Department of Physics, University of Maryland, College Park, MD 20742-4111

Physics 731 HOMEWORK ASSIGNMENT \#3 Due: Sept. 20/25, 2001?

No class on Tues., Sept. 18; make-up class, rm. 1304 Wednesday, Sept. 19, 7:15-8:30p.m.
Read Ashcroft \& Mermin (A\&M), chaps. 19-20.

1. A\&M 19-1 b, c, d (cf. Ibach \& Lüth, 1-11 for an easier version of this problem).
2. A\&M 19-2
3. A\&M 20-1, parts a and b only.
4. A\&M 20-4, parts a and b only.
5. Consider a line of $2 N$ ions of alternating charge $\pm q$ with a repulsive potential energy A / R^{n} between nearest neighbors.
a) Show that at the equilibrium separation R_{0}

$$
U\left(R_{0}\right)=-\frac{2 N q^{2} \ln 2}{R_{0}}\left(1-\frac{1}{n}\right)
$$

b) Suppose one compresses the 1D crystal so that $R_{0} \rightarrow R_{0}(1-\delta)$. Show that - to leading order the work [per length], $\mathrm{U}\left(\mathrm{R}_{0}-\mathrm{R}_{0} \delta\right)-\mathrm{U}\left(\mathrm{R}_{0}\right)$, can be written $(1 / 2) \mathrm{C} \delta^{2}$, where

$$
C=\frac{(n-1) q^{2} \ln 2}{R_{0}^{2}}
$$

6. Barium oxide has the NaCl structure. Estimate the cohesive energies per molecule of the hypothetical crystals $\mathrm{Ba}^{+} \mathrm{O}^{-}$and $\mathrm{Ba}^{++} \mathrm{O}^{--}$(relative to separated neutral atoms). The observed nearest-neighbor distance is $R_{0}=2.76 \AA$; the first and second ionization potentials of Ba are 5.19 and 9.96 eV ; the electron affinities of the first and second electrons added to the neutral oxygen atom are 1.5 and -9.0 eV . Which valence state (singly or doubly ionized) do you predict will occur? [Assume R_{0} is the same for both forms.]
7. Read but do NOT turn in this problem; solution will be supplied
a) A set of normalized and mutually orthogonal p -state wavefunctions for an atom can be written in the form: $\quad p_{x}=x f(r) ; \quad p_{y}=y f(r) ; \quad p_{z}=z f(r)$.
Consider the linear combination of p wavefunctions $\quad \psi=a_{x} p_{x}+a_{y} p_{y}+a_{z} p_{z}$. Find four sets of coefficients (a_{x}, a_{y}, a_{z}) that give normalized p-state wavefunctions with positive lobes pointing towards the corners of a regular tetrahedron (i.e. 4 alternating corners of a cube).
b) Consider the linear combination $\phi=b s+c \psi$, where ψ is any one of the four wavefunctions calculated above, and s is an s-state wavefunction, normalized and orthogonal to the p 's. Find values of b and c which make the four resulting ϕ wavefunctions orthogonal to each other and normalized, and write out the resulting four ϕ wavefunctions (the $s p^{3}$ hybrids) in terms of $p_{x}+p_{y}+p_{z}$, and s. (Cf. Ibach \& Lüth, 1-9.)
8. Estimate the Madelung constant a for a [square] checkerboard of + and - charges (2D analogue of NaCl) using the Evjen method. Specifically, find the contribution from each of the first 4 shells.
