Department of Physics, University of Maryland, College Park, MD 20742-4111

Physics 731
HOMEWORK ASSIGNMENT \#2
Due: Sept. 13, 2001
(Deadline: next lecture*)
*No class on Tuesday, Sept. 18; make-up class time to be determined.

Read Ashcroft \& Mermin (A\&M), chaps. 5-6.

1. $\mathrm{A} \& \mathrm{M} 5-3$
2. A\&M 6-2

3a) Show as a corollary to problem 2 [A\&M 6-2] that the $\{111\}$ planes of a simple cubic crystal are triangular lattices. (So are the $\{111\}$ planes of the bcc crystal.) What is the interplanar spacing? [Hint: problem 1, A\&M 5-3, may be helpful.]
b) For an fcc crystal, viewed from the [111] direction as a sequence of stacked close-packed planes, write down a third primitive vector \mathbf{a}_{3}, given that the first two are in a closepacked plane [e.g. $\left.\mathbf{a}_{\mathbf{1}}=\mathrm{a} \mathbf{x} ; \mathbf{a}_{\mathbf{2}}=(\mathrm{a} / 2)(\mathbf{x}+\mathbf{y} \sqrt{ } 3)\right]$. (I.e., find the components of \mathbf{a}_{3} along \mathbf{x}, \mathbf{y}, and \mathbf{z}.) Then show explicitly how the ABCABC stacking sequence is realized, i.e. that after 3 translations by \mathbf{a}_{3} the lattice points coincide with those in the original plane, translated perpendicular to this plane by 3 times the interplanar spacing d. This problem provides details of assertions made in class.
4. A\&M 6-3
5. A\&M 6-5
6. Consider the reciprocal lattice of a two-dimensional (2D) lattice. Write $\mathbf{k}=\mathbf{k}_{\text {II }}+\mathrm{k}_{\mathrm{z}}$.
a) Show that $K_{3 D}=K_{2 D}+K_{z}, K_{z}$ arbitrary, so that the reciprocal lattice can be represented by a net of rods. For elastic scattering, $\mathbf{k} \rightarrow \mathbf{k}^{\prime}$, write the relation between \mathbf{k}_{n} and $\mathbf{k}_{\mathrm{n}}{ }^{\prime}$.
(Hint: Consider a 2D lattice as the limit of a (3D) family of planes with interplanar spacing d going to infinity.) What added constraint comes from energy conservation?
b) Generalize Fig. 6.7 to show the Ewald construction for diffraction from a 2D lattice. Note that one observes a diffraction pattern of electrons from a surface for all values and orientations of the incident wavevector \mathbf{k} above a critical value.
c) Show that for electrons incident perpendicularly on a $\{100\}$ surface of a copper crystal, the critical energy at which the first diffracted beam appears (as incident energy is raised) is about 22 eV . (Use the handy relationship $\lambda(\AA) \approx 12 /[\mathrm{E}(\mathrm{eV})]^{1 / 2}$. Note that the periodic table inside the front cover of $\mathrm{A} \& \mathrm{M}$ provides lattice constants of the elements, as well as lots of other information; alternatively, use table 2.1 of Marder.)

Read and think about (but do not turn in) A\&M 5-4, A\&M 6-4.

