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Figure 2.7: Cross-sectional end view (left) and side view (right) of the Central Preshower Detector.

length of the material being passed through. For uranium, X0 is approximately 3.2 mm.

For hadrons the interaction with material occurs with the nuclei via the strong nuclear force.

These interactions also produce secondary particles, most of them are neutral pions (π0) and

charged pions (π±). While the π0s produce electrons and photons which interact

electromagnetically, the charged pions interact strongly. This type of particle shower tends to

develop over longer distances and is also larger. The analog of the radiation length for hadronic

interactions is the nuclear interaction length (λ0), which is about 10.5 cm for uranium.

DØ Calorimeters

The DØ calorimeters are compensating sampling calorimeters, using liquid argon as the active

medium and depleted uranium as well as copper and steel as absorber material. The choice of

this configuration was driven by its ease of segmentation, compensation properties, stability of

calibration, and homogeneity of response. The high density of uranium allows a compact detector

that contains almost all shower energy while reducing cost.

There are three liquid argon calorimeters housed in three separate cryostats - one central (CC)

(with |η| < 1.1) and two endcaps (EC) (with 1.5 < |η| < 4.2). In the inter-cryostat region
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Figure 2.8: One quarter view of the Forward Preshower Detector.

(1.1 < |η| < 1.4), both ”massless gaps” and an inter-cryostat detector (ICD) have been added to

sample the shower energy that is lost by particles that transverse the module endplates and

cryostat walls.

Fig. 2.9 shows an overview of the DØ calorimeter system [24].

A typical calorimeter unit cell is shown in Fig. 2.11; The electric field is established by grounding

the metal absorber plate and connecting the resistive surfaces of the signal boards to a positive

high voltage (2.0 kV). Particles interact with the uranium and the liquid argon, thus producing

charged particles in the liquid argon. These charged particles will then move in the electric field

and be collected. The electron drift time across the argon gap is ∼ 450 ns, which sets the time

scale for the signal charge collection. The gap thickness was chosen to be large enough to observe

minimum ionizing particle (MIP) signals and to avoid fabrication difficulties.

The pattern and sizes of the readout cells were determined from several considerations. The

transverse sizes of the cells were chosen to be comparable to the transverse sizes of showers: 1-2

cm for EM showers and about 10 cm for hadronic showers.
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Figure 2.9: Overall view of the calorimeter system.

The cells are first ganged into layers, then arranged into semi-projective towers of size 0.1× 0.1 in

∆η × ∆φ, and are segmented longitudinally into electromagnetic (EM), fine hadronic (FH), and

coarse hadronic (CH) sections. The third layer of the EM section, which corresponds to the

shower maximum, is segmented more finely transversely into 0.05× 0.05 in ∆η × ∆φ.

A cross sectional view of one quarter of the detector, showing the η and depth segmentation is

shown in Fig. 2.10.

Different absorber plate materials were used in different locations. The EM modules for both CC

and EC used nearly pure depleted uranium; the thicknesses were 3 mm and 4 mm respectively.

The fine hadronic module sections have 6-mm-thick uranium-niobium (2%) alloy. The coarse

hadronic module sections contain relatively thick (46.5 mm) plates of either copper (CC) or

stainless steel (EC). For the CC, the EM section consists of 32 modules, each subtending

2π/32 ≈ 0.2 radians in azimuth.

Table 2.1 and 2.2 list the major parameters for the central and endcap calorimeters. At η = 0,

the CC has a total of 7.2 nuclear absorption lengths; at the smallest angle of the EC, the total is

10.3 nuclear absorption lengths.
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CC

Figure 2.10: Side-view of one quarter of the DØ calorimeter system, showing segmentation and

tower definitions. The line extending from the center of the detector denote the pseudo-rapidity

coverage of cells and projected towers.

Calorimeter Performance

The performance of the calorimeter is very crucial for the Z pee
T measurement. The energy

resolution can be empirically described using three parameters:

σE

E
=

√

(

N

E

)2

+

(

S√
E

)2

+ C2 (2.6)

where N , S and C are called the noise, sampling, and constant terms, respectively. The noise

term has a fixed value, independent of the observed signal. It is due to the “noise” from the

uranium decay, readout electronics and the underlying events. The sampling term which reflects

statistical fluctuations in the energy deposited in the argon and therefore scales like the square

root of the signal size. The third is the constant term, which reflects how well the response of

different parts of the detector are equalized, in other words, how well we understand and

calibrate the entire calorimeter. It therefore scales linearly with signal size, assuming the energy

is distributed over approximately the same number of readout cells, independent of energy.

In Run I, these three terms were determined to be: N = 0.003 GeV, SEM = 0.15 GeV1/2 [28] [29]

and C = 1.15+0.27
−0.36% [30]. The values for Run II will be discussed in Chapter 5.
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Figure 2.11: Schematic view of a representative calorimeter unit cell. The gap structure, grounded

absorber plates, and signal boards are shown.

2.2.5 Muon System

Outside of the calorimeter is the muon system [31]. Muons are about 200 times heavier than

electrons, therefore they lose very little energy via bremsstrahlung, unlike electrons. In the

detector media, muons lose energy mostly due to ionization, which is a low energy loss absorption

process. Therefore, muons above a certain energy threshold (about 3 GeV) pass through the

whole DØ detector. Since muons are measured after the electromagnetic and hadronic particle

showers are absorbed in the calorimeters, they can be identified in the middle of hadron jets with

much greater purity than electrons.

The muon system has three layers of detectors giving position measurements, and a toroid

magnet with a 1.8 T field located between the first and second layer, allowing a measurement of

momentum. Position measurements are provided by drift chambers. These chambers are made of

rectangular aluminum tubes filled with gas which is ionized by charged particles passing by. The

chambers are arranged in planes. The central muon system is made up of four planes

surrounding the calorimeter and providing coverage up to |η| ∼ 1. Two further planes of

detectors are located at either end of the calorimeter, making up the forward muon system.

These extend the detector coverage out to |η| ∼ 2.2. The drift chambers provide an accurate (to

within 0.5 mm) measurement of the coordinate perpendicular to the sense wires (corresponding
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EM FH CH

Number of Modules 32 16 16

Absorber Uranium Uranium Copper

Absorber Thickness (mm) 3 6 46.5

Argon Gap (mm) 2.3 2.3 2.3

Number of Readout Layers 4 3 1

Cells per Readout Layer 2, 2, 7, 10 20, 16, 14 9

Total Radiation Length (X0) 20.5 96.0 32.9

Total Interaction Length (λ) 0.76 3.2 3.2

Table 2.1: Central Calorimeter Module Parameters.

to η). The muon detectors also have layers of scintillating material arranged in pixels; these

provide the best measurement of the other coordinate (corresponding to φ). Signals from the

drift chambers and scintillators in each region are combined into segments. Segments are then

joined in a fit, with a measurement of the bending in the toroidal magnetic field giving a

measurement of muon momentum. Fig. 2.12 and Fig. 2.13 shows the exploded view of the drift

chambers and the scintillation counters respectively.

2.3 Luminosity System

The expected number of events produced in pp̄ collisions for a process is given by:

N = σL (2.7)

where σ is the cross section of this process and L is the integrated luminosity, with a unit called

barn, 1 barn = 10−24 cm−2. The integrated luminosity is calculated by integrating the

instantaneous luminosity over time:

L =

∫ t2

t1

fn
NpNp̄

A
dt (2.8)
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EM IFH ICH MFH MCH OH

Number of Modules 1 1 1 16 16 16

Absorber Uranium UNb SS UNb SS SS

Absorber Thichness (mm) 4 6 46.5 6 46.5 46.5

Argon Gap (mm) 0.23 0.21 0.21 0.22 0.22 0.22

Number of Readout Layers 4 4 1 4 1 3

Cells per Readout Layer 2, 2, 6, 8 16 14 15 12 8

Total Radiation Length (X0) 20.5 121.8 32.8 115.5 37.9 65.1

Total Interaction Length (λ) 0.95 4.9 3.6 4.0 4.1 7.0

Table 2.2: End Calorimeter Module Parameters. IFH, ICH, MFH, MCH, OH stand for inner fine

hadronic, inner coarse hadronic, middle fine hadronic, middle coarse hadronic and outer hadronic

section respectively. UNb and SS stand for Uranium-Niobium alloy and Stainless Steel.

where f is the revolution frequency(47.713 kHz), Np and Np̄ are the numbers of protons and

antiprotons in a bunch respectively, n is the number of bunches in either beam and A is the cross

sectional area of the beam interaction region.

The luminosity is measured at DØ with the aid of the luminosity monitors, which are mounted

1.35 meters away from the center of the detector at either end, with a coverage 2.7< |η| <4.4.

Each luminosity monitor consists of 24 wedge shaped scintillation counters surrounding the beam

pipe. The luminosity monitors detect the high rapidity particles produced in inelastic processes.

Because the mean number of interactions that will occur when the beams cross should be

proportional to the instantaneous luminosity, with the knowledge of the inelastic cross sections

and the acceptance for these processes, the luminosity can be determined by counting the

number of events found.
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Figure 2.12: Exploded view of the muon wire chambers

2.4 Trigger System

The proton-antiproton beams make about 1.7 million collisions per second at the center of the

DØ detector. The information collected for each collision is called an event. Not every event

needs to be saved to the tape. Actually, roughly only a few collisions in a million are of physics

interest. The task of the trigger system is to reduce this rate by evaluating events and deciding

whether they are interesting or if they can be discarded.

With the increased luminosity and higher interaction rate delivered by the upgraded Tevatron, a

significantly enhanced trigger was necessary to select the interesting physics events to be
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Figure 2.13: Exploded view of the muon scintillation detectors

recorded. Three distinct levels form this new trigger system: the level 1 trigger (L1) consists of a

collection of hardware trigger elements that were designed to have an output rate of 2 kHz; in the

level-2 trigger (L2), hardware engines and embedded microprocessors associated with specific

sub-detectors provide information to a global processor to construct a trigger decision based on

individual objects as well as object correlations. The L2 output rate is about 1 kHz; Candidates

passed by L1 and L2 are sent to a farm of level 3 (L3) microprocessors, where sophisticated

algorithms reduce the output rate to 50 Hz (shown in Fig. 2.14).
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Figure 2.14: Summary of the three-level DØ trigger system for Run II with the decision time and

bandwidth allocated to each level.
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Chapter 3

Event Selection

3.1 Data Set

Since the start of Run II in 2001, the DØ detector has collected about 1.6 fb−1 data; Fig. 3.1

shows the integrated luminosity delivered by the Tevatron collider and recorded by the DØ

detector since 2001 [36].

The sample used for this particular analysis was collected from October 2002 to November 2005.

The detector, on occasion, does not function properly. The detector and the data is monitored

continuously by the collaboration for signs of problems, and data taken during a period when one

is detected is marked. Runs declared bad for calorimeter, silicon tracker or central fiber tracker

due to hardware failure or unusually large electronics noise [37] are removed from this sample,

leaving a total of 976±59 pb−1 of integrated luminosity.

Events that have fired one or more triggers are stored on tape and sent to a farm containing

hundreds of standard x86-based Linux computers for reconstruction. The information recorded is

in the form of “raw” digital signals, which need to be interpreted as physics objects. This

complicated task is performed by the standard reconstruction software package, called DØ Offline

Reconstruction Program(DØRECO) [38]. The time used to reconstruct one event takes about 15

to 30 seconds on a 1 GHz machine.

DØRECO reconstructs events in four hierarchical steps: first, detector unpackers unpack the

RDC (Raw Data Chuck) which is created by the Lever 3 trigger system, then apply detector

specific calibration constants. This information is then converted to clusters or hits. During the

second step, the hits in the tracking system are grouped together and used to reconstruct global

tracks. The third step is vertexing. Since the beams have a finite extent along their direction of

travel (the z direction), the z positions of the hard scatterings have a Gaussian distribution with
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Figure 3.1: Integrated luminosity delivered by the Tevatron Collider and recorded by the DØ

detector (pb−1).

a r.m.s. of about 25 cm. The z location of the hard scattering and of any additional soft

scatterings (“primary vertices”) are located during the vertexing step. After that, the displaced

secondary vertex candidates which are associated with the decays of long-lived particles are

identified. The final step of DØRECO is particle identification. It first finds electron, photon,

muon, neutrino (missing ET ) and jet candidates, which are based on detector, track and vertex

objects. Finally, using all previous results, candidates for heavy-quark and τ decays are identified.

In the following, I concentrate on track, vertex and electron reconstruction, since they are the

most important for this measurement.

31



3.2 Track and Vertex Reconstruction

The track reconstruction focuses on finding trajectories of charged particles passing through the

tracker layers using the hits left in the detector. These hits are formed by grouping readout

channels in a single tracker layer. The extrapolation of the track is then performed by a road

following algorithm[39]. The basic idea of the algorithm is to start with a track segment

consisting of three hits and iteratively building up the track by matching to hits in adjacent

layers.

The track + hits combination is fit to a curve and a χ2 test is performed to determine if the hit

should be added. If no hit is matched in a layer then it is referred to as a miss. A final list of

track candidates is then produced and ordered according to track quality, which is based on

number of hits, fewest misses and best χ2 value.

The interaction point of an event is called the event vertex. There are two types of vertices:

primary and secondary vertices. A primary vertex is the original interaction point, and generally

has the largest number of associated tracks. There can also be additional minimum bias vertices

associated with soft scatterings of protons and antiprotons in the same bunches as the ones that

produced the hard scattering. Finding the primary vertex of an event is very important because

it is needed for many purposes, such as the reconstruction of electrons, photons, and jets. The x

and y coordinates of the primary vertex is expected to be very close to the beam line[40] however

the z coordinate varies considerably with a rms width of 25 cm and a central value close to zero

[41]. The details of the algorithm for used to find primary vertices is described in [42]. It has

three steps. The first step consists of selecting all tracks in the events which have transverse

impact parameter significance with respect to beam position smaller than 3.0. Here, impact

parameter significance is defined as the distance of closest approach with respect to the beam line

divided by its uncertainty. In the second step, all tracks are fitted together and the χ2

contribution of each track to the vertex is computed. The track with the highest χ2 is excluded

and the vertex is re-fitted. The process is repeated until the χ2 value is smaller than 10. The

same finding procedure is repeated to find more vertices using the tracks not already included in
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a vertex. The final step is then to select the primary vertex with the highest Σlog(pT ), where the

sum runs over all the tracks for the vertex. The algorithm is designed this way in order to select

vertices from hard scattering interactions, and exclude ones from secondary interactions or

minimum bias interactions, which are characterized by low pT , high rapidity tracks.

A secondary vertex is a displaced vertex due to long-lived meson decay (e.g. B, Ks or D).

Secondary vertices are not used in this analysis because the Z boson is a short-lived particle and

can always be considered as decaying at the primary vertex.

3.3 Electron Identification

The identification of both electrons and photons is based on clusters of calorimeter energy called

EM objects. A simple cone algorithm is used to find EM objects in the EM calorimeter. The

seeds are EM towers of high transverse energy1(greater than 500 MeV). EM clusters are made

around these seeds by adding towers within a cone of R(=
√

(∆η)2 + (∆φ)2)=0.2.

To be considered an EM object, the cluster needs to have a minimum transverse energy of 1.5

GeV, a minimum EM fraction of 0.9 and an isolation less than 0.2. The EM fraction is defined as

the ratio of the EM energy to the total energy in the cluster. The isolation variable is defined as:

fiso =
Etot(0.4) − EEM (0.2)

EEM (0.2)
(3.1)

where Etot(R) and EEM (R) are total energy and EM energy, respectively, in the cone with

radius R=
√

(∆η)2 + (∆φ)2.

Since hadron jets2 usually deposit only a small amount of their energy in the EM calorimeter,

and electrons from W and Z boson decays tend to be isolated from other particles, EM fraction

1Transverse energy(ET ) is the part of the energy measured by the calorimeter in the transverse plane, which is

perpendicular to the beamline
2A jet is a cone of hadrons and other particles produced by the hadronization of a quark or a gluon. Because of

the QCD confinement of color charged particles, such as quarks, can not exist in free form; therefore they fragment

into hadrons before they can be directly detected. The jets, like electrons, deposit their energies in the calorimeter,

but with different lateral and longitudinal shower developments. However, there is a chance that a jet still passes

the electron selection requirements and is mis-identified as an electron.
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and isolation provide powerful discrimination between the EM objects and hadronic jets.

At this stage, various quantities that describe cluster properties are computed and stored. A few

examples are cluster energy, η and φ direction, H-matrix, EMID and In fiducial.

The electron energy is computed from the signals in all EM towers within a window of 0.5× 0.5

in ∆η × ∆φ (5 × 5 towers) (for CC) or within a cone of 10 cm radius in EM3 (for EC) centered

on the tower which registered the highest fraction of the electron energy.

The calorimeter shower centroid position is determined using a log-energy-weighted algorithm. If

an electron has a matched track, the direction of this electron is then given by the direction of

the matched track. If the electron does not have a matched track, then the calorimeter shower

centroid position and the primary vertex position are used to define the electron direction.

The shower shape of an electron has a longitudinal and transverse profile that is quite distinct

from that of a jet. To obtain the best discrimination against hadrons, the reconstruction code

uses both longitudinal and transverse shower shapes, along with the correlations between energy

deposits in the calorimeter (preshower) cells. This is done using a covariance matrix (H-matrix)

technique. The H-matrix(7) is built up with a set of seven variables:

• EM fraction in EM calorimeter layers EM1

• EM fraction in EM calorimeter layers EM2

• EM fraction in EM calorimeter layers EM3

• EM fraction in EM calorimeter layers EM4

• Area of the EM cluster at the third floor(2D)

• log10(Energy)

• vertex z position

The H-matrix(8) is built up from these seven variables and the following one:

• Transverse width of shower (1-D)
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Another variable called EMID is used to tag likely candidates. An electromagnetic cluster is

assigned an ID of 10 if it has ET >1.5 GeV and fEM >0.9. If the cluster also has a track loosely

matched to it, it will be assigned an ID of ±11, depending on the sign of the track(+11 for

electron, -11 for positron)[45].

A boolean variable called In fiducial is true when the EM object is in a well-understood region of

the calorimeter. There are 32 equal modules in the CC region, and the modules are located at

φ = 2πN/32, where N = 0, 1, · · · , 31. The φ module boundaries are excluded with cuts: mod(φ,

2π/32)<0.1 and mod(φ, 2π/32)>0.9. Electrons near the ends of the calorimeter are also excluded,

with cuts: |ηdet| < 1.05 3 for central calorimeter and 1.5< |ηdet| <3.2 for End Cap calorimeter.

3.4 Offline Selection Criteria

Electrons from Z/γ∗ decay typically have large pT and are usually well isolated; thus the

requirements for an electron to pass the selection are as follows:

• pT >25 GeV/c

• |ηdet| <1.1 (Central Calorimeter) or 1.5< |ηdet| <3.2(End Cap Calorimeter)

• ID=10 or ±11, fEM >0.9, fiso <0.15

• is in fiducial region of the calorimeter

• not in a bad calorimeter region

• H-matrix(7)<12 for CC electrons, H-matrix(8)<20 for EC electrons

The bad calorimeter regions that have identified hardware problems are discussed in [41]. Monte

Carlo comparisons with and without these cuts indicate an acceptance loss of 20% for Z

3There are two kinds of η used in this analysis: detector η(or ηdet) and physical η (ηphys or simply η). ηdet is

derived from the angle between the beamline and the line linking the center of the detector and the cluster position

in the EM calorimeter; ηphys is derived from the physical polar angle between the beamline and the line linking the

interaction vertex and the cluster position. ηphys is thus related to the true angle made by the particle with respect

to the detector whereas ηdet is related to the true position of the particle in the detector.
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candidate events. These hardware problems only happen for runs before 180956; 153 pb−1 of our

data sample is affected.

An important source of background for electrons is QCD jet faking as electron. This background

can be greatly reduced by requiring a track from a charged particle in the tracking detector be

consistent with the position of the cluster in the calorimeter.

The χ2 variable is constructed as:

χ2 =

(

∆φ

σφ

)2

+

(

∆z

σz

)2

(3.2)

where ∆φ, ∆z are the angle difference and the spatial difference between the electron position

and the extrapolated track position, σφ and σz are the tracking resolutions in φ and z direction,

respectively. Tracks with a track match significance χ2 probability > 0.01 are considered good

spatial matches.

The offline selection for the Z/γ∗ → e+e− sample is as following:

• for CC-CC 4 event, each electron has a spatial track match (P (χ2) >0.01)

• for CC-EC and EC-EC event, at least one electron has a spatial track match

• the invariant mass of the two electrons is between [70,110] GeV/c2

• at least one of the two electrons fires a single EM trigger.

If there are more than 2 electron candidates, the two electron candidates with the highest pT are

used. This results in a sample of 63656 candidate events.

Table 3.4 shows the result of event selection for different electrons in different calorimeter regions.

CC-CC CC-EC EC-EC All

23957 30116 9583 63656

Table 3.1: Results of event selection

4If two electrons from Z decays are both located in CC or EC region, we call it a CC-CC or EC-EC Z candidate;

if one electron is located in CC region and the other one located in EC region, we call it a CC-EC Z candidate.
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Fig. 3.2 shows the invariant mass distribution of the Z boson candidate events.

Fig. 3.3 shows the pT distribution of the Z boson candidate events.

After data selection, some corrections need to be applied. First, the background contribution

needs to be subtracted. Then the effect of the event selection on the observed pT spectrum needs

to be corrected. Finally, we need to unfold the detector response to get the detector independent

pT spectrum.
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Figure 3.2: Invariant mass distribution of Z/γ∗ → e+e− candidates.

37



Z pT [GeV]
0 5 10 15 20 25 30 35 40 45 50

N
um

be
r 

of
 Z

 c
an

di
da

te
s 

/ G
eV

0

1000

2000

3000

4000

5000

Transverse Momentum of Z candidate (CCCC)

Z pT [GeV]
0 5 10 15 20 25 30 35 40 45 50

N
um

be
r 

of
 Z

 c
an

di
da

te
s 

/ G
eV

0

1000

2000

3000

4000

5000

6000

7000

Transverse Momentum of Z candidate (CCEC)

Z pT [GeV]
0 5 10 15 20 25 30 35 40 45 50

N
um

be
r 

of
 Z

 c
an

di
da

te
s 

/ G
eV

0

500

1000

1500

2000

2500

Transverse Momentum of Z candidate (ECEC)

Z pT [GeV]
0 5 10 15 20 25 30 35 40 45 50

N
um

be
r 

of
 Z

 c
an

di
da

te
s 

/ G
eV

0

2000

4000

6000

8000

10000

12000

14000

Transverse Momentum of Z candidate (All)

Figure 3.3: pT distribution of Z/γ∗ → e+e− candidates.
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Chapter 4

Single Electron Efficiencies

When selecting single electrons, there are two main sources of inefficiency: those related to the

hardware trigger, and those related to electron identification. To understand the selection effect,

it is important to measure the efficiencies of these selection cuts, as well as their kinematic

dependences. These dependences will be modeled in the parameterized Monte Carlo program

which will be discussed in Chapter 5.

The selection efficiencies for single electrons are measured from Z/γ∗ → e+e− data using a “tag

and probe” method. The “tag and probe” method is a way of obtaining a relatively background

free sample of inclusive electrons without using the electron identification cuts. Z events are

identified using just one of the Z’s decay electrons. The second electron in the events then

provides a relatively unbiased electron sample that can be used to evaluate selection efficiencies.

In practice, one leg of Z/γ∗ → e+e− is required to pass very tight electron identification cuts (the

tag electron), while the other leg only needs to pass very loose cuts (probe electron). For this

analysis, the tag electron is always required to pass all the single EM requirements and the

trigger requirement. If both electrons in an event satisfy the tag electron requirements, they are

both then considered as tags as well as probes.

The efficiencies are measured in the following order:

• Preselection efficiency

• Spatial track matching efficiency

• Trigger efficiency

• H-matrix efficiency

Probe electrons must pass all the requirements of the previous selections. Using this method, it is

important to carefully correct for background contribution, which is a concern for the preselection
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and spatial track-matching efficiencies. For trigger and H-matrix efficiencies, since spatial track

match has already been required for the probe electron, the level of background is very small.

4.1 Preselection Efficiency

The preselection efficiency is defined as the efficiency of an EM object satisfying kinematic

(pT >25 GeV/c) and geometric requirements to pass following electron identification

requirements:

• ID=10 or ±11

• fEM >0.9

• fiso <0.15

The data sample used to study the preselection efficiency is a skimmed data1, which requires

each event to have at least one electromagnetic cluster with ID=10 or ±11 and pT > 20 GeV/c.

The tag is an electron satisfying trigger, kinematic, geometric, preselection, H-matrix and spatial

track match requirements. Since we are trying to evaluate the efficiency of the basic calorimetry

requirements, we do not want to use calorimeter information to identify the probe electron.

Instead, the probe is chosen as a good track, satisfying:

• pT >12 GeV/c

• DCA<1.0 cm. This cuts on the Distance of Closest Approach to the beam line in the

transverse plane.

• χ2 <8.0. This is the χ2 from the track fit.

• 0.1< φmod of track at the calorimeter<0.9 (CC region only). This avoids the central

calorimeter φ crack.

1In experiments like DØ, a lot of data is recorded but usually only a small part of it fits the needs of a specific

analysis. To reduce the amount of data one needs to process, different working groups make their own “skims” by

applying preliminary event selections.
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• No muon candidate within R(=
√

∆η2 + ∆φ2)=0.2

• pT sum of the other tracks within R=0.4 of the probe track less than 3 GeV/c. This is the

isolation requirement.

Additionally, we also require the tracks from the tag and the probe satisfy:

• ∆z(tag EM, probe track)<2cm. This makes sure they are from the same vertex.

• ∆φ(tag EM, probe track)>2. This makes sure that they are back-to-back in φ.

• 65<invariant mass calculated from the tag EM cluster and the probe track)<115 GeV/c2

EM clusters are matched to the track if they are within R =0.1 of the track position

extrapolated to the third floor of the EM calorimeter. The highest pT EM cluster that matches

the probe track is checked to see if passes the preselection requirement.

The main background source for this data is QCD multi-jet events, where two jets fake two

electrons, or W + jets events, where a jet fakes an electron. After checking the preselection

requirements for the probe electron, the data sample is divided into four categories: passing with

opposite sign charge (PO), passing with same sign charge (PS), failing with opposite sign charge

(FO), failing with same sign charge (FS). Fig. 4.1 and Fig. 4.2 presents the invariant mass

distribution for the four different groups separately for probe tracks in CC and EC regions,

respectively.

The plots of FO and FS are made using the calorimeter information of the tag electron and the

tracking information of the probe track. Since we have a better energy resolution in the

calorimeter than in the tracking system, for the plots of PO and PS, we use the calorimeter

information of the tag and the calorimeter information of the EM object that is matched to the

probe track. We expect the signal to have opposite sign charge EM objects while background to

have random relative signs. So the same sign samples PS and FS are considered backgounds.

However, due to possible charge mis-identification, the signal could have a same sign charge.

Before the track matching, most of the same sign events are backgrounds. After the track

matching, most of the left same sign events are signals. This is also shown from the invariant
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mass distribution: PS has a very clear Z peak, which indicates that the events in this sample are

mostly from Z boson decays.

Defining the number of probes passing with opposite sign as Po, the number of probes passing

with same sign as Ps, the number of probes failing with opposite sign as Fo, the number of

probes failing with same sign as Fs, the preselection efficiency can be calculated as:

εpresel =
Po + Ps

Po + Ps + Fo − Fs
(4.1)

with uncertainty calculated as :

δεpresel =

√

(FδP )2 + (PδF )2

(F + P )4
(4.2)

where P=Po+Ps, F=Fo-Fs, δP=
√

Po + Ps, δF=
√

Fo + Fs.

The numbers of events with an invariant mass between 65 and 115 GeV/c2 are listed in Table 4.1.

region PO PS FO FS

CC 28074 1110 317 184

EC 7227 535 122 57

Table 4.1: Results of event selection for preselection efficiency measurement

Using these numbers, we can calculate the average preselection efficiency as:

εCC
presel = (99.6± 0.1)% (4.3)

εEC
presel = (99.2± 0.1)% (4.4)

We also plot the ηdet , φdet and pT dependence of the preselection efficiency in Fig. 4.3 and 4.4.

4.2 Spatial Track Matching Efficiency

The spatial track matching efficiency measures how well the tracking system finds the track

associated with a real electron.
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Figure 4.1: Preselection efficiency vs electron detector eta.

The data sample used for measuring the spatial track match efficiency is a skimmed 2EM sample,

with two high pT (pT >15 GeV/c) good EM objects (ID=10 or ±11).

The spatial track matching efficiency is measured using the tag and probe method. A tag is an

EM cluster satisfying kinematic, geometric, trigger, preselection, H-matrix and spatial

track-match requirements. A probe is an EM cluster passing kinematic, geometric and

preselection requirements. The invariant mass of the tag and probe should be between 70 and

110 GeV/c2. Since only one spatial track match is required in the event selection, the QCD

background level is big enough that its contribution has to be carefully taken into account. To

estimate the background fraction, the Di-EM invariant mass distribution is fitted as a linear sum

of the Z/γ∗ → e+e− signal predicted using ResBos[49]+PHOTOS[50], which is described in

Chapter 5, and the QCD background mass distribution, which is described in Chapter 6.

The average spatial track matching efficiencies in the CC and EC regions are calculated to be:
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Figure 4.2: Preselection efficiency vs electron detector eta.

εCC
trk = (90.5± 0.1)% (4.5)

εEC
trk = (61.5± 0.3)% (4.6)

The spatial track matching efficiency is low in the EC region because of the limited coverage of

the tracking system in the forward region.

The spatial track matching efficiency strongly depends on the z of the primary vertex. We divide

the z vertex distribution into 5 bins: -100 cm to -40 cm, -40 cm to -10 cm, -10 cm to 10 cm, 10

cm to 40 cm and 40 cm to 100 cm. Fig. 4.5 and Fig. 4.6 shows the ηdet dependence of the spatial

track matching efficiency for the five different z vertex bins for CC and EC electrons,

respectively, after background subtraction. Background fractions are determined using the

invariant mass fitted in each ηdet bin to take into account the ηdet dependence of the background

fractions. Fig. 4.7 and Fig. 4.8 also shows the electron pT dependence of the spatial track
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Figure 4.3: Preselection efficiency vs electron detector eta.

matching efficiency for the CC and EC electrons, respectively, after background subtraction.

4.3 Trigger Efficiency

The efficiency for an electron to pass at least one of the triggers is studied use the “tag and

probe” method. Due to different trigger definitions, the trigger lists for the dataset are divided

into five versions: v8-10, v11, v12, v13 and v14. The data sample used to study trigger efficiency

is also the 2EM high pT skim. The tag electron passes all the single electron selection

requirements. The probe is an electron passes kinematic, geometric, preselection and spatial

track match requirements and is checked for the single EM trigger requirements. Table 4.3 shows

the number of probes passing the trigger requirements for different trigger lists within an

invariant mass window [70,110] GeV/c2.

The trigger efficiency has a strong dependence on electron ET , as is shown is Fig. 4.9. The ηdet

dependence of the trigger efficiency is presented in Fig. 4.10.
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Figure 4.4: Preselection efficiency vs electron detector eta.

4.4 H-Matrix Efficiency

H-matrix measures how well the shape of the EM object measured in the calorimeter agrees with

the typical shower shape of an electron, as determined from a GEANT-based Monte Carlo

simulation [44]

Based on the effort of the Run II W/Z cross section analysis[41], the optimum cut values are

H-matrix(7)<12 for CC electrons and H-matrix(8)<20 for EC electrons.

The data sample is the same as was used to evaluate the trigger efficiency. The tag is required to

be a good EM cluster satisfying kinematic, geometric, trigger, preselection, H-matrix and spatial

track-match requirements. The probe is a good EM cluster passing all these requirements except

H-matrix. The number of CC probes with the invariant mass of the tag and the probe between 70

and 110 GeV/c2 before and after the H-matrix(7) requirement are 65076 and 63203, respectively,

yielding an average efficiency (97.1±0.1)%. The number of EC probes with the invariant mass of

the tag and the probe between 70 and 110 GeV/c2 before and after the H-matrix(8) requirement
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Figure 4.5: Spatial Track Matching efficiency vs CC electron ηdet.

are 23877 and 23129, respectively, yielding an average efficiency (96.9±0.1)%.

The ηdet , pT and φdet dependences of the H-matrix efficiency are shown in Fig. 4.4 and 4.4, for

CC and EC electrons, respectively.
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Figure 4.6: Spatial Track Matching efficiency vs EC electron ηdet.
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Figure 4.7: Spatial Track Matching efficiency vs CC electron pT .
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Figure 4.8: Spatial Track Matching efficiency vs EC electron pT .

v8-10 v11 v12 v13 v14

before 6160 9439 89250 123794 144690

after 5951 9255 86768 122513 142512

Efficiency (96.6±0.2)% (98.1±0.2)% (97.2±0.1)% (99.0±0.1)% (98.5±0.1)%

Table 4.2: Trigger efficiency for different trigger lists
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Figure 4.9: Trigger efficiency vs electron pT .
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Figure 4.10: Trigger efficiency vs electron ηdet.
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Figure 4.11: H-matrix efficiency as a function of detector η, detector φ, phimod, pT of CC electron
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Chapter 5

Monte Carlo Simulation

Monte Carlo simulation is used to understand the effect detector resolutions have on our

measured Z pT spectrum. The measured spectra must be corrected for this smearing, or

”unfolded”, before it can be compared with the theoretical calculations. The effect of resolutions

on the shape of the mass distribution is also needed to estimate the size of backgrounds

containing fake electrons in our data sample. We also use Monte Carlo simulations to predict the

size of backgrounds containing two real high pT , isolation electrons from, for example, WW

production, tt̄ production, and other such interactions.

The DØ full detector simulation[47] contains two consecutive programs: DØgstar and DØSim.

DØgstar(DØ GEANT Simulation of the Total Apparatus Response) is a GEANT-based

simulation of the Run II DØ detector. What it does is to track the motion of, and simulate the

detector response to, particles, determine how much energy is deposited in the active areas of the

detector. DØSim is a multi-purpose program which simulates the response of the detector

electronics to the hits provided by DØgstar and also simulates the pile-up1 and the minimum

bias interactions2 that occur in the same crossing as the signal event.

In this analysis, to understand the detector smearing effect, we do not use the DØ full Monte

Carlo simulation (we only use it to determine the Z pT dependence of the efficiency, as is

described in Chapter 7.); instead we use our own parameterized detector simulation, which is

much faster and is suitable for our analysis.

1Pile-up occurs when the readout of a particle detector includes information from more than one primary beam

particle interaction - these multiple interactions are said to be “piling-up”. The average number of interactions

created in a bunch crossing scales linearly with instantaneous luminosity.
2Normally the detector simulation does not include effects from the uranium noise, accelerator conditions causing

multiple interactions nor the pile-up. These three effects are modeled by zero-bias events. A minimum bias event

is a zero-bias event with the additional requirement of a coincidence signal in the scintillating tile hodoscopes[48].

This additional requirement indicate an inelastic collision during the bunch crossing.
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5.1 Physics Generator

We use ResBos[49] and PHOTOS[50] together as the pp̄ → Z/γ∗ → e+e− event generator.

ResBos is a Monte Carlo for Resummed Boson production and decay. It is used to compute the

differential cross section d2σ
dpT dy for processes pp̄ → B(→ l1l2) with soft-gluon resummed initial

state QCD corrections included. Here B is a boson(W±, Z, γ∗...) and l1, l2 are leptons. PHOTOS

is a Monte Carlo program for QED single-photon radiative corrections in decays, and is run on

the output of ResBos to simulate the final state photon radiations. The resummation calculation

fails at large pT , as large terms are missing from the calculation because of its pT → 0

approximation. Instead, ResBos uses a fixed order perturbative calculation (NLO) to describe

the high-pT region.

5.2 Parameterized Monte Carlo Simulation

After the generator generates Z/γ∗ → e+e− events, electrons (photons) are extrapolated from the

primary vertex to the third layer of the EM calorimeter. Because of finite detector segmentation,

photons which are nearly co-linear with the electrons will be merged into the electrons during

reconstruction. We simulation this effect in the fast simulation by merging the generator-level

photons with the nearest electron if the distance between the electron and the photon is small.

For the CC calorimeter, they are merged if R(=
√

∆φ2 + ∆η2) is less than 0.2. In EC region, the

cone is defined by a radius of 10 cm of the electron at the 3rd layer of the EM calorimeter. These

cut values are consistent with the values used in the full reconstruction code DØRECO.

We use a parameterized Monte Carlo simulation (PMCS) [51] to simulate the effect of the

detector response and resolution (smearing).

5.2.1 Energy Scale

In an ideal detector, the measured electron energy would be linear in the true electron energy

with a slope of 1 and an intercept of 0. However, because of the effects of non-linearities in the

electronics, and because of pileup from the underlying event and pile-up events, while the
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relationship is approximately linear, the slope and intercept can differ from their ideal values. To

simulate these effects in PMCS, the energy of the generator electron is first scaled by the

measured EM energy scale.

E′ = α × Egen + β (5.1)

where α is the EM energy scale and β is the EM energy offset. α and β are determined by

comparing the invariant mass peak from the Z/γ∗ → e+e− Monte Carlo to that of the

Z/γ∗ → e+e− data. The method used is a binned-log-likelihood method[52].

The invariant mass distribution is binned for the Monte Carlo and data from 70 to 110 GeV/c2,

and then a binned likelihood function is calculated:

L = −
∑

i

[xi × ln(yi) − yi − ln(xi!)] (5.2)

where xi is the number of data points in bin i and yi is the number of the Monte Carlo events in

bin i. The other smearing parameters are fixed to some reasonable values and only the electron

energy scale α (or energy offset β) is varied. For each value of α (or β), L is evaluated. To

determine a minimum value we then fit L to a quadratic function. First CC-CC events are used

to obtain the CC energy scale and energy offset. Then the EC energy scales and energy offsets

are obtained from the CC-EC data, fixing the CC energy scale and offset to the values obtained

from the CC-CC sample. An example of the fitting is shown in Fig. 5.1 for the negative endcap

calorimeter region. The tuned energy scale and energy offset values for central and endcap

calorimeters are included in Table 5.2.5.

5.2.2 Energy Resolution

In PMCS, after the scale is applied, the electron energy are then smeared according to the

measured energy resolution. A typical empirical parameterization of the energy resolution of a

calorimeter in a particle physics experiment is :

σEM (E′)

E′ =

√

C2
EM +

S2
EM

E′ +
N2

EM

E′2 (5.3)
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Figure 5.1: Tuning of energy scale and offset for negative endcap region. The top left plot is the

invmass peak for data sample, the top right plot is the invmass peak for Monte Carlo sample. The

bottom two plots are the tuning of energy offset and scale, respectively.

where CEM is the constant term, which results from non-uniformity in the detector response,

SEM is the sampling term and is due to sampling fluctuations, and NEM is the noise term due to

the “noise” from the uranium decays, readout electronics noise, the underlying event, and pile-up

events.

The smeared electron energy is then

Esmear = E′ + x ∗ σEM (E′) (5.4)

where x is a random variable from a normal Gaussian distribution with zero mean and unit

width.

The constant term and noise term can be different in each DØ calorimeter, but should not

depend on the position within the calorimeter. The sampling term has a dependence on the

position and angle of impact of the incident electron. In DØ Run I the sampling term had a weak

position dependence of the form 1/
√

(sin(θ)).

As found in a study by Jan Stark using a GEANT-based Monte Carlo simulation[53], for the

upgraded Run II detector, in the CC region, the sampling term of the energy resolution no longer
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scales as 1/
√

(sin(θ)). The reason for that is: in DØ Run II, materials are added in front of the

calorimeter. This causes the sampling term to vary dramatically with the position and angle of

the incident electron. To evaluate this effect, Dr. Stark generated single energy electrons(45

GeV) and passed them through the DØ full Monte Carlo simulation. He fitted the reconstructed

energy spectrum with a Gaussian to extract the energy resolution as a function of the energy and

position of the electrons. The results show a strong dependence on ηphy, as shown in Fig. 5.2.

This ηphy dependence of the energy resolution can then be fitted to the following function:

σE/E = p0/ exp(p1) × exp(p1/ sin(θ)) (5.5)

where p0 and p1 correspond to resolution term at normal incidence and angle respectively. By

repeating the same steps with different electron energies(from 5 to 400 GeV) and he was able to

get the energy dependence of p0 and p1, as presented in Fig. 5.3 and Fig. 5.4. They were fitted

to the following forms:

p0 = 16.4%/
√

E + 12.2%/E (5.6)

p1 = 1.35193− 2.09564/E − 6.98578/(E × E) (5.7)

Since, in the GEANT-based Monte Carlo simulation, the detector is uniform and the noise is

small, the constant and noise terms are close to zero, the energy resolution dependence

determined above gives only the sampling term of the energy resolution.

The final form of the energy resolution in CC region is:

σEM (E′)

E′ =

√

C2
EM +

N2
EM

E′2 + (p0 × exp(sin(θ))/ exp(p1))2 (5.8)

Using the same idea, in the EC region, we assume the sampling term is also a function of both

ηphy and energy of the incident electron. Fig. 5.5 shows the detector setup in the GEANT

simulation for the endcap calorimeter and materials in front of it. Fig. 5.6 shows the number of
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Figure 5.2: Sampling term ηphys dependence for central calorimeter.

radiation length of the materials in front of the endcap calorimeter as a function of ηphys and we

do see a strong dependence.

By generating different energy electrons and injecting them into the detector from different

angles, we can determine the energy resolution as a function of the electron’s energy and ηphy:

σE/E = p × (s0/
√

E + s1/E)/(s0/
√

45. + s1/45.) (5.9)

where p is the ηphy dependence and (s0/
√

E + s1/E)/(s0/
√

45. + s1/45.) parameterizes the

electron energy dependence. Parameters s0 and s1 are also functions of ηphy .

To determine the ηphy dependence p, we generated 45 GeV single electron samples at different

angles and put them through the full Monte Carlo simulation. We then plotted σE/E for each

angle to get p.

Fig. 5.7 and 5.8 show p’s distribution for both positive and negative endcap calorimeter regions.

They can be parameterized as:

p = 14.808−53.358η+80.874η2−66.687η3 +32.331η4−9.222η5 +1.434η6−0.094η7(PositiveEC)

(5.10)
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Figure 5.3: p0 dependence for central calorimeter.

Figure 5.4: p1 dependence for central calorimeter.

p = −9.507+27.044(−η)−31.337η2+19.008(−η3)−6.364η4 +1.115(−η5)−0.080η6(NegativeEC)

(5.11)

For the electron energy dependence, we generated single electron samples with different energies

and a fixed ηphy. Then we plotted σE/E as the function of the energy and fit it to

(s0/
√

E + s1/E), with s0 and s1 as free parameters. We repeated the same steps at different

ηphys to get the ηphy dependence of s0 and s1. Fig. 5.9 and Fig. 5.11 show the s0 and s1 for

positive endcap calorimeter. Fig. 5.10 and Fig. 5.12 show the s0 and s1 for negative endcap

calorimeter. The parameterizations of s0 and s1 are:
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Figure 5.5: Detector setup in the GEANT simulation of the Endcap Calorimeter and the materials

in front of it.

s0 = 0.217 + 0.003η − 0.007η2 (PositiveEC) (5.12)

s0 = 0.221− 0.025(−η) + 0.002η2 (NegativeEC) (5.13)

s1 = 57.247− 104.577η + 71.148η2 − 21.127η3 + 2.306η4 (PositiveEC) (5.14)

s1 = 9.479− 21.201(−η) + 17.503η2 − 6.027(−η3) + 0.734η4; (NegativeEC) (5.15)

Finally the (s0/
√

45. + s1/45.) term is used for normalization purpose.

After the sampling term is determined and put into the parameterized Monte Carlo, I then tune

the constant term CEM to Z/γ∗ → e+e− data using the binned-log-likelihood method. This

time, only the constant term is varied and again the Monte Carlo and data invariant mass peaks

are compared to find the best constant term value. As with the energy scale, we first determine
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the CC constant term using CC-CC events and then determine the EC constant terms using

CC-EC events.

The details of determining the noise term from W → eν events is described in [54]. The energy

flow in a 1×5 slice in η-φ tower-space is measured as a function of the φ separation from the

electron cluster centroid, as is shown in Fig. 5.13. For φ differences between 0.2 and 0.4, the

energies are considered from the underlying events; their distribution is shown in Fig. 5.14.

As can be seen in this plot, the average energy per tower is roughly 10 MeV. Assuming the r.m.s.

of the energy per tower is σ, and since the r.m.s. shown in this plot (0.04 GeV) =
√

5 × σ/5, we

find σ = 0.09 GeV for each tower. There are 13 towers for each EM cluster, so the r.m.s. of the

energies below electron window is : 0.09×
√

(13) ∼ 0.3 GeV. Similarly the noise term for EC is

determined to be ∼ 0.125 GeV.

5.2.3 Position Resolutions

The calorimeter position resolution is modeled using two parameters:

ηdet
smear = ηdet

gen + y ∗ σηdet (5.16)

φdet
smear = φgen + z ∗ σφdet (5.17)

where σηdet and σφdet are the detector η and φ resolution, and y and z are two random variables

from a normal Gaussian distribution with zero mean and unit width.

The methods of measuring the position resolutions from a data sample of electrons passing the

preselection requirements are described in [55]. The idea of the method is to treat the track

position as the true position of the electron, and measure the difference between the track

position and the calorimeter position to extract the resolutions.

5.2.4 Vertex Distribution

The decay vertex of the Z boson has a large variance in the z direction, with a σ ∼ 25 cm. While

the x and y components can be determined by the beam spot position of each run, the z

component is found using the following algorithm:
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• if both electrons have track, the average of the z of the two tracks is defined as the z vertex

of the Z boson.

• if only one electron has a track, the z vertex of this track is defined as the z vertex of the Z

boson.

• if neither electron has a track, the z vertex of the Z boson is the z of the primary vertex of

this event.

Fig. 5.15 shows the z vertex distributions for Z/γ∗ → e+e− data.

The vertex resolutions are modeled in the parameterized Monte Carlo.

5.2.5 Parameters

The values of the parameters are summarized in Table 5.2.5.

All efficiencies measured in Chapter 4 are included in the Monte Carlo simulation using the ηdet,

electron pT and z vertex (for the spatial track match efficiency) dependences.

5.3 Comparison between Data and Monte Carlo

To test the efficacy of our modeling, we make some comparison plots between the data and the

parameterized Monte Carlo simulation.

Figures 5.16 to 5.21 show data/Monte Carlo comparison for the Z/γ∗ invariant mass, electron

pT , electron ηdet, electron φdet and Z/γ∗ rapidity distributions. These plots also include the

contribution from the background, which is described in detail in section 6.1. In general, we have

found good agreement between the data and the parameterized Monte Carlo simulation. For

these plots, the ResBos parameters were set to their default values. These parameters will be

re-tuned using the result of this measurement.
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parameter value

EM Energy Scale(CC) 1.0089± 0.0003

EM Energy Offset(CC) −0.101± 0.017

EM Energy Scale(ECP) 0.9936± 0.0008

EM Energy Offset(ECP) −0.290± 0.233

EM Energy Scale(ECN) 0.9983± 0.0010

EM Energy Offset(ECN) −0.284± 0.123

EM Constant Term(CC) 0.028± 0.001

EM Constant Term(ECP) 0.032± 0.002

EM Constant Term(ECN) 0.027± 0.002

Calorimeter Position Resolution(CC) ση 0.0020± 0.0002

Calorimeter Position Resolution(CC) σφ 0.0004± 0.0001

Calorimeter Position Resolution(EC) ση 0.0029± 0.0035

Calorimeter Position Resolution(EC) σφ 0.0041± 0.0034

Table 5.1: Parameters tuned according to data
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Figure 5.6: Radiation length of the materials in front of the Endcap Calorimeter as a function of

ηphys. The big error bars between -1.5 and -2.5 of η shows big materials (the Forward Preshower

Detector) variations in the φ direction.
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Figure 5.7: Sampling term ηphys dependence for positive endcap calorimeter.
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Figure 5.8: Sampling term ηphys dependence for negative endcap calorimeter.
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Figure 5.10: ηphys dependence of s0 for negative endcap calorimeter.
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Figure 5.11: ηphys dependence of s1 for positive endcap calorimeter.
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Figure 5.12: ηphys dependence of s1 for negative endcap calorimeter.
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Figure 5.13: The energy flow in a 1×5 slice in η-φ tower space as a function of the φ separation

from the electron cluster centroid
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Figure 5.14: Average energy per EM tower for CC electrons from W− > eν studies
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Figure 5.15: Vertex z distribution of the Z/γ∗ → e+e− events.
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Figure 5.16: Invariant mass distribution for data and Monte Carlo of Z/γ∗ → e+e− events
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Figure 5.17: Invariant mass distribution for data and Monte Carlo of Z/γ∗ → e+e− events
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Figure 5.18: Electron pT distribution for CC-CC, CC-EC, EC-EC, All data and Monte Carlo Z/γ∗

events
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Figure 5.19: Electron ηdet distribution for CC-CC, CC-EC, EC-EC, All data and Monte Carlo

Z/γ∗ events
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Figure 5.20: Electron φdet distribution for CC-CC, CC-EC, EC-EC, All data and Monte Carlo

Z/γ∗ events
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Figure 5.21: Rapidity distribution for CC-CC, CC-EC, EC-EC, All data and Monte Carlo Z/γ∗

events
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Chapter 6

Backgrounds

For this analysis, the following processes can contribute to background for Z/γ∗ signal:

• QCD background where one or two jets fake as electrons.

• events containing a γ recoiling against a jet, with the jet faking an electron

• Z → τ+τ− → e+e−ντνeν̄τ ν̄e

• WZ event, where W → all and Z → e+e−

• W+W− → e+e−νeν̄e event

• Wγ where W → eν and the photon is mis-identified as an electron

6.1 QCD Backgrounds

The QCD backgrounds include di-jet events and EM+jet (direct γ, W+jet) events that contain

jet(s) faking electrons. To get a sample of background events that are as similar as possible to

the ones that passed the selection requirements of our data sample, we look for events that pass

almost all our selection criteria, but that contain one or more EM candidates that are somehow

well-identified as a fake electrons. We use an inverse H-matrix cut to select EM candidates that

are due to jets. We can require either one or both of the EM candidates fail the H-matrix

selection, and see how this affects the kinematic distributions of our background sample. The

”di-jet” sample is made by requiring that both jet candidates fail the H-matrix cut (H-matrix(7)

greater than 30 for candidates in the CC, H-matrix(8) greater than 40 for candidates in the EC).

The ”EM plus jet” sample is made by requiring one EM candidate pass all selections, including

Hmtrx, and an additional EM candidate that satisfies all requirements, except H-matrix (

H-matrix(7) > 120 for CC candidates, H-matrix(8) > 150 for EC candidates). Because most EM
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candidates due to jets will not have a matched track, we also removed the spatial track match

requirement in the event selection. The di-jet QCD background is selected from the 2EM high pT

skim and the EM+jet is selected from the 1EM skim. Fig.6.1 shows the invariant mass

distributions of the di-jet and EM+jet QCD backgrounds, overlaid. Fig.6.2 shows the pT

distributions of the di-jet and EM+jet QCD backgrounds overlaid.

 [GeV]
T

Z p
0 20 40 60 80 100 120 140

N
um

be
r 

of
 e

ve
nt

s/
 2

 G
eV

0

20

40

60

80

100

120

140

160 EM+jet
di-jet

Invariant Mass for QCD background(CCCC)

 [GeV]
T

Z p
0 20 40 60 80 100 120 140

N
um

be
r 

of
 e

ve
nt

s/
 2

 G
eV

0

50

100

150

200

250 EM+jet
di-jet

Invariant Mass for QCD background(CCEC)

 [GeV]
T

Z p
0 20 40 60 80 100 120 140

N
um

be
r 

of
 e

ve
nt

s/
 2

 G
eV

0

50

100

150

200

250 EM+jet
di-jet

Invariant Mass for QCD background(ECEC)

 [GeV]
T

Z p
0 20 40 60 80 100 120 140

N
um

be
r 

of
 e

ve
nt

s/
 2

 G
eV

0

100

200

300

400

500 EM+jet
di-jet

Invariant Mass for QCD background(ALL)

Figure 6.1: Invariant mass distribution for the QCD background di-jet sample and EM+jet sample
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Figure 6.2: pT distribution for the QCD background di-jet sample and EM + jet sample

The invariant mass distribution of the QCD background is determined from the average of the
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invariant mass distributions of the two kinds of QCD backgrounds, as is presented in Fig.6.3. To

determine the background fraction, the invariant mass distribution of the Z/γ∗ → e+e− data

sample is fitted as a linear combination of the invariant mass distribution of the QCD

background and the signal (from ResBos+PHOTOS+PMCS). The fit is performed in the

invariant mass window [50,130] GeV/c2.

Ndata
50−130 = α1 × Nsignal

50−130 + α2 × N bkg
50−130 (6.1)

and we calculate a likelihood for each α1 and α2 pair. The configuration that has the maximum

likelihood gives the best fit values for α1 and α2. The fitting results are shown in Fig.5.16 and

5.17. Finally, the background fraction in the [70,110] invariant mass window is calculated as:

fbkg = α2 ×
N bkg

70−110

Ndata
70−110

(6.2)

The error on α2, δα2 is determined from the maximum likelihood fit. The total uncertainty on

fbkg is calculated as
√

δα2
2 + δ2

stat, where δ2
stat is due to limited events statistics.

Table 6.1 shows the background fraction for events in different calorimeter regions.

Region χ2/ndf background fraction

CC-CC 64/80 1.30±0.14%

CC-EC 106/80 8.55±0.26%

EC-EC 80/80 4.71±0.30%

All 111/ 80 4.70±0.13%

Table 6.1: Background fractions for events in different calorimeter regions.

We also use the average of the pT distributions of the QCD background when correcting the

measured distribution from our sample for background contamination. The pT distribution is

presented in Fig. 6.4. We assign the difference between the average and the result using the

individual shapes as the systematic errors on the QCD background shape.
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Figure 6.3: Invariant mass distribution for the QCD background

6.2 Non QCD Backgrounds

Other potential sources of background include Z → τ+τ− and diboson (WW, WZ, Wγ)

production; their contributions are studied using Monte Carlo simulation.

6.2.1 Z → τ+τ−

We use PYTHIA[56] to generate Z → τ+τ− events and use the Tauola[57] Monte Carlo code to

decay the τ . The σ×Br(Z → τ+τ− → e+e−) is about 7 pb. The generated 500k events were fed

into parameterized Monte Carlo for smearing and event selection. The resulting acceptance is

about 0.0025, yielding an expected 16.9 events for 1 fb−1 data sample. The contribution of

Z → τ+τ− to the sample is thus negligible.

6.2.2 Di-boson backgrounds

Di-boson events are generated using PYTHIA and they are also fed into parameterized Monte

Carlo to determine the acceptance. Table 6.2.2 shows the expected number of events for each of

the di-boson background.

As can be seen from the table, contributions from di-boson background processes are negligible.
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Figure 6.4: pT distribution for the QCD background

Di-boson ε ∗ A σ*Br N(1 fb−1)

WW 0.059 0.1 pb 6.2

WZ 0.17 0.009 pb 15.5

Wγ 0.005 12.2 pb 61

Table 6.2: Expected number of events for 1 fb−1 data.
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Chapter 7

Efficiency×Acceptance Correction

Once the data is selected, corrections are needed in order to turn the measured pT distribution

into a differential cross section. In the previous Chapter, I discussed background subtraction. In

this Chapter, I discuss another important correction.

7.1 Efficiency and Acceptance

When selecting signal events, one tries to enhance the number of signal events relative to the

number of the background events. During selection, some fraction of both the signal and

background events will fail the selection criteria. The effect of these selection cuts needs to be

carefully studied and taken into account in the final result.

7.2 Dependence of the selection efficiency on the boson pT

I first discuss the efficiency of the electron selection criteria as a function of the Z boson pT . To

understand the effect of each selection variable on the Z pT , first, we look at their individual Z

pT dependences. To see this dependence, for each good electron in a selected Z/γ∗ → e+e− event

from the data sample, the average value for each selection variable as a function of electron pT

can be plotted. Fig. 7.1 shows the average values for isolation, H-matrix(7), H-matrix(8) and

spatial track match χ2 probability as a function of Z pT , respectively.

We can see that the isolation of the electron has the most dependence on the Z pT . This

dependence is due to jet activities, especially jet activity due to the recoil against the the Z,

which spoils the isolation of nearby electrons, and is strongly depend on the Z boson pT . The

other electron identification variables have only a weak (negligible) dependence on the boson pT .

We use the GEANT-based DØ full Monte Carlo detector simulation help us understand pT

dependent efficiency. Z/γ∗ → e+e− events are generated using PYTHIA and overlaid with
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minimum bias events. Since PYTHIA is a leading order event generator, it does not produce

events with the correct pT distribution. To correct for this, at the generator level, we re-weighted

the events to correct to the ResBos Z pT spectrum. The generated events were then passed

through the detector simulation. The efficiency as a function of Z boson pT is defined as the

ratio of the number of reconstructed events that pass kinematic, geometric and electron quality

requirements to the number of reconstructed events that pass only kinematic and geometric

requirements.

eff(ZpT ) =
ZpT (acceptance cuts, efficiency cuts)

ZpT (acceptance cuts)
(7.1)

Included in the electron efficiency requirements are the preselection(including isolation, EM

fraction and EM ID), spatial track-match and H-matrix requirements. The total efficiency as a

function of Z pT is presented in Fig. 7.2 . The efficiency first decreases as Z pT rises; this is

because when Z pT is low, the recoil is small, and the two electrons tend to be back-to-back. As

Z pT increases, the recoil also increases, and spoils the isolation quality of the electrons. At Z pT

of about 45 GeV/c, the kinematics change; the two electrons both tend to be in the direction

opposite that of the recoil, and the recoil does not affect the electron isolation as much any more.

On the other hand, the pT of the electrons also increases as Z pT increases, and this causes the

efficiency to rise as well, slowly back to the initial efficiency, and goes flat thereafter.

It is important that the Z pT dependence of the efficiency be insensitive to the Z pT distribution

of the sample that was used to derive the dependence. We compare the dependence of the

efficiency on Z pT for two cases: using the original PYTHIA Z pT and using the re-weighted Z

pT , as presented in Fig. 7.2. We can see that the efficiency Z pT dependence changes very little

after re-weighting.

This study only measures the pT dependence of the efficiency. For the normalization, we use the

total selection efficiency measured from the data convoluted with the kinematic distributions of Z

boson events through the parameterized Monte Carlo simulation, which contains the measured

single electron efficiencies. The average efficiency is determined to be (75.04±0.05)%.
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Since the Z pT spectrum also depends on the Z boson rapidity, we divide our Z events into four

different Z rapidity bins: |y| <1, 1< |y| <2, |y| >2 and all y. We plot the Z pT dependence of the

efficiency for different Z rapidity binnings in Fig.7.3 . Finally, we fit the scaled efficiency as

function of Z pT for all Z rapidity and obtain:

(0.768±0.001)-(0.0025±0.0001)pT+(0.000038±0.000003) for pT <62.5 GeV/c; (0.760±0.004) for

pT >62.5 GeV/c, as is presented in Fig.7.4.
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Figure 7.1: Profile of electron isolation, H-matrix(7)(CC), H-matrix(8)(EC) and spatial track

match χ2 probability as a function of Z pT .

To study the systematic uncertainty, we compare data to full Monte Carlo events. From the

data, we can’t really get the Z pT dependence of the efficiency, as defined by equation 7.1,

because in the denominator there are no efficiency cuts applied, and the QCD background

dominates the signal. But we can add a spatial track-match requirement, and get rid of most of

the QCD background. Furthermore, since the track-match efficiency does not depend on Z pT ,
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Figure 7.2:

Efficiency as function of Z boson pT for PYTHIA and re-weighted Monte Carlo sample

adding this requirement should not affect the shape of the distribution.

The efficiency, excluding track-match efficiency, as a function of Z pT can be written as follows:

eff(ZpT ) =
ZpT (acceptance cuts, efficiency cuts)

ZpT (acceptance cuts, spatial track match cut)
(7.2)

There is still background in both numerator and denominator samples that need to be

subtracted. After background subtraction, the revised efficiency Z pT dependence from data is

shown in Fig.7.5 and compared with the same plot from the full Monte Carlo. The two

distributions are in good agreement, showing that our full Monte Carlo does a good job

describing the jet activity and its effect on the Z pT spectrum. From this data and full Monte

Carlo comparison plot, we assign an estimated uncertainty on the dependence of the efficiency on

Z boson pT of 2% in the bins below 60 GeV/c and 4% in the bins above 60 GeV/c.
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Figure 7.3: Efficiency as function of Z boson pT for different Z rapidity bins

7.3 Dependence of the geometric and kinematic acceptance on the boson pT

Acceptance cuts include kinematic and geometric cuts. We use the parameterized Monte Carlo

detector simulation to study the dependence of the acceptance on boson pT . Z/γ∗ → e+e−

events are generated using ResBos and PHOTOS. The acceptance as a function of Z pT is

defined as the ratio of the number of smeared events that pass kinematic and geometric

requirements to total number of smeared events, and is presented in Fig.7.6. The pattern of the

curve can be understood by breaking it down to two different plots: acceptance of the geometric

cuts and acceptance of the kinematic cuts. The reason that the acceptance of the kinematic cuts

first decreases and then increases is as follows: when the Z pT is low, the two electrons tend to

be back-to-back and have similar pT . As the Z pT increases, the electron along the Z pT

direction will carry more energy and the other one will carry less. The lower energy electron may

fail the electron pT cut. When the Z pT is larger than about 45 GeV/c, both electrons will more
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Figure 7.4: Overall efficiency as a function of Z boson pT

and more be pointing towards the same direction (the direction of the parent Z). The asymmetry

between the two electrons then goes away, resulting an increase of efficiency at high Z pT . The

reason the geometric acceptance increases at high pT is that when the Z pT increases, the Z

boson is more and more “central”, which makes it’s daughter electrons more likely to pass the

angular geometric cuts.

The uncertainties on the acceptance from the PMCS smearing parameters, such as the energy

scale, the energy offset and the energy resolution terms, are determined by varying each

parameter by its measured uncertainty. The fractional uncertainty on the acceptance due to the

smearing parameters is shown in Fig.7.7.

7.4 pT dependent Efficiency×Acceptance

Finally the Efficiency×Acceptance as a function of Z boson pT is plotted in Fig.7.8. This

dependence will be applied in the unfolding program to correct the unfolded Z pT spectrum for

the efficiencies and acceptances of our selection criteria.
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Figure 7.5: Revised efficiency as function of Z boson pT for data and full Monte Carlo
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Figure 7.6: Shown here are the acceptances as a function of Z boson pT
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Figure 7.7: Fractional uncertainty on the acceptances due to the smearing parameters as a function

of Z boson pT
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Figure 7.8: Efficiency*acceptance as a function of Z boson pT
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Chapter 8

Results

8.1 Unfolding the Detector Smearing

The measured Z boson pT spectrum is smeared due to detector resolution. To compare with the

theory calculation directly, we use a program called RUN(Regularized Unfolding) [58] to unfold

this detector effect.

The relation between the distribution f(x) of the true variable x, and the measured distribution

g(y) of the vector y of measured quantities is given by the equation:

g(~y) =

∫

A(~y, x)f(x)dx + b(~y) (8.1)

where A(~y, x) denotes the resolution function, including the all the detector effects of limited

acceptance, transformation and finite resolution. In general, A(~y, x) is not known as a function in

analytical or empirical form.

8.2 The Program RUN

The algorithm used in RUN works as follows: internal to the program, a weighting function fmult(x)

is defined and is represented by a smooth function, parameterized by B-splines:

fmult(x) = Σkakpk(x) (8.2)

Input to the unfold program are ntuples1 from the data, ntuples from the true Monte Carlo

and ntuples from the smeared Monte Carlo. The two Monte Carlo ntuples have a one to one

correspondence, i.e., each entry in the smeared Monte Carlo is the result after the detector smearing

of an entry in the true Monte Carlo ntuples. In the program, the smeared Monte Carlo is re-

1a ntuple is a sequence or ordered set or list containing n objects.
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weighted using fmult(x) and fit to the data distribution g(~y). The fit result determines fmult(x).

The final unfolding result is then given by:

f(x) = fmult(x) · f0(x) (8.3)

where f0(x) is the input true Monte Carlo x distribution.

8.3 Setup of the Unfolding Program

The inputs to the program are:

• ntuples of the measured Z pT from the data

• ntuples of the Z pT of all generated Monte Carlo events, including those inside and outside

of the detector acceptance.

• ntuples of the Z pT of the smeared Monte Carlo events, organized so that they have a one-

to-one correspondence with the generated events. For the unfolding fit, to ensure only those

events inside detector acceptance are used, we apply the pT dependent Efficiency×Acceptance.

• ntuples containing the pT distribution of the QCD background.

There are also several parameters need to be set by the user in RUN:

• XBINS: this defines the binning of your unfolded result. Because at low pT region, the Z pT

resolution is about 2 GeV/c, we choose the binning width below 30 GeV/c to be 2.5 GeV/c.

Our binning below 30 GeV/c are: 0. 2.5 5. 7.5 10. 12.5 15. 17.5 20. 22.5 25. 27.5 30.

• NRDF: this is the number of degree of freedom, which roughly equals to the number of

points.

• KNOTS: this is the number of knots of the spline function. It should be about 2×NRDF+3.

The normalization of the result is set as one. So the final result of this measurement is actually

the shape of the pT distribution 1
σ

dσ
dpT

.
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8.4 Test of the Unfolding Program

First we test the robustness of the unsmearing program, RUN. In the test, the “data” is smeared

Monte Carlo using g2=0.53 for ResBos; the “data” is required to pass the same event selection

requirements as the real data. The “Monte Carlo samples” are events generated using g2=0.83

for ResBos and its corresponding smeared Monte Carlo event sample. The two generator level pT

distributions are quite different, as shown in Fig. 8.1. One would expect the output of the program

to be consistent with the g2=0.53 generator Monte Carlo distribution, since the unfolded result

from a good unfolding program should not depend on the input Monte Carlo. Fig. 8.2 shows that

the unfolded Z pT spectrum is consistent with our expectation, with a χ2/ndf=35/11 between the

unfolded spectra and the generator spectra with g2=0.53 vs. χ2/ndf=6972/11 between the unfold

spectra and the generator spectra with g2=0.83, clearly favoring the former.
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Figure 8.1: Comparison between the generated Z boson pT spectrum for different values of g2 for

ResBos.
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Figure 8.2: Comparison between the unfolded and generated Z boson pT for the test.

8.5 Unfolded Result

Using the measured data as input, the unfolded Z pT spectrum 1
σ

dσ
dpT

is shown in Fig. 8.3 . The

errors shown in this plot are statistical errors only.

8.6 Systematic Uncertainties

Systematic uncertainties on the unfolded Z pT spectrum arise from the following sources:

• energy scale and offset applied to the electron energy

• energy resolution terms. The uncertainty on the sampling term is parameterized by a

“fudge-factor” parameter S’, which describes the difference between the Monte Carlo and

the data. The noise term N is considered fixed with no uncertainty. Actually at the energy

level of Z boson, the noise term contribution is very small. And the last one is the

uncertainty of the constant term C.
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• parton distribution functions.

• unfolding method

• Z pT dependence of the efficiency obtained from full Monte Carlo

• Z pT dependence of the acceptance

• background level and shape

8.6.1 Uncertainties from the smearing parameters during unfolding

When we unfold the measured Z pT spectrum, if the smearing information contained in the

true-smearing Monte Carlo pairs is not correct, the unfolded result will be biased. The

systematic uncertainty associated with this unfolding process is estimated as follows:

Energy Scales and Energy Offsets
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For the energy scale parameters, energy offset parameters, the uncertainties on the unfolded Z

pT spectrum are estimated by varying each parameter by its uncertainty and noting the effect of

the resulted Z pT spectrum. The uncertainties due to the energy scales and energy offsets are

presented in Fig. 8.4 and 8.5.

Energy Resolution Sampling Terms

For the energy resolution sampling terms, their contributions to the unfolded spectrum are

estimated using the following methods: First of all, I introduce a fudge parameter S’ that

multiplies the sampling contributions at all ηs and all energies. The process then begins with CC

sampling term: First I set S’(CC) to be 1, and tune constant term C to Z/γ∗ → e+e− CC-CC

data using the Binned-Log-likelihood method. This is actually the default model we used in our

parameterized Monte Carlo. Then I fix C at a small value (0 or 0.01 %) and tune S’(CC) to

Z/γ∗ → e+e− data using the Binned-Log-likelihood method. Finally, the uncertainty (one-sided)

on the unfolded Z pT spectrum from the sampling term will be the difference between the

unfolded Z pT spectrum using the default model (where S’ is fixed as 1) and the modified model

S’(where S’ is free and tuned). Once the CC sampling term uncertainty on the final result is

estimated, we then proceed with the sampling terms in positive and negative EC regions using

CC-EC Z/γ∗ → e+e− data. The uncertainties due to the sampling terms are presented in Fig.

8.7.

Energy Resolution Constant Terms

The constant terms(CC,+EC,-EC) are tuned to Z/γ∗ → e+e− data using the

Binned-Log-likelihood method by fixing all the other parameters. There is a statistical error on

the fitted value for each constant term. The uncertainties on the unfolded Z pT spectrum due to

these constant terms are estimated by varying each of them by its uncertainty and noting the

effect of the unfolded Z pT spectrum. The uncertainties due to the constant terms are presented

in Fig. 8.6.

The uncertainty due to all the smearing parameters are shown in Fig. 8.8 , with asymmetric

uncertainties.
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Figure 8.4: Fractional systematic uncertainty on Z boson pT distribution due to the energy scales.

8.6.2 Uncertainties from the 40 PDFs

We are using ResBos and PHOTOS with the CTEQ6.1m PDFs[59]. The CTEQ6.1m PDFs are

defined by twenty orthogonal parameters, which are shifted separately to their positive and

negative 1σ limits, providing a set of 40 PDFs for error determination. We generate 10.8 million

events for each of the error PDFs and 21.6m events for the base PDF. The difference relative to

the base PDF is determined by:

(δX±) =

√

√

√

√

20
∑

k=1

[X(a±
k ) − X(a0)]2 (8.4)

where k is over the 20 PDF parameters and ± indicates whether the PDF shift up or down

results in a positive or negative change in the unfolded Z pT spectrum. The overall fractional

uncertainty due to the 40 PDFs is presented in Fig. 8.9.
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Figure 8.5: Fractional systematic uncertainty on Z boson pT distribution due to the energy offsets.

8.6.3 Uncertainties from the unfolding program

As is stated previously, there are uncertainties associated with the unfolding program RUN. One

uncertainty is from the Monte Carlo input to the program. We estimate this uncertainty using

Monte Carlo. Instead of feeding in the data ntuple, we use ResBos to generate Z boson using

default g2(=0.68) and treat the smeared Monte Carlo as “data”. As to the “Monte Carlo”, we

change the g2 value by positive 5σ(g2=0.83) and negative 5σ(g2 = 0.53), and use ResBos to

generate Z bosons to feed to RUN as the “MC” samples. We note the differences between the

unfolded results and the generator spectrum with the default g2 as the systematic uncertainty.

We generated 10.8 million events and the uncertainty due to the unfolding program is presented

in Fig. 8.10. Here we use asymmetric errors: in each bin, if both differences are

positive(negative), the bigger one is used; if one is positive, the other negative, the two errors will

be set as the positive (negative) errors for this bin.

Another uncertainty is from the RUN parameters. Among them, “KNOTS” is the number of
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Figure 8.6: Fractional systematic uncertainty on unfolded Z boson pT distribution due to the

constant terms.

spline functions used to characterize the unfolding result, and is most sensitive to the unfolding

results[60]. We assign an uncertainty on this parameter by changing the default value(27) up and

down by 2, and noting the difference between the unfolded spectrum and the default spectrum,

as is presented in Fig. 8.11. We assign a 0.5% error due to the “KNOTS” parameter.

8.6.4 Uncertainties from the Efficiency×Acceptance pT dependence

The systematic uncertainty on the Z pT dependence of the efficiency is due to the discrepancy

between data and full Monte Carlo, and is assigned as 2% for Z pT < 60 GeV/c and 4% Z

pT >60 GeV/c. The systematic uncertainty on the Z pT dependence of the acceptance is from

the smearing parameters, including the energy scale, energy offset and energy resolution terms.

We study it by changing each of the parameters by its uncertainty and noting the difference with

the default setting. The fractional uncertainty due to all the smearing parameters was shown in

section 7.3.
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Figure 8.7: Fractional systematic uncertainty on Z boson pT distribution due to the sampling

terms.

8.6.5 Uncertainties from the QCD background

The systematic uncertainty coming from the background fraction is estimated by changing the

background fraction by its uncertainty and noting the difference in the unfolded results. The

fractional uncertainty due to the background fraction is presented in Fig. 8.12. The uncertainty

coming from the background pT shape is estimated by taking the difference between the case

using the average shape and the cases using each of the two QCD background shapes.

Finally, all the systematic uncertainties are plotted in Fig. 8.13.

8.7 Z pT Distribution For Low pT Region

The final 1
σ

dσ
dpT

distribution, with both statistical and systematic uncertainties, is shown in Fig.

8.14 for pT (Z) <30 GeV/c. The differential cross section 1
σ

dσ
dpT

is given in Table 8.9. The error

correlation matrix is given in Table 8.9.

95



 [GeV]
T

Z p
0 5 10 15 20 25 30

F
r
a
c
t
i
o
n
a
l
 
u
n
c
e
r
t
a
i
n
t
y

-0.04

-0.02

0

0.02

0.04
positive error

negative error

systematic uncertainty due to all smearing parameters

Figure 8.8: Fractional systematic uncertainty on Z boson pT distribution due to all the smearing

parameters.

8.8 Tuning of ResBos g2 parameter

We also tuned the g2 parameter in the Ladinsky-Yuan parameterization using a minimum χ2

fit. We generate ResBos samples with different values of g2, and compare the generator Z pT

spectrum with the unfolded result from the data. The χ2 values as function of g2 are fit to a

quadratic polynomial. The result for the best-fit g2 value is 0.70±0.05, with χ2/ndf=11.6/11.

This is presented in Fig. 8.15

8.9 Z pT Distribution For All pT Regions

We also perform a measurement of high pT spectrum as a test of perturbative QCD. The highest

Z pT found in our data sample is 251.2 GeV/c. Fig. 8.16 shows the detector XY view of the

event. The final binning of our result is: 0. 2.5 5. 7.5 10. 12.5 15. 17.5 20. 22.5 25. 27.5 30. 40.

50. 60. 70. 80. 90. 100. 140. 180. 220. 260.
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Figure 8.9: Fractional systematic uncertainty on Z boson pT distribution due to the CTEQ6.1m

PDFs.

The final result with both systematic errors and statistical errors is presented in Fig. 8.17. In the

same plot, we compare our result with ResBos, which uses a NLO perturbative QCD calculation

at high pT . We also compare our unfolded result with a NNLO calculation from [61] and found

very good agreement at high pT .
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Figure 8.10: Fractional systematic uncertainty on Z boson pT distribution due to the input MC

of the unfold program.
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Figure 8.11: Fractional systematic uncertainty on Z boson pT distribution due to the parameter

“KNOTS” of the unfold program.
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Figure 8.12: Fractional systematic uncertainty on Z boson pT distribution due to the QCD back-

ground.
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Figure 8.13: Fractional systematic uncertainty on Z boson pT distribution due to different sources.
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Figure 8.15: Tuning of ResBos g2 parameter using unfolded Z pT spectrum.
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Figure 8.16: Event display for highest Z pT event. This is the XY view.
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Figure 8.17: Unfolded Z boson pT distribution. The error contains both statistical and systematic
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103



bin pT range[GeV/c] 1
σ

dσ
dpT

[1/GeV/c] positive δ ( 1
σ

dσ
dpT

) [1/GeV/c] negative δ ( 1
σ

dσ
dpT

) [1/GeV/c]

1 0-2.5 0.0532 0.0020 0.0030

2 2.5-5. 0.0808 0.0023 0.0023

3 5.0-7.5 0.0633 0.0018 0.0018

4 7.5-10.0 0.0443 0.0014 0.0012

5 10.0-12.5 0.0315 0.0011 0.0010

6 12.5-15.0 0.0246 0.0009 0.0009

7 15.0-17.5 0.0186 0.0007 0.0008

8 17.5-20.0 0.0142 0.0006 0.0007

9 20.0-22.5 0.0109 0.0005 0.0005

10 22.5-25.0 0.0094 0.0004 0.0005

11 25.0-27.5 0.0069 0.0004 0.0004

12 27.5-30.0 0.0055 0.0003 0.0003

13 30.0-40.0 0.0039 0.0001 0.0001

14 40.0-50.0 0.0021 0.0001 0.0001

15 50.0-60.0 0.00110 0.00006 0.00006

16 60.0-70.0 0.00073 0.00005 0.00004

17 70.0-80.0 0.00042 0.00004 0.00004

18 80.0-90.0 0.00025 0.00002 0.00002

19 90.0 -100.0 0.00016 0.00002 0.00002

20 100.0-140.0 0.00006 0.00001 0.00001

21 140.0-180.0 0.000011 0.000002 0.000002

22 180.0-220.0 0.000003 0.000001 0.000001

23 220.0-260.0 0.0000007 0.0000006 0.0000006

Table 8.1: Normalized differential cross section 1
σ

dσ
dpT

.
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bin 1 2 3 4 5 6 7 8 9 10 11 12

1 1 -0.38 0.08 -0.01 0 0 0 0 0 0 0 0

2 -0.38 1 -0.47 0.15 -0.05 0.02 -0.01 0 0 0 0 0

3 0.08 -0.47 1 -0.43 0.12 -0.04 0.01 0 0 0 0 0

4 -0.01 0.15 -0.43 1 -0.40 0.09 -0.01 -0.01 0.01 0 0 0

5 0 -0.05 0.12 -0.40 1 -0.36 0.04 0.03 -0.02 0.01 -0.01 0

6 0 0.02 -0.04 0.09 -0.36 1 -0.33 -0.01 0.06 -0.04 0.02 0

7 0 -0.01 0.01 -0.01 0.04 -0.33 1 -0.28 -0.07 0.10 -0.05 0.01

8 0 0 0 -0.01 0.03 -0.01 -0.28 1 -0.23 -0.15 0.13 -0.05

9 0 0 0 0.01 -0.02 0.06 -0.07 -0.23 1 -0.14 -0.21 0.15

10 0 0 0 0 0.01 -0.04 0.10 -0.15 -0.14 1 -0.12 -0.28

11 0 0 0 0 -0.01 0.02 -0.05 0.13 -0.21 -0.12 1 -0.03

12 0 0 0 0 0 0 0.01 -0.05 0.15 -0.28 -0.03 1

Table 8.2: Error correlation matrix
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Chapter 9

Result of Z bosons with rapidity greater than 2.0

As mentioned in the introduction, based on pT distributions from deep inelastic scattering of

electrons on heavy targets, theorists have proposed a modification of the resummation calculation

that affects boson produced from partons with small x values. At Tevatron energies, Z bosons

with rapidity |y| > 2.0 come from quarks in the same x range as those probed by the SIDIS

experiments. In this section, I compare the pT spectrum for Z bosons at large rapidity to the

theoretical calculation with and without the small-x modification.

In this analysis, 5412 Z/γ∗ → e+e− events have y >2, including 5143 ECEC events and 269

CCEC events. The raw pT spectrum after the event selection is presented in Fig. 9.1.
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Figure 9.1: pT distribution for Z candidates with |y| >2.

The background fraction is determined using the same method used in Chapter 6 to be
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4.0±0.1%. The best result of the minimum χ2 fit is presented in Fig. 9.2.
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Figure 9.2: Invariant mass distribution for Z candidates with |y| >2.

The Z pT dependence of the efficiency is determined from full Monte Carlo Z/γ∗ → e+e− events

containing Zs with y >2 and is presented in Fig. 9.3. The dependence of the acceptance on Z pT

is also determined using PMCS for Zs with |y| >2, and is presented in Fig. 9.4. The

efficiency×acceptance(Z pT ) is presented in Fig. 9.5.

The unfolded result for Z’s with rapidity greater than 2.0 is shown in Fig. 9.6 with statistical

errors only.

The systematic uncertainties are estimated using the same methods that were used for the all y

result. Including the systematic uncertainty, the final result for |y| >2 is presented in Fig. 9.7, as

well as the ResBos distributions with and without the small-x correction, with χ2/ndf to be

31.9/12 and 11.1/12,respectively. Thus, in our analysis we do not observe the small-x broadening

effect predicted by [4]

Finally, we overlay the all y and |y| >2 Z pT spectrum together, in Fig. 9.8.
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Figure 9.3: Efficiency(Z pT ) distribution for Z candidates with |y| >2.
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Figure 9.4: Acceptance(Z pT ) distribution for Z candidates with |y| >2.
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Figure 9.5: Efficiency*Acceptance(Z pT ) distribution for Z candidates with |y| >2.
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Figure 9.6: Unfolded Z pT distribution for Z candidates with |y| >2. The errors are statistical

errors only.
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Figure 9.7: Unfolded Z pT distribution for Z candidates with |y| >2.
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Figure 9.8: Comparison of unfolded Z pT distributions for Z candidates with |y| >2 and all y.
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Chapter 10

Closure tests

10.1 Full Monte Carlo Test For All y Region

To verify the efficacy of the unfolding process I used, I did a closure test using full Monte Carlo

samples. The idea is to treat the reconstructed full Monte Carlo events as “data”, and check that

the unfolded spectrum is the same as the PYTHIA generator spectrum.

I used the same selections to select good events. I measured the efficiencies and tuned the

smearing parameters using the full Monte Carlo events, then put them into PMCS. The “Monte

Carlo” inputs to the unfold program are the generator level(ResBos+PHOTOS) and its PMCS

smeared Z pT ntuples. To correct for the effect of selection on the observed Z pT , I measure the

acceptance (Z pT ) using PMCS ( shown in Fig. 10.1). The efficiency(Z pT ) was presented

previously in Fig. 7.4. The efficiency×acceptance(Z pT ) is presented in Fig. 10.2.

I also compare the invariant mass distributions from full Monte Carlo and PMCS, shown in Fig.

10.3 and 10.4.

Finally, the unfolded spectrum is compared with the PYTHIA generator Z pT spectrum of the

full MC, presented in Fig. 10.5. The Z pT distribution from ResBos, which is used as the input

to the unfold program, is also plotted in the same figure. The χ2 test of the unfolded spectrum

and the PYTHIA spectrum is χ2/ndf=13.0/12: it is a good agreement. In Fig. 10.6, I plotted

the difference between the unfolded result and PYTHIA. The χ2 test of the histogram with zero

is χ2/ndf=19.0/12.

10.2 Full Monte Carlo Test For Zs with y >2

We also did the full Monte Carlo closure test for Zs with |y| >2. The efficiency(Z pT ) and

acceptance(Z pT ) for these events are plotted in Fig. 10.7 and Fig. 10.8. The
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Figure 10.1: Acceptance Z pT dependence for the full Monte Carlo Z/γ∗ → e+e− sample

Efficiency×Acceptance(Z pT ) is presented in Fig. 10.9. The comparison between unfolded result

and the PYTHIA generator is in Fig. 10.10, the χ2 test between the two histograms is

χ2/ndf=10.0/12.

10.3 Test For Zs with 0.5< y <2

There have been many analysis done using the central EM calorimeter at DØ Run II. But few of

them used the endcap calorimeters. To test the small-x broadening effect at high Z rapidity

predicted by theorists, in this analysis we used the endcap EM calorimeters. We need to make

sure that we have a good knowledge of the endcap calorimeter energy smearing. We design a test

by looking at 0.5< |yZ | <2 events. For these selected Z events, we look at CC-CC and CC-EC

events. We unfold both of them and expect the unfolded spectra to be the same because there is

no smearing effect left after unfolding and they have the same Z rapidity range.

Fig. 10.11 shows the efficiency(Z pT ) for CC-CC and CC-EC events with Z rapidity between 0.5
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Figure 10.2: Efficiency*Acceptance Z pT dependence for the full Monte Carlo Z/γ∗ → e+e−

sample

and 2. Fig. 10.12 shows the acceptance(Z pT ) for CC-CC and CC-EC same events.

Efficiency×Acceptance(Z pT ) for them are presented in Fig. 10.13.

Fig. 10.14 shows the raw Z pT distribution for CC-CC and CC-EC; their shapes are different due

to different detector smearing and the χ2 test between them is χ2/ndf=26/12. Fig. 10.15 shows

the unfolded CC-CC and CC-EC Z pT distribution. With a χ2/ndf=11/12, they are in good

agreement with each other, which is consistent with our expectation.
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Figure 10.3: Comparison of invariant mass distribution for the full Monte Carlo Z/γ∗ → e+e−

sample, linear scale
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Figure 10.4: Comparison of invariant mass distribution for the full Monte Carlo Z/γ∗ → e+e−

sample, log scale
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in the full Monte Carlo closure test
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Figure 10.8: Acceptance Z pT dependence for the full Monte Carlo Z/γ∗ → e+e− |y| >2 sample.
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Figure 10.9: Efficiency×Acceptance Z pT dependence for the full Monte Carlo Z/γ∗ → e+e−

|y| >2 sample.
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Figure 10.10: Comparison of the Z pT distributions for the unfold data and the PYTHIA gener-

ator in the full Monte Carlo |y| >2 closure test.
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Figure 10.11: Efficiency Z pT dependence for the Z/γ∗ → e+e− 0.5< |y| <2 sample.
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Figure 10.12: Acceptance Z pT dependence for the Z/γ∗ → e+e− 0.5< |y| <2 sample.
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Figure 10.13: Efficiency×Acceptance Z pT dependence for the Z/γ∗ → e+e− 0.5< |y| <2 sample.
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Figure 10.14: Raw Z pT distribution for CC-CC, CC-EC 0.5< |y| <2 sample.
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Chapter 11

Conclusions

A total of 63,656 Z/γ∗ → e+e− events are selected from the 976 pb−1 data sample collected

between October 2002 and November 2005 at the DØ detector. With these events, I measured

the differential cross section 1
σ

dσ
dqT

for Z events produced in pp̄ collisions at a center-of-mass

energy of 1.96 TeV at the Tevatron Run II.

I unfolded the detector smearing effect and compared the unfolded spectrum with the theory

calculations. At the low pT region, I compared our result with the CSS resummation calculation

and found very good agreements. I also fit the g2 parameter in the Ladinsky-Yuan

parameterization of the Sudakov factor, the fitted g2 parameter is 0.70±0.05 GeV2, with g1=0.21

GeV2, g3=-0.6 GeV−1. At the high pT region, I compared our spectrum with NNLO calculation

and found very good agreements.

In this thesis, I also performed a measurement of the differential cross section 1
σ

dσ
dqT

for Z events

with a rapidity y greater than 2.0. These bosons are produced from a small-x quark and as a

recent paper[4] predicted, the pT spectrum for them should be broader than the traditional CSS

resummation. However, our result is in better agreement with the traditional CSS resummation

rather than the calculation with the small-x correction implemented.
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