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• Background, terminology, models 
• Different roles of steps; applications in crystal growth, chemistry, nanowires, polymers
• Steps as Brownian strings; seeking signatures of mass transport modes 
• Steps on vicinal surfaces as meandering fermions in (1+1)D...¿interactions?
• Terrace width distributions (TWDs), and what they reveal
• Simple models: mean field & 1D Schrödinger eqn…and their shortcomings
• Relevance of random matrix theory—universal features of fluctuations
• Generalizing the Wigner surmise from symmetry-based: meaning of ·
• Fokker-Planck formulation: study of relaxation to equilibrium
• Growth: TWD narrowing; scaling of capture zones of islands

Prototype systems: Si (111), Cu (001) and (111)



SOS (solid-on-solid) model of vicinals

M. Giesen, Prog. Surf. Sci. (’01)

Al/Si(111) - (√3×√3)R30°, STM

“Maryland notation”

φ

φ is the misorientation angle, fixed
Mean step spacing 〈 〉 ∝ 1/ tan(φ)

Slope m = tan(φ) is a thermodynamic density

E.D. Williams et al.

H = ε Σ〈ij〉 |hi -hj|   integer hi

4ε

4ε

ε

TSK (terrace-step-kink)

Just kinks,
good at low T



Vicinals as growth templates: controlled unidirectional 
defects in step-flow growth (vs. nucleation on flat)
Competition of characteristic lengths for diffusion, nucleation, distance to step

FL
U

X

Nucleation on flat Step flow

Competition

Naito et al., Physica C 305 (’98) 233

AFM of SrTiO3(001)

Irregular borders locked in by 1 ML Step pattern persists



Steps & kinks 
can alter 

chemical activity⇒
applications in 

catalysis

Horvath & Gellman, 
Topics in Catalysis 25 (’03)

R-3-MCHO molecules
on roughened Cu(643)



Enantio-
selectivity at 
chiral metal 

surfaces

Attard, J. Phys Chem B 105 (’01) 3158

Sholl et al.,J. Phys Chem B 105 (’01) 4771

Chiral Pt (643)

D-glucose

L-glucose



Steps as Growth Template 
for Nanowires

Gd disilicide nanowires on Si(111)
11 nm wide
straight, limited by kinks on steps

Himpsel group, Nanotechnology 13 (’02) 545



Steps as polymers in 2D ⇒ non-crossing



Models & Key Energies
Discrete/atomistic → Step Continuum

SOS

Step Continuum

TSK

ε
kink energy

energy of unit height difference between NN sites
+ hopping barriers, attach/detach rates

A

Γ

β~ step stiffness  β(θ) + β′′(θ): inertial “mass” of step

strength of step-step repulsion A/ 2

rate parameter, dependent on 
microscopic transport mechanism

Main test: Self-consistency of these 3 parameters to explain many phenomena
Coarse-grain: Relation of 3 nano/mesoscale parameters to atomistic energies??



Experimental Probes of Vicinals
• Diffraction of electrons or atoms                  

k-space, sensitive to order

• STM (scanning tunneling microscope)
atomic resolution, but scanning

• LEEM (low-energy electron microscope)
nanoscale resolution, real-time image, expensive

• REM (reflection electron microscopy)
nanoscale resolution in 1 direction, real-time image 

800Å × 200Å

All photos are of Si (111)



Steps as Brownian strings: Langevin “capillary wave” approach

e.g. heal curvature

to deal with   y∆
Single value of y

saturation Gq ⇒ stiffness

τq
-1 ⇒ transport mode & associated Γ 

or early-time exponent ⇒ "          &            "



Island ─ Adatom or Vacancy ─ Defined by 
Nearly Circular Step!

PD

TD

E C

vacancy island



Isolated Step Fluctuations: Signatures of 
Dominant Mass Transport Mechanism

E C  o r A D  (A D L ) T D  (D L ) P D

L im ited  by A t/de /tach  a t s tep T errace  d iffu 'n Step-edge diffu'n
F luc tua tion  hea ling
tim e--w id th  y y 2 y 3 y 4

S ize  dep . o f is land
d iffu 'n , R  ∝ √area R  -1 R  -2 R  -3

w 2(t) t  1 /2 t  1 /3 t  1 /4

Is land  a rea  decay t  1 t  2 /3 N /A

E vo lu tion  o f a tom /
vacancy is land

S hrink  to  round
po in t (Grayson's Thm)

W orm like ,
p inch -o ff

H e igh t decay o f
cone  ["face t"] t  1 /4 t  1 /4 N /A

H e igh t decay o f
pa rabo lo id  [rough ] t  1 /3 t  2 /5 N /A



Terrace-Width Distribution P(s) for Special Cases
"Perfect Staircase"  = 〈 〉 ≡ 1/tan φ s ≡ /〈 〉

〈 〉 is only characteristic length in x Straight steps, randomly placed
Geometric distribution: P(s) = e-s

Scaled TWD: P(s) indep. of 〈 〉
Meandering
steps

No step 
crossings

TSK
terrace-step-kink
kink energy ε "static correlation"   〈xn(y) - xn-1(y) - 〈 〉〉y,n

"entropic"
(& energetic)
repulsion

"Maryland
notation"

x

z
y 

0                         1                          2        s
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→ tWorld lines of 
fermions
evolving in 1D

•••••••••• •

↑

•••• • ↑
→ “mass”



Origin of elastic (dipolar) step repulsions
•Frustration of relaxation of terrace atoms between steps

•Energy/length: U( ) = A/ 2 (Same y for points on two interacting
steps separated by along x ⇒ "instantaneous")

•Metallic surface states ⇒ additional oscillatory term in U

Importance of step repulsions
•1 of 3 parameters of continuum step model of vicinals
•Determine 2D pressure
•Determine morphology: e.g. bunch or pair
•Drives kinetic evolution in decay
•Elastic and entropic repulsions ∝ -2

⇒ universality of 〈 〉-1P( ) vs. s≡ /〈 〉 so P(s;〈 〉) → P(s) scaling

frustrated relaxation ⇒ repulsion



Essence of Gruber-Mullins (MF)

2〈ℓ〉

Single active step meanders between 2 steps separated by twice mean spacing.

Fermion evolves in 1D between 2 fixed infinite barriers 2〈ℓ〉 apart.



Particle in 1D Box vs. Exact
1-D Schrödinger eqn

∝ sin2(πs/2)Ã = 0

∝ e –(s-1)2/2w2Ã = 2

• Free fermions: repulsion just entropic

• U( ) = A/ 2 ,  large A

A enters only as Ã:

Exact

Exact

0 2〈ℓ〉

const. changes with approximation 



Steps in 2D → fermion worldlines in 1D
• Step non-crossing ⇒fermions or hard bosons
• Energy ∝ path-length × free energy/length β,        

expand ⇒ 1D Schrödinger eqn., m→ stiffness β
• Analogous to polymers in 2D (deGennes, JCP ’68)
• Only dependence on A via Ã ≡ βA/(kBT)2 /〈 〉

• Mean-field (Gruber-Mullins): 1 active step, 0≤s≤2
– Ã =0: particle in box, P(s) = ψ0

2 ∝ sin2(πs/2),                  
ε0 ∝ T2/β〈 〉2 → entropic repulsion

– Ã ≥1½: parabolic well, P(s) ∝ exp[-(s-1)2/2wM
2], wM ∝ Ã-1/4〈 〉

• Ã →∞: “phonons”, variance                                             
of P(s) is 2wM

2, not wM
2

~

~



Wigner Surmise (WS) for TWD (terrace-width distribution)

U( ) = A/ 2
s

WS → GWS







Examples of NN spacing distributions with GOE (∑ =1)



RMT & financial data: Cross-correlations of 
price fluctuations of different stocks, using P1(s)

V. Plerou, …, T.  Guhr, and H. E. Stanley, PRE 66 (’02) 066126

∆t =1 day



Headway statistics of buses in Mexican cities, using P2(s)
M. Krbálek & P. Šeba, J. Phys. A 36 (’03) L7; 33 (’00) L229

Headway: time interval ∆t between bus and next bus passing the same point
No timetable for buses in Mexico; independent drivers seek to optimize # riders/fares

P(s) = e-s, Poisson

Puebla, no correlations

cellular automaton model
(modified Nagel–Schreckenberg)

Cuernavaca
Mexico City

P2(s)

P2(s)

Info re when buses pass 
certain points sold to drivers

WS P2(s) better than CA because in CA, correlations only between NNs

data



Modelling gap-size distribution of parked cars using RMT
A.Y. Abul-Magd, Physica A 368 (’06) 536

S. Rawal, G.J. Rodgers, 
Physica A 346 (’05) 621

P2(s)

Unlike random sequential process, Coulomb gas extends repulsion beyond geometric size.
s



Wigner Surmise (WS) for TWD (terrace-width distribution)

U( ) = A/ 2
s

WS → GWS



Experiments measuring variances of TWDs

Comparison of variance of P(s) vs. Ã computed with Monte Carlo:
GWS does better, quantitatively & conceptually, than any other approximation

Hailu Gebremariam et al., Phys. Rev. B 69 ('04)125404



Monte Carlo data confronts approximations
ρ

ρ

Dots: MC data
Line: Wigner
Dashes: Gruber-Mullins (mean field)
Long-short [-short]: Grenoble 

(no entropic int’n, EA)
Long-long-short-short: Saclay

(continuum roughening, R)

EA

R

GM
Wigner

NN EA
all

GM

Lower plot highlights differences:
remove ρ-1 asymptotic decay

Wigner is best, quantitatively
and conceptually

Hailu Gebremariam et al., 
Phys. Rev. B 69 ('04)125404



Why Look for Fokker-Planck Equation for TWD?

• Justification/derivation of generalized continuum Wigner 
surmise (beyond Heff of Richards et al.) since no 
symmetry basis for · ≠ 1, 2, or 4

• Dynamics: how non-equilibrium TWD (e.g. step bunch) 
evolves toward equilibrium

• Quench or upquench: sudden change of T does not 
change A much but changes Ã (and so ·) considerably

• Connections with other problems, e.g. capture zone 
distribution (& Heston model of econophysics)



Derivation of Fokker-Planck for TWD

• Start with Dyson Coulomb gas/Brownian motion model: 
repulsions ∝ 1/(separation) & parabolic well

• Assume steps beyond nearest neighbors are at integer 
times mean spacing (cf. Gruber-Mullins)
ś = -κs + ρ/s + noise

• Demand self-consistency for width of parabolic 
confining well: κ → 2bρ

Noise sets time scale.
2/t t≡ Γ

1/τ

→ P·(s)0   =



Check of Fokker-Planck with Monte Carlo

〈ℓ〉 = 6
N = 4
Ly = 200

= 〈s2〉 - 〈s〉2 from P(s,t), 
analytic solution of Fokker-
Planck

δ(s-1) P·(s)

cleaved → equilibrium TSK model (no adatom carriers)

Best match for 1.4  FP time units = 103 MCS

As good agreement as might expect:
1) Metropolis rather than kinetic MC
2) Just NN step interactions in MC
3) Discrete at early times



Improved tests: Kinetic MC & SOS model

m=3

m=2

m=1

Ebarrier = Ed + m Ea

T = 520 - 580 K
Ed = 0.9 -1.1 eV; Ea = 0.3 - 0.4 eV

〈 〉 = 4-15, 5 steps, 10000 x Lx

σ/〈 〉

t

( ) 1 exp( / )satt tσ τσ= − −

Fit:

Expect τ ∝ exp(Ebarrier/kBT)

breaking m bonds

Find Ebarrier ≈ 1 Ed + 3 Ea



2 other situations of interest

Step Bunch: initially a delta 
function

Quench or upquench: change from initial ρ0
to ρ, e.g. change in temperature

Final



Analogies in Econophysics
A Dragulescu & V M Yakovenko: “Probability distribution of returns in 
the Heston model with stochastic volatility”, Quant. Finance 2, 443 (’02)

Consider a stock whose price St
obeys the stochastic differential 
equation of Brownian motion.

Volatility → stochastic variance     
obeys a mean-reverting 
stochastic DE.

The stationary PDF of volatility σ is

2α-1 → ·

θ → 〈ℓ2〉

α = 1.3
→ρ = 1.6

1
2

bρ

ρ
−

→s



• Narrower ⇒ effective repulsion that rises 
with flux, higher ·, more Gaussian-like

• Decreased apparent stiffness β

0.1 ML/s

1 ML/s

10 ML/s

Does growth flux (step motion) alter TWD?

P( )

·=2

·≈5

Test: no energetic interaction (·=2), 150 ML

·≈4

20 steps, 1000x200, T=723K, Ed=1.0eV, Ea=0.3eV

Gaussian fits,
Wigner not 

shown

~



Evolution of Island Structures: Simulations of i=1 
Circular Islands Mulheran & Blackman, PRB 53 (96) 10261

0.05 ML 0.10 ML

0.15 ML 0.20 ML

Estimated size of island based
on Voronoi polygon CZ ∝
actual size of island



Island Size Scaling, stable config i Amar & Family, PRL 74 (95) 2066 

In contrast to Point-Island Rate Eqn for large D/F

i+1 atoms: smallest stable island 
critical nucleus

Dynamic scaling assumption
Bartelt
& Evans



Scaling During Growth in 1D: Going Beyond Mean-Field 
Rate Eqns. Blackman & Mulheran, PRB 54 (96) 11681

d = 1 ⇒ ∑ = 2(i + 1)
P4(s) fits numerical data at least as well 
as B&M’s complicated theory 
expression (not expressible succinctly)

Symbols denote various D/F & θ

BM theoryi = 1

P4(s)

Distribution of gaps 
between point islands



Theory of CZ size distributions in growth, Mulheran & Robbie, EPL 49(00)617

i = 0

d = 2 ⇒ ∑ = i + 1

i = 1

∑ = 1

M&R theory

∑ = 2

M&R theory

Wigner distribution P∑(s) fits 
much better than M&R theory

Island size distribution not so informative

i = 0 i = 1



Exp’t: Pentacene/SiO2 Pratontop et al.,PRB 69 (04) 165201

Π2·+α0(s) ≈ P·(s)

Gamma func’n

Why Gamma, not Wigner?

CZ behaves better

but Π more skewed



Scale invariance in thin film growth: InAs quantum dots on GaAs(001)
M. Fanfoni et al., PRB 75 (’ 07) xxx

Q dot volume
distribution

AFM, 1.68 ML, 350x350nm2, 500°C

0                         1                         2           3      s

α

0.2

0.6

1.0 Q dot volume
Voronoi areas

Π4.1(s)

P2(s)



Why it works: Phenomenological theory
CZ does “random walk” with 2 competing effects on ds/dt:

1]  Neighboring CZs hinder growth ⇒ external pressure, repulsion B
leads to force –KBs Also noise η

2]  Non-symmetric confining potential, new island nucleated with 
large size so force stops fluctuations of CZ to tiny values
In Dyson model, logarithmic interaction, so +K (  ) /s

3]  Can argue in 2D that (  ) is i + 1
using critical density ∝ si , # sites visited in lifetime ∝ s1

entropy ∝ - product si+1, & force –∂ (entropy) / ∂s
[Also i + 1 in 3D & 4D; but 2(i + 1) in 1D]

4]  Combine ⇒ Langevin eq. ds/dt = K [(2/d)(i +1)/s - Bs ] + η [d=1,2]

5]  Leads to Fokker-Planck eq. with stationary sol’n P∑(s)
cf. AP, HG, & TLE, Phys. Rev. Lett. 95 (05) 246101

Ń=σnNi = σni+1

σ=D/ 2-d s≡ d

n ∝ 2 ≈ s2/d

prod ∝ s(2/d)(i+1)



Summary (see http://www2.physics.umd.edu/~einstein)
• Steps are useful for many applications, bear on many problems of current interest, 

and embody fascinating physics

• Sophisticated experiments, with powerful theoretical and computational 
calculations, allow for quantitative measurements that yield numerical assessment 
of key parameters and allow prediction of associated phenomena

• TWD of vicinals provides physical entrée to intriguing 1D fermion models & RMT, 
can connect to many other current physics issues --- universality in fluctuations ---
Wigner surmise for 3 special cases based on explicit or implicit symmetry       

• Generalized Wigner surmise P∑(s) = a s∑ e-bs2 easy to use & describes universal 
fluctuations ⇒ broad applications

• For TWD width ∑ ⇒ strength of elastic repulsion

• Fokker-Planck “derivation” & application to relaxation of steps from arbitrary initial configurations

• Focus on distribution of areas of capture zones, rather than island sizes;                 
∑ ⇒ critical nucleus size i and spatial dimension of host lattice


