Steps on Crystalline Surfaces: From Elementary Models to Universal Fluctuation Phenomena

Ted Einstein Physics, U. of Maryland, College Park einstein@umd.edu
http://www2.physics.umd.edu/~einstein

In collaboration with Alberto Pimpinelli, Hailu Gebremariam, Tim Stasevich, H.L. Richards, O. Pierre-Louis, S.D. Cohen, R.D. Schroll, N.C. Bartelt, and experimentalists Ellen D. Williams & J.E. Reutt-Robey at UM, M. Giesen & H. Ibach at FZ-Jülich, and J.-J. Métois at Marseilles

• Background, terminology, models

IVI

RS

EC

- Different roles of steps; applications in crystal growth, chemistry, nanowires, polymers
- Steps as Brownian strings; seeking signatures of mass transport modes
- Steps on vicinal surfaces as meandering fermions in (1+1)D...¿interactions?
- Terrace width distributions (TWDs), and what they reveal
- Simple models: mean field & 1D Schrödinger eqn...and their shortcomings
- Relevance of random matrix theory—universal features of fluctuations
- Generalizing the Wigner surmise from symmetry-based: meaning of ϱ
- Fokker-Planck formulation: study of relaxation to equilibrium
- Growth: TWD narrowing; scaling of capture zones of islands

Prototype systems: Si (111), Cu (001) and (111)

SOS (solid-on-solid) model of vicinals

Vicinals as growth templates: controlled unidirectional defects in step-flow growth (vs. nucleation on flat)

Competition of characteristic lengths for diffusion, nucleation, distance to step

Enantioselectivity at chiral metal surfaces

D-glucose

L-glucose

Chiral Pt (643)

Attard, J. Phys Chem B 105 ('01) 3158

Sholl et al., J. Phys Chem B 105 ('01) 4771

fcc(643)

 $fcc(\overline{6}\overline{4}\overline{3})$

Steps as Growth Template for Nanowires

Gd disilicide nanowires on Si(111) straight, limited by kinks on steps

Himpsel group, Nanotechnology 13 ('02) 545

Steps as polymers in $2D \Rightarrow$ non-crossing

THE JOURNAL OF CHEMICAL PHYSICS

VOLUME 48, NUMBER 5

1 MARCH 1968

Soluble Model for Fibrous Structures with Steric Constraints

FIG. 1. Model for a two-dimensional fiber structure.

Models & Key Energies Discrete/atomistic → Step Continuum

energy of unit height difference between NN sites + hopping barriers, attach/detach rates

kink energy

- step stiffness $\beta(\theta) + \beta''(\theta)$: inertial "mass" of step
- **A** strength of step-step repulsion A/ℓ^2

rate parameter, dependent on microscopic transport mechanism

Main test: Self-consistency of these 3 parameters to explain many phenomena Coarse-grain: Relation of 3 nano/mesoscale parameters to atomistic energies??

Γ

Experimental Probes of Vicinals

(0 1)

(0 0)

(10)

- Diffraction of electrons or atoms
 k-space, sensitive to order
- STM (scanning tunneling microscope) _ atomic resolution, but scanning
- LEEM (low-energy electron microscope) nanoscale resolution, real-time image, expensive
- REM (reflection electron microscopy)

nanoscale resolution in 1 direction, real-time image

All photos are of Si (111)

Steps as Brownian strings: Langevin "capillary wave" approach

Island – Adatom or Vacancy – Defined by Nearly Circular Step!

vacancy island

Isolated Step Fluctuations: Signatures of Dominant Mass Transport Mechanism

	EC or AD (ADL)	TD (DL)	PD
Limited by	At/de/tach at step	Terrace diffu'n	Step-edge diffu'n
Fluctuation healing timewidth y	y ²	y ³	<i>y</i> ⁴
Size dep. of island diffu'n, <i>R ∝</i> √area	R ⁻¹	R ⁻²	R ⁻³
$w^{2}(t)$	t ^{1/2}	t ^{1/3}	t ^{1/4}
Island area decay	<i>t</i> ¹	t ^{2/3}	N/A
Evolution of atom/ vacancy island	Shrink to round point <i>(Grayson's Thm)</i>		Wormlike, pinch-off
Height decay of cone ["facet"]	t ^{1/4}	t ^{1/4}	N/A
Height decay of paraboloid [rough]	t ^{1/3}	t ^{2/5}	N/A

Origin of elastic (dipolar) step repulsions

•Frustration of relaxation of terrace atoms between steps

- •Energy/length: $U(\ell) = A/\ell^2$ (Same *y* for points on two interacting steps separated by ℓ along $x \Rightarrow$ "instantaneous")
- •Metallic surface states \Rightarrow additional oscillatory term in U

Importance of step repulsions

- •1 of 3 parameters of continuum step model of vicinals
- •Determine 2D pressure
- •Determine morphology: e.g. bunch or pair
- •Drives kinetic evolution in decay
- •Elastic and entropic repulsions $\propto \ell^{\text{-2}}$

 \Rightarrow universality of $\langle \ell \rangle^{-1} P(\ell)$ vs. $s \equiv \ell / \langle \ell \rangle$ so $P(s; \langle \ell \rangle) \rightarrow P(s)$ scaling

Essence of Gruber-Mullins (MF)

Single active step meanders between 2 steps separated by twice mean spacing. Fermion evolves in 1D between 2 fixed infinite barriers $2\langle l \rangle$ apart.

Particle in 1D Box vs. Exact

Steps in 2D \rightarrow fermion worldlines in 1D

- Step non-crossing \Rightarrow fermions or hard bosons
- Energy \propto path-length \times free energy/length β , expand \Rightarrow 1D Schrödinger eqn., $m \rightarrow$ stiffness β
- Analogous to polymers in 2D (deGennes, JCP '68)
- Only dependence on A via $\tilde{A} \equiv \beta A/(k_B T)^2$
- Mean-field (Gruber-Mullins): 1 active step, $0 \le s \le 2$
 - $\tilde{A} = 0$: particle in box, $P(s) = \Psi_0^2 \propto \sin^2(\pi s/2)$, $\varepsilon_0 \propto T^2 / \tilde{\beta} \langle \ell \rangle^2 \rightarrow entropic repulsion$
 - $-\tilde{A} \ge 1\frac{1}{2}$: parabolic well, $P(s) \propto \exp[-(s-1)^2/2W_M^2]$, $W_M \propto \tilde{A}^{-1/4} \langle \ell \rangle$
- $\tilde{A} \rightarrow \infty$: "phonons", variance of P(s) is $2 W_M^2$, not W_M^2

Wigner Surmise (WS) for TWD (terrace-width distribution)

 \Rightarrow values of a_{ϱ} , b_{ϱ} (in terms of Γ functions),

Physical Ideas Behind Application of Random Matrices

cf. T. Guhr, A. Müller-Groeling, H. A. Weidenmüller, Phys. Reports 299 ('98) 189 [cond-mat/97073]

<u>Standard stat mech: ensemble of *identical* physical systems with *same* Hamiltonian but different initial conditions; Wigner: ensemble of dynamical systems governed by *different* H's with some <u>common symmetry property</u>, seeking generic properties of ensemble due to symmetry.</u>

Dyson, using group-theory results from Wigner, showed 3 generic ensembles:

1) time-reversal invariant with rotational symmetry:

 $H_{mn} = H_{nm} = H^*_{mn}$ (<u>orthogonal</u>)

2) time reversal violated (e.g. electron in fixed **B**) $\mathbf{H} = \mathbf{H}^{\dagger}$

 $H_{mn} = H^{\dagger}_{mn} (\underline{unitary})$

3) time-reversal invariant with 1/2-integer spin & broken rotational symmetry;

 $H^{(0)}_{mn}I - i\Sigma_j H^{(j)}_{mn}\sigma_j (\underline{symplectic})$

σj: Pauli spin matrices, j=1,2,3; I: 2∞2 unit matrix; HO all real, H(0) sym, others asym

Wigner: for convenience, Gaussian weights $P(H) \propto \exp[-(\beta N/\lambda^2) \operatorname{tr} H^2]$

<u>Gaussian Orthogonal Ensemble</u>: $\beta=1$ <u>GUnitaryE</u>: $\beta=2$ <u>GSymplecticE</u>: $\beta=4$

<u>GRMT</u> useless for average quantities, but *fluctuations* for large number of levels becomes independent of the form of the level spectrum and of the Gaussian weight factors, and attains 1957: Wigner surmise for β=1: p₁(s) = a₁ s¹ exp(-b₁s²), where p is the distribution function of nearest-neighbor energy levels, with s the real spacing over the [local] mean
1960-62: Dyson: circular ensembles: CircularOE, CUE, CSE; NN unitary matrices, eigenvalues exp[iθ_μ], μ=1,...N
N-particle Coulomb gas on a circle (i.e. in 1D), with [shifted] inverse temperature β
Major ingredient: von Neumann–Wigner level repulsion: 2 states connected by a non-vanishing matrix element repel each other—degree of repulsion is determined by symmetry of Hamiltonian—"A simple counting argument leads directly to the exponent β = 1, 2, 4 in the typical factor |E_μ-E_ν|^β in the Vandermonde determinant."

Sutherland Hamiltonian for N particles (spinless fermions) on a circle:

$$-\frac{\hbar^2}{2m}\left[\sum_{i=1}^N \frac{\partial^2}{\partial \lambda_i^2} - \frac{\beta}{2} (\beta - 2) \left(\frac{\pi}{N}\right)^2 \sum_{i < j} \frac{1}{\sin^2 \left\{\pi (\lambda_i - \lambda_j) / N\right\}}\right]$$

Application to specific step system: M. Lässig, "Vicinal Surfaces and the Calogero–Sutherland Model," Phys. Rev. Lett. 77 ('96) 526, for Song & Mochrie's observation of tricritical behavior on vicinal Si (113)

OTHER APPLICATIONS of RMT

Localization theory--ensemble of impurity potentials

Clarifies various regimes in mesoscopic physics: clean, ballistic, ergodic, diffusive, critical, localized Transport in quasi-1D wires Fluctuations of persistent currents (esp. for non-interacting electrons) Level spectra of small metallic particles & their response to EM field Atomic nuclei, atoms and molecules Classical chaos (e.g. Bunimovich stadium, Sinai billiard) QCD, supersymmetry 2D quantum gravity

Examples of NN spacing distributions with GOE (ρ =1)

Fig. 1. Nearest-neighbor spacing distribution for the "Nuclear Data Ensemble" comprising 1726 spacings (histogram) versus s = S/D with D the mean level spacing and S the actual spacing. For comparison, the RMT prediction labelled GOE and the result for a Poisson distribution are also shown as solid lines. Taken from Ref. [1].

Fig. 4. The nearest-neighbor spacing distribution versus s (defined as in Fig. 1) for the Sinai billiard. The histogram comprises about 1000 consecutive eigenvalues. Taken from Ref. [5].

Fig. 6. Nearest-neighbor spacing distribution for elastomechanical modes in an irregularly shaped quartz crystal.

RMT & financial data: Cross-correlations of price fluctuations of different stocks, using $P_1(s)$

V. Plerou, ..., T. Guhr, and H. E. Stanley, PRE 66 ('02) 066126

Headway statistics of buses in Mexican cities, using $P_2(s)$ M. Krbálek & P. Šeba, J. Phys. A **36** ('03) L7; **33** ('00) L229

Headway: time interval Δt between bus and next bus passing the same point No timetable for buses in Mexico; independent drivers seek to optimize # riders/fares

WS $P_2(s)$ better than CA because in CA, correlations only between NNs

Modelling gap-size distribution of parked cars using RMT

A.Y. Abul-Magd, Physica A 368 ('06) 536

Unlike random sequential process, Coulomb gas extends repulsion beyond geometric size.

Wigner Surmise (WS) for TWD (terrace-width distribution)

 \Rightarrow values of a_{e} , b_{e} (in terms of Γ functions),

Comparison of variance of *P*(*s*) vs. Ã computed with Monte Carlo: GWS does better, quantitatively & conceptually, than any other approximation Hailu Gebremariam et al., Phys. Rev. B 69 ('04)125404

Experiments measuring variances of TWDs

Vicinal	T (K)	σ^2	e	Ã	$A_{\rm W}/A_{\rm G}$	Aw (eV Å)	Experimenters
Pt(110)-(1 × 2)	298		2.2	0.13	-	$\tilde{\beta} = ?$	Swamy, Bertel [36]
Cu(19, 17, 17)	353	0.122	4.1	2,2	0.77	0.005	Geisen [5,54]
Si(111)	1173	0.11	3.8	1.7	0.96	0.4	Bermond, Métois [55]
Cu(1,1,13)	348	0.091	4.8	3.0	1.27	0.007	Giesen [5,56]
Cu(11,7,7)	306	0.085	5.1	4	1.37	0.004	Geisen [5,54]
Cu(111)	313	0.084	5.0	3.6	1.39	0.004	Geisen [5,54]
Cu(111)	301	0.073	6.0	6.0	1.58	0.006	Geisen [5,54]
Ag(100)	300	0.073	6.4	6.9	1.58	$\tilde{\beta} = ?$	P. Wang Williams
Cu(1, 1, 19)	320	0.070	6.7	7.9	1.64	0.012	Geisen [5,56]
Si(111)-(7 × 7)	1100	0.068	6.4	7.0	1.67	0.7	Williams [57]
Si(111)-(1 × 1)Br	853	0.068	6.4	7.0	1.67	0.1	XS. Wang, Williams [58]
Si(111)-Ga	823	0.068	6.6	7.6	1.67	1.8	Fujita Ichikawa [59]
Si(111)-A1 √3	1040	0.058	7.6	10.5	1.85	2.2	SchwennickeWilliams [60]
Cu(1, 1, 11)	300	0.053	8.7	15	1.95	0.02	Barbier et al. [21]
Cu(1, 1, 13)	285	0.044	10	20	2.12	0.02	Geisen [5,56]
Pt(111)	900	0.020	24	135	2.59	6	HahnKern [61]
Si(113) rotated	1200	0.004	124	3.8×10^{3}	2.92	(27 ± 5) ×	van Dijken, Zandvliet, Poel-
						10 ²	sema [9]

Monte Carlo data confronts approximations

Why Look for Fokker-Planck Equation for TWD?

- Justification/derivation of generalized continuum Wigner surmise (beyond H_{eff} of Richards et al.) since no symmetry basis for *Q* ≠ 1, 2, or 4
- Dynamics: how non-equilibrium TWD (e.g. step bunch) evolves toward equilibrium
- Quench or upquench: sudden change of T does not change A much but changes à (and so *ρ*) considerably
- Connections with other problems, e.g. capture zone distribution (& Heston model of econophysics)

Derivation of Fokker-Planck for TWD

 Start with Dyson Coulomb gas/Brownian motion model: repulsions ∝ 1/(separation) & parabolic well

$$\dot{x}_i = -\gamma x_i + \sum_{i \neq j} \frac{\hat{\varrho}}{x_i - x_j} + \sqrt{\Gamma} \eta$$

• Assume steps beyond nearest neighbors are at integer times mean spacing (cf. Gruber-Mullins) $\tilde{s} = -\kappa s + \rho/s + noise$

 $t \equiv t$

Noise sets time scale.

- Demand self-consistency for width of parabolic confining well: $\kappa \to 2 b_\rho$

$$\frac{\partial P(s,\tilde{t})}{\partial \tilde{t}} = \frac{\partial}{\partial s} \left[\left(2b_{\varrho}s - \frac{\varrho}{s} \right) P(s,\tilde{t}) \right] + \frac{\partial^2}{\partial s^2} [P(s,\tilde{t})] \rightarrow P_{\varrho}(s)$$

Improved tests: Kinetic MC & SOS model

 $E_{barrier} = E_d + m E_a$ breaking m bonds $E_d = 0.9 - 1.1 \text{ eV}; E_a = 0.3 - 0.4 \text{ eV}$ T = 520 - 580 K $\langle \ell \rangle = 4 - 15, 5 \text{ steps}, 10000 \text{ x } L_x$

Fit:

$$\sigma(t) = \sigma_{sat} \sqrt{1 - \exp(-t/\tau)}$$

Expect $\tau \propto exp(E_{barrier}/k_BT)$

Find $E_{\text{barrier}} \approx 1 E_{\text{d}} + 3 E_{\text{a}}$

2 other situations of interest

Step Bunch: initially a delta function

$$P(s,\tilde{t}) \rightarrow \frac{a_{\varrho} s^{\varrho}}{(1-\mathrm{e}^{-\tilde{t}})^{(\varrho+1)/2}} \exp[-s^2 b_{\varrho}/(1-\mathrm{e}^{-\tilde{t}})]$$

Quench or upquench: change from initial ρ_0 to ρ , e.g. change in temperature

$$P(s,\tilde{t}) = \underbrace{a_{\varrho}s^{\varrho}e^{-\tilde{b}_{\varrho}s^{2}}}_{(1-e^{-\tilde{t}}(1-b_{\varrho}/b_{\varrho_{\circ}}))^{\frac{\varrho_{\circ}+1}{2}}}_{1F_{1}}F_{1}\left(\frac{\varrho_{0}+1}{2},\frac{\varrho_{+}1}{2},\frac{\tilde{b}_{\varrho}s^{2}}{1+(b_{\varrho_{\circ}}/b_{\varrho})(e^{\tilde{t}}-1)}\right)$$

Final

Analogies in Econophysics

A Dragulescu & V M Yakovenko: "Probability distribution of returns in the Heston model with stochastic volatility", Quant. Finance 2, 443 ('02)

Consider a stock whose price S_t obeys the stochastic differential equation of Brownian motion.

Volatility \rightarrow stochastic variance obeys a mean-reverting stochastic DE.

The stationary PDF of volatility σ is

$$\Pi_*^{(\sigma)}(\sigma) = \frac{2\alpha^{\alpha}}{\Gamma(\alpha)} \frac{\sigma^{2\alpha-1}}{\theta^{\alpha}} e^{-\alpha\sigma^2/\theta}$$

$$\begin{array}{c} 2\alpha \textbf{-1} \rightarrow \varrho \\ \theta \rightarrow \langle \boldsymbol{\ell}^2 \rangle \end{array}$$

Does growth flux (step motion) alter TWD?

Test: *no* energetic interaction (ρ =2), 150 ML

0.1 ML/s

ML/s

10 ML/s

- Narrower \Rightarrow *effective* repulsion that rises with flux, higher ρ , more Gaussian-like
- Decreased apparent stiffness $\widetilde{\boldsymbol{\beta}}$

20 steps, 1000x200, T=723K, E_d=1.0eV, E_a=0.3eV

Evolution of Island Structures: Simulations of i=1

Circular Islands Mulheran & Blackman, PRB 53 (96) 10261

0.15 ML

0.20 ML

Island Size Scaling, stable config *i* Amar & Family, PRL 74 (95) 2066

Dynamic scaling assumption

Theory of CZ size distributions in growth, Mulheran & Robbie, EPL 49(00)617

Wigner distribution $P_{\mathcal{O}}(s)$ fits much better than M&R theory

Island size distribution not so informative

Scale invariance in thin film growth: InAs quantum dots on GaAs(001)

AFM, 1.68 ML, 350x350nm², 500°C

M. Fanfoni *et al.*, PRB **75** (' 07) xxx

Why it works: Phenomenological theory

CZ does "random walk" with 2 competing effects on *ds/dt*:

- 1] Neighboring CZs hinder growth \Rightarrow external pressure, repulsion *B* leads to force –*KBs* Also noise η
- 2] Non-symmetric confining potential, new island nucleated with large size so force stops fluctuations of CZ to tiny values In Dyson model, logarithmic interaction, so +K()/s
- 3] Can argue in 2D that () is i + 1using critical density $\propto s^i$, # sites visited in lifetime $\propto s^1$ entropy \propto - product s^{i+1} , & force $-\partial$ (entropy) / ∂s [Also i + 1 in 3D & 4D; but 2(i + 1) in 1D]

$$\begin{split} & \acute{N} = \sigma n N_i = \sigma n^{i+1} \\ & \sigma = D/\ell^{2-d} \quad s \equiv \ell^d \\ & n \propto \ell^2 \approx s^{2/d} \end{split}$$
prod $\propto s^{(2/d)(i+1)}$

- 4] Combine \Rightarrow Langevin eq. $ds/dt = K[(2/d)(i+1)/s Bs] + \eta [d=1,2]$
- 5] Leads to Fokker-Planck eq. with stationary sol'n P_Q(s) cf. AP, HG, & TLE, Phys. Rev. Lett. 95 (05) 246101

Summary (see http://www2.physics.umd.edu/~einstein)

- Steps are useful for many applications, bear on many problems of current interest, and embody fascinating physics
- Sophisticated experiments, with powerful theoretical and computational calculations, allow for quantitative measurements that yield numerical assessment of key parameters and allow prediction of associated phenomena
- TWD of vicinals provides physical entrée to intriguing 1D fermion models & RMT, can connect to many other current physics issues --- universality in fluctuations ---Wigner surmise for 3 special cases based on explicit or implicit symmetry
- Generalized Wigner surmise P_ρ(s) = a s^ρ e^{-bs²} easy to use & describes universal fluctuations ⇒ broad applications
- For TWD width $\rho \Rightarrow$ strength of elastic repulsion
- Fokker-Planck "derivation" & application to relaxation of steps from arbitrary initial configurations
- Focus on distribution of areas of capture zones, rather than island sizes; • $rac{1}{2}$ critical nucleus size *i* and spatial dimension of best lattice
 - $\rho \Rightarrow$ critical nucleus size *i* and spatial dimension of host lattice