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• Steps on vicinal surfaces as meandering fermions in (1+1)D...¿interactions?
• Reminder re terrace width distributions (TWDs), and what they reveal
• Relevance of random matrix theory— universal features of fluctuations
• Generalizing the Wigner surmise P(s) = a s∑ e-bs2 from symmetry-based: meaning of ·
• Possible corrections due to short-range effects
• Fokker-Planck formulation: study of relaxation to equilibrium
• Scaling of capture zones of islands, quantum dots, etc.



Terrace-Width Distribution P(s) for Special Cases
"Perfect Staircase"  l = 〈l〉 ≡ 1/tan φ s ≡ l /〈l〉 Straight steps, randomly placed

Geometric distribution: P(s) = e-s

Scaled TWD: P(s) indep. of 〈l〉Meandering
steps

No step 
crossings

TSK
terrace-step-kink
kink energy ε "static correlation"   〈xn(y) - xn-1(y) - 〈l〉〉y,n
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Wigner Surmise (WS) for TWD (terrace-width distribution)

U(l) = A/l2
s

WS → GWS



OTHER APPLICATIONS of RMT
• Localization theory--ensemble of impurity potentials • Transport in quasi-1D wires
• Fluctuations of persistent currents (esp. for non-interacting electrons)       • Level spectra of small 
metallic particles & their response to EM field       • Atomic nuclei, atoms and molecules      • Classical 
chaos (e.g. Bunimovich stadium, Sinai billiard)    • QCD, supersymmetry, 2D quantum gravity

Physical Ideas Behind Application of Random Matrices
cf. T. Guhr, A. Müller-Groeling, H. A. Weidenmüller, Phys. Reports 299 ('98) 189 [cond-mat/97073]

Standard stat mech: ensemble of identical physical systems with same Hamiltonian but 
different initial conditions; Wigner: ensemble of dynamical systems governed by different H's 
with some common symmetry property, seeking generic properties of ensemble due to symmetry.

3 generic ensembles (Dyson) [with Gaussian weighting or circular]:

∑ = 1 orthogonal Hmn = Hnm = H*
mn time-reversal invariant with rotational symmetry

∑ = 2 unitary Hmn =  H†
mn time reversal violated (e.g. electron in B)

∑ = 4 symplectic H = H(0)
mn          – iΣj=1

3H(j)
mnσj:   σj: Pauli spin matrices; H(0) real sym, 

H(j) real asym time-reversal invariant with 1/2-integer spin & broken rotational sym

GRMT useless for average quantities, but fluctuations for large number of levels 
becomes independent of the form of the level spectrum and of the Gaussian weight 
factors, and attains universal validity; can also derive from maximum entropy
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Wigner’s surmise: approximate N×N random matrices, N → ∞ , by 2×2 matrices.

3
^

splitting

[4 random elements]



from F. Haake, Quantum Signatures of Chaos (’92,’01)

Difference between exact solution & Wigner surmise for NN-spacing distribution
Wigner surmise [distribution] is an excellent approximation but not exact!

∑ = 1

∑ = 2

∑ = 4



Examples of NN spacing distributions with GOE (∑ =1)



Headway statistics of buses in Mexican cities, using P2(s)
M. Krbálek & P. Šeba, J. Phys. A 36 (’03) L7; 33 (’00) L229

Headway: time interval ∆t between bus and next bus passing the same point
No timetable for buses in Mexico; independent drivers seek to optimize # riders/fares

P(s) = e-s, Poisson

Puebla, no correlations

cellular automaton model
(modified Nagel–Schreckenberg)

Cuernavaca
Mexico City

P2(s)

P2(s)

Info re when buses pass 
certain points sold to drivers

WS P2(s) better than CA because in CA, correlations only between NNs

data



Modelling gap-size distribution of parked cars using RMT
A.Y. Abul-Magd, Physica A 368 (’06) 536

S. Rawal, G.J. Rodgers, 
Physica A 346 (’05) 621

P2(s)

Unlike random sequential process, Coulomb gas extends repulsion beyond geometric size.
s



Wigner Surmise (WS) for TWD (terrace-width distribution)

U(l) = A/l2
s

WS → GWS
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Miraculously, Ψ0 of
C-S models corresponds
to that of RMT for cases
∑ = 1, 2, & 4.  But no 
need for ∑ = 1 + (1+4Ã)1/2

to have these values.



Experiments measuring variances of TWDs

Comparison of variance of P(s) vs. Ã computed with Monte Carlo:
GWS does better, quantitatively & conceptually, than any other approximation

Hailu Gebremariam et al., Phys. Rev. B 69 ('04)125404



Monte Carlo data confronts approximations
ρ

ρ

Dots: MC data
Line: Wigner
Dashes: Gruber-Mullins (mean field)
Long-short [-short]: Grenoble 

(no entropic int’n, EA)
Long-long-short-short: Saclay

(continuum roughening, R)

EA

R

GM
Wigner

NN EA
all

GM

Lower plot highlights differences:
remove ∑-1 asymptotic decay

Wigner is best, quantitatively
and conceptually

Hailu Gebremariam et al., 
Phys. Rev. B 69 ('04)125404



What happens when steps are allowed to touch?
Effective attraction: · = 2 → · < 2, finite-size dep.

Kinetic MC on SOS

Metropolis MC on TSKP(s)

Ea = 0.35 eVEd = 1 eVT = 580 K

P(s)

L 6       8      10     12      16
∑(L)      1      1.3    1.3    1.4    1.45
Ã -0.25   -0.23   -0.23   -0.21   -0.20

Rajesh Sathiyanarayanan, Ajmi BH Hamouda



NNI (NT) and NN2 Chains    
Kwangmoo Kim

• Map steps onto 1D free-fermions

• Overlapping steps (NN2) can be mapped onto Nearest-
Neighbor Included (NNI) chain, then shifted and rescaled

NNE : S.-A. Cheong & C. L. Henley (unpublished); S.-A. Cheong, dissertation

2L〈 〉 =

3L〈 〉 =



Why Look for Fokker-Planck Equation for TWD?

• Justification/derivation of generalized continuum Wigner 
surmise since no symmetry basis for · ≠ 1, 2, or 4

• Dynamics: how non-equilibrium TWD (e.g. step bunch) 
evolves toward equilibrium

• Quench or upquench: sudden change of T does not 
change A much but changes Ã (and so ·) considerably

• Connections with other problems, e.g. capture zone 
distribution (& Heston model of econophysics)



Derivation of Fokker-Planck for TWD

• Start with Dyson Coulomb gas/Brownian motion model: 
repulsions ∝ 1/(separation) & parabolic well

• Assume steps beyond nearest neighbors are at integer 
times mean spacing (cf. Gruber-Mullins)
ś = -κs + ρ/s + noise

• Demand self-consistency for width of parabolic 
confining well: κ→ 2bρ

Noise sets time scale.
2/t t≡ Γ l%

1/τ

→P·(s)0   =



Check of Fokker-Planck with Monte Carlo

〈ℓ〉 = 6
N = 4
Ly = 200

= 〈s2〉 - 〈s〉2 from P(s,t), 
analytic solution of Fokker-
Planck

δ(s-1) P·(s)

cleaved → equilibrium TSK model (no adatom carriers)

Best match for 1.4  FP time units = 103 MCS

As good agreement as might expect:
1) Metropolis rather than kinetic MC
2) Just NN step interactions in MC
3) Discrete at early times



Improved tests: Kinetic MC & SOS model

m=3

m=2

m=1

Ebarrier = Ed + m Ea

T = 520 - 580 K
Ed = 0.9 -1.1 eV; Ea = 0.3 - 0.4 eV

〈l〉 = 4-15, 5 steps, 10000 x Lx

σ/〈l〉

t

( ) 1 exp( / )satt tσ τσ= − −

Fit:

Expect τ ∝ exp(Ebarrier/kBT)

breaking m bonds

Find Ebarrier ≈ 1 Ed + 3 Ea



Behavior of τ in SOS via KMC: Ramp Ed, Ea, T, 〈l〉

m=3

m=2

m=1

Ebarrier = 1 Ed + 3 Ea

T = 580 K

Ed = 0.9, 0.95, 1.0, 1.05, 1.1 eV

fix Ea = 0.35 eV

Ea = 0.3, 0.32, 0.35, 0.38, 0.4 eV

fix Ed = 1.0 eV

τ

0.99±0.02

2.95±0.10

Ramp T (520→580K) with Ea=0.3eV, Ed=1.0eV
⇒ activation energy = (0.989 ±0.005)(Ed+3Ea)

Kink-antikink creation  
(edge detachment)
is rate-limiting!

τ=〈l〉2/Γ, ramp 〈l〉2: slope OK (18% below expected)

Ramp EaRamp Ed



Further checks to confirm that m=3 (kink-antikink creation) determines rate
Main graph: 
Evolution of 3 different initial 
conditions: straight, “decimated” , 
and crenelated.  Comparable 
results, even though initial burst 
atoms from crenelated. 

Inset: Surface azimuthally misoriented,
5 forced kinks in 104 sites. Kinks
initially 2000 sites apart, as before.  
With m=3 moves frozen, slower.

Higher moments, not just variance, 
consistent with analytic predictions 
from F-P (characterized in detail)!



2 other situations of interest

Step Bunch: initially a delta 
function

Quench or upquench: change from initial ρ0
to ρ, e.g. change in temperature

Final



• Narrower ⇒ effective repulsion that rises 
with flux, higher ·, more Gaussian-like

• Decreased apparent stiffness β

0.1 ML/s

1 ML/s

10 ML/s

Does growth flux (step motion) alter TWD?

l

P(l)

·=2

·≈5

Test: no energetic interaction (·=2), 150 ML

·≈4

20 steps, 1000x200, T=723K, Ed=1.0eV, Ea=0.3eV

Gaussian fits,
Wigner not 

shown

~



…or etching ?  (non-equilibrium steady state)
from S. P. Garcia, H. Bao, & M. A. Hines, “Effects of Diffusional Processes on Crystal 
Etching: Kinematic Theory (KT) Extended to 2D,” J. Phys. Chem. B 108 (2004) 6062



Description of deposition and island growth

J.W. Evans et al., Surf. Sci. Rept. 61 (’06) 1

i+1 atoms: smallest stable island:  critical nucleus
So i is size of largest unstable cluster

▪ Atoms deposited randomly

▪ Then diffuse till they meet

▪ Nucleate island, which grows

▪ But small islands can break up



Evolution of 
Island Structures: 

Simulations of 
Circular Islands 
Mulheran & Blackman, 

PRB 53 (’96) 10261

0.05 ML 0.10 ML

0.15 ML 0.20 ML

Can be more fruitful
to study distribution
of areas of capture
zones (CZ) 
[Voronoi cells] than 
of island sizes!



CZ distribution reminiscent of TWD (terrace-width distrib’n) on vicinals!

PCZ(s)

Mulheran & Robie, EPL 49 (’00) 617

their theory

• Power-law rise (from 0), Gaussian decay
• Skewed, unlike Gaussian, but less so than popular gamma function
• Power-law exponent ∑ (related to TWD variance) has specific physical

meaning for TWD, for CZ also?? 

Giesen & TLE, Surf. Sci. 449 (’00) 191
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Scaling During Growth in 1D: Going Beyond Mean-Field 
Rate Eqns. Blackman & Mulheran, PRB 54 (96) 11681

d = 1 ⇒ ∑ = 2(i + 1)
P4(s) fits numerical data at least as well 
as B&M’s complicated theory 
expression (not expressible succinctly)

Symbols denote various D/F & θ

BM theoryi = 1

P4(s)

Distribution of gaps 
between point islands



Theory of CZ size distributions in growth, Mulheran & Robbie, EPL 49(00)617

i = 0

d = 2 ⇒ ∑ = i + 1

i = 1

∑ = 1

M&R theory

∑ = 2

M&R theory

Wigner distribution P∑(s) fits 
much better than M&R theory

Island size distribution not so informative

i = 0 i = 1



Why it works: Phenomenological theory
CZ does “random walk” with 2 competing effects on ds/dt:

1] Neighboring CZs hinder growth ⇒ external pressure
leads to force opposing large s        
Also noise since atom can go to “wrong” island

2] Non-symmetric confining potential, newly nucleated
island has non-tiny CZ, comparable to neighbors so 
force stops fluctuations of CZ to tiny values

3] Nucleation rate 
∝ adatom density x density of critical nuclei
∝ (adatom density)(i + 1) [Walton relation]

4] New CZ in region of very small CZs will have size 
comparable to those nearby, so very small also

5] Combine to Langevin eq. ds/dt = K [(2/d)(i + 1)/s - Bs ] + η
Leads to Fokker-Planck eq. 
with stationary sol’n P∑(s) 
cf. AP, HG, & TLE, PRL 95 (’05) 246101
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Why it works: Phenomenological theory
CZ does “random walk” with 2 competing effects on ds/dt:

1]  Neighboring CZs hinder growth ⇒ external pressure, repulsion B
leads to force –KBs Also noise η

2]  Non-symmetric confining potential, new island nucleated with 
large size so force stops fluctuations of CZ to tiny values
In Dyson model, logarithmic interaction, so +K (  ) /s

3]  Can argue in 2D that (  ) is i + 1
using critical density ∝ si , # sites visited in lifetime ∝ s1

entropy ∝ - product si+1, & force –∂ (entropy) / ∂s
[Also i + 1 in 3D & 4D; but 2(i + 1) in 1D]

4]  Combine ⇒ Langevin eq. ds/dt = K [(2/d)(i +1)/s - Bs ] + η [d=1,2]

5]  Leads to Fokker-Planck eq. with stationary sol’n P∑(s)
cf. AP, HG, & TLE, Phys. Rev. Lett. 95 (05) 246101

Ń=σnNi = σni+1

σ=D/l2-d s≡ld

n ∝ l2 ≈ s2/d

prod ∝ s(2/d)(i+1)



Applications to actual (not MC) experiments

Pentacene/SiO2

Pentacene-PentaceneQuinone

Membrane area fluctuation in lipid bilayer

Alq3 on passivated Si(100)

InAs quantum dots on GaAs(001)



Exp’t: Pentacene/SiO2 Pratontop et al., 69 (’04) 165201

CZ behaves better
than ISD

P9(s)

P6(s)

s

CZ area distribution
G20

G14

For large ∑ little difference in fit quality with GWS, Gamma or Gaussian.
But notable difference in philosophy and what one learns!

G2·+α0(s) ≈ P·(s) but G more skewedGα



Scale invariance in thin film growth: InAs quantum dots on GaAs(001)
M. Fanfoni et al., PRB 75 (’07) 245312

Q dot volume
distribution

AFM, 1.68 ML, 350x350nm2, 500°C

0                         1                         2           3      s

α

0.2

0.6

1.0 Q dot volume
Voronoi areas

G4.1(s)

P2(s)



W. Shinoda & S. Okazaki, JCP 109 (’98) 1517

Membrane area fluctuation in lipid bilayer: Voronoi analysis

P4 (s)

Voronoi tessellation for x-y projection 
of centers of mass of lipid molecules 

in upper half of bilayer

Distribution of area of triangle formed by 3 
adjacent lipid molecules.

Dashed lines in inset show triangles analyzed.



5 nm film Alq3 on passivated Si(100), Ts = 398K
Brinkmann et al., PRB 66 (’02) 165430

tris-(8-hydroxyquinoline) aluminum (III)

G11(s)

P5(s)G10

s



Summary (see http://www2.physics.umd.edu/~einstein)
• TWD of vicinals provides physical entrée to intriguing 1D fermion models & 

RMT, can connect to many other current physics issues --- universality in 
fluctuations --- Wigner surmise for 3 special cases based on explicit or 
implicit symmetry       

• Generalized Wigner surmise P∑(s) = a s∑ e-bs2 easy to use & describes 
universal fluctuations ⇒ broad applications

• For TWD width ∑ = 1 + (1+4Ã)1/2 ⇒ strength of elastic repulsion

• Fokker-Planck derivation & application to relaxation of steps from arbitrary 
initial configurations

• Focus on distribution of areas of capture zones, rather than island sizes;        
∑ = i + 1 [or 2(i+1) in 1D]  ⇒ critical nucleus

TLE, Appl. Phys. A 87 (’07) 375

AP & TLE, PRL 99 (’07) 226102

AP, HG, & TLE, PRL 95 (’05) 246101

ABH, AP, & TLE, JPCM (’08) & preprint


