Physics 731 HOMEWORK ASSIGNMENT \#5 Due: Tuesday, 0 ct. 16, 2001

No class on Thursday, Oct. 18; make-up class Wednesday evening, 0 ct. 17, 7:15p.m.
H our test: late October

Finish reading about phonons: A\&M chapters $23,24,25$. Chap. 24 is straightforward and rather descriptive. Chap. 23 will be covered thoroughly in class. After reading pp. 464465 , read pp. 143-145, substituting $\omega_{s}(k)$ for $\varepsilon_{n}(k)$, $s^{\text {th }}$ branch for $n^{\text {th }}$ band, and removing the factor of 2 from spin degeneracy. [Thus, for phonons there is no factor of 2 in eqns. (8.53), (8.54), and (8.58), the $1 / 4 \pi^{3}$ should be $1 / 8 \pi^{3}$ in eqns. (8.57), (8.59), (8.60), and (8.63).] In chap. 25 we will only have time to cover lattice thermal conductivity (pp. 495-505) with any care. The rest of that chapter can be skimmed very casually. The objectiveshould be to get a sense of what results are known. Finally, review Appendix L and study Appendix M (pp. 784-787).

Problems to turn in (read the rest):

1. 23-1 (parts a and c only)

Hint: Use $\Sigma_{s} \lambda_{s}(\mathbf{k})=\Sigma_{\mu} D_{\mu \mu}(\mathbf{k})$, and note that the trace is independent of the representation.
2. 23-2
3. 23-3 Hint for part b: assume $\omega(\mathbf{k})=\omega\left(\mathbf{k}_{0}\right)-\alpha\left(\mathbf{k}-\mathbf{k}_{0}\right)^{2}$
4. 24-3 (parts a and b only; you can simply accept eqn. (N.17) as reasonable or read Appendix N).
5. 25-5
dd 6. [Do NOT hand in; solution will be provided.] Calculate the eigenfrequency of a mass defect $M_{0} \neq M$ in a linear chain at the position $n=0$ by invoking the ansatz $u(n a)=$ uo $\exp [-\kappa(\omega)|n| a-i \omega t]$ for displacements (and then eliminating κ from the coupled equations that result). For what range of M_{0} do localized vibrations exist (i.e. for what range is $\omega^{2}>0$)? (Warning: this problem, drawn from Ibach and Lüth, is not well posed: there is the following inconsistency. You can show that $\omega^{2} / 2 \mathrm{k}_{0}=1-\exp (-\kappa а)$, which is problematic for negative ω^{2}.)
6. a) Find the power of ω for the phonon density of states of the Debye model in 1 and in 2 dimensions, i.e. for $g(\omega) \sim \omega^{\alpha}$, what is α ?
b) Consider a dispersion relation with $\omega=$ const times k^{m}. What is the value of α in 1,2 , and 3 dimensions? (E.g., $\mathrm{m}=2$ for spin waves (magnons).)

