Department of Physics, University of Maryland, College Park

Oct. 31, 2000	Name:

MIDTERM TEST

Budget your time. Look at all 5 pages. Do the problems you find easiest first.

- 1. Consider a family of hexagonal-lattice planes with $\mathbf{a_1} = \ell$ (1, 0, 0) and $\mathbf{a_2} = (\ell/2)$ (1, β , 0). Now suppose that the points form an fcc crystal.
- a) What is the relation between ℓ and the conventional lattice constant a?
- b) Find the distance between these planes in terms of ℓ or a.
- c) Find a possible a_3 for this fcc crystal. (You may express your answer using a_1 and a_2 .)
- d) What kind of lattice is the reciprocal lattice of this fcc crystal? (Just answer, do not derive!!)
- e) To what in this reciprocal lattice does this family of planes correspond? (Be as explicit as you can.)
- 2. Consider a crystal lattice with a 2-atom basis on the underlying Bravais lattice. Atom 2 with form factor f_2 is at position **d** relative to atom 1 (with form factor f_1).
- a) If $f_2 = f_1$ write down the condition that **d** must satisfy so that the structure factor at **K** (and thus the scattering intensity at **K**) vanishes.
- b) If $f_2 _f_1$, with f_1 and f_2 real and positive, is there any condition under which the structure factor factor vanishes? Justify your answer briefly.
- 3. Recall estimating the Madelung constant α for ionic crystals using the Evjen (neutral-shell) method. Consider a CsCl lattice, i.e. a bcc lattice of sites with negative ions at the cell centers and positive ions at the corners.
- a) What is the estimate of α based on just the first shell? Show your work, indicating clearly which characteristic distance you have chosen. Note that the first cube is particularly simple, containing just corner sites.
- b) i) What is the critical value of the ratio of r > /r < ? ii) Which of the spheres under this condition touch both its nearest and second nearest neighbors?
- c) For this critical value, what is the packing fraction? (You may express your answer using $r_{>}$ and $r_{<}$, so you can answer this even if you could not do part b.)

a) Which kind involves significant charg	e transfer?	(Answer M, C	C, or I to	o this and the fo	ollowing	ŗ .)
b) Which case has the largest angular var of the interatomic spacing from the atom		narge density al	bout an	atom (say at a	distance	1/4
c) Which case has bonding dominated by	the format	tion of bonding	g and an	tibonding orbit	tals?	
d) Which kind has a binding energy that	can be crud	lely deduced u	ising the	Uncertainty P	rinciple	?
e) Which kind has charge distributions the strong radial dependence?	nat are near	ly spherically s	symmetr	ic around sites	, but hav	⁷ e
5a. On the square lattice of sites on the right, draw the displacement of the atoms indicated by dots, for an acoustic longitudinal phonon with $\mathbf{k} = (\pi/a)$ (1/2,	– 1/2).		_		-	
	_		_		_	
5b.On the 2-site basis square lattice on the right, draw the displacement of the two kinds of atoms for an optical transverse phonon with $\mathbf{k} = (\pi/a) \ (1, 0)$.	_	0	_	o	-	0
	_	0	_	0	_	O

4. Consider crystals held together predominantly by metallic (M), covalent (C), or ionic (I) bonding.

- 6. A crystal has N cells, a p-atom basis (so Np atoms) in D dimensions, "volume" V, periodic BC's.
- a) How many optical branches are there?
- b) How many branches are both longitudinal and linear in $|\mathbf{k}|$ for small $|\mathbf{k}|$?
- c) How many transverse branches are there?
- d) How many distinct independent values of \mathbf{k} are there?
- e) What is the size of the primitive cell?
- 7. A 1D chain with lattice spacing a has the following dispersion relation: $\omega(k) = \omega_0 [1 (1-|k|a/\pi)^2]$
- a) i) Find the group velocity. ii) What is the acoustic/sound velocity?
- b) i) Find the density of states $g(\omega)$ and ii) sketch the result. iii) Indicate clearly the value[s] of ω for which a Van Hove singularity exists.
- 8. Do either <u>4 of the following 5 short-answer problems</u> or <u>the long problem and 1 of the short</u> problems, all based on homework:
- Short a) What is meant by a soft phonon mode?
- Short b) What is the purpose of the Ewald construction? What differs when the array of scatterers has only 2D periodicity (e.g. a surface) rather than 3D periodicity (like a bulk solid)?
- Short c) What is the de Boer parameter? In what context does it arise?
- Short d) What is a good ansatz for a mode localized at the origin of a 1D Bravais crystal chain?
- Short e) What is the effect of the Debye-Waller factor? On what parameters does it depend?

Long: In problem 3, what is the contribution to α from the second shell? Show your reasoning clearly. The second cube is more complicated, containing $\bullet 100$ ® face centers, $\bullet 110$ ® edge centers, and $\bullet 111$ ® corners. (Do not waste time summing the various contributions; just show the contribution from each type of site.)