

Applications of the Generalized Wigner Distribution to Nanostructures on Surfaces: Universal Fluctuation Phenomena
Ted Einstein Physics, U. of Maryland, College Park einstein@umd.edu http://www2.physics.umd.edu/~einstein In collaboration with Alberto Pimpinelli, Rajesh Sathiyanarayanan, Ajmi BHadj Hamouda, Kwangmoo Kim, Hailu Gebremariam, T.J. Stasevich, H.L. Richards, O. Pierre-Louis, S.D. Cohen, R.D. Schroll, N.C. Bartelt, and experimental groups of Ellen D. Williams \& J.E. Reutt-Robey at UM, M. Giesen \& H. Ibach at FZ-Jülich, \& J.-J. Métois at Marseilles

- Steps on vicinal surfaces as meandering fermions in (1+1)D...¿interactions?
- Reminder re terrace width distributions (TWDs), and what they reveal
- Relevance of random matrix theory—universal features of fluctuations
- Generalizing the Wigner surmise $P(s)=a s^{\varrho} e^{-b s^{2}}$ fromsymmetry-based: meaning of ϱ
- Possible corrections due to short-range effects
- Fokker-Planck formulation: study of relaxation to equilibrium
- Scaling of capture zones of islands, quantum dots, etc.

Terrace-Width Distribution $P(s)$ for Special Cases
"Perfect Staircase" $\ell=\langle\ell\rangle \equiv 1 / \tan \phi \quad s \equiv \ell /\langle\ell\rangle$
Straight steps, randomly placed

Wigner Surmise (WS) for TWD (terrace-width distribution)

Generalizing from the special cases:
WS \rightarrow GWS

- The three special cases correspond to $\varrho=1,2$, and 4 .
- \tilde{A} and ϱ are related by: $\tilde{A}=(\varrho-2) \varrho / 4 ; \quad \varrho=1+\sqrt{1+4 \tilde{A}}$
- Simplest interpolation expression:

$$
P_{\varrho}(s)=a_{\varrho} s^{\varrho} \exp \left(-b_{\varrho} s^{2}\right)
$$

- Two conditions on $P_{e}(s)$: normalization \& unit mean
\Rightarrow values of a_{e}, b_{e} (in terms of Γ functions),

Physical Ideas Behind Application of Random Matrices

cf. T. Guhr, A. Müller-Groeling, H. A. Weidenmüller, Phys. Reports 299 ('98) 189 [cond-mat/97073]

> Standard stat mech: ensemble of identical physical systems with same Hamiltonian but different initial conditions; Wigner: ensemble of dynamical systems governed by different H's with some common symmetry property, seeking generic properties of ensemble due to symmetry.

3 generic ensembles (Dyson) [with Gaussian weighting or circular]:
$\varrho=1$ orthogonal $H_{m n}=H_{n m}=H_{m n}^{*}$ time-reversal invariant with rotational symmetry
$\varrho=2$ unitary $H_{m n}=H^{\dagger}{ }_{m n}$ time reversal violated (e.g. electron in B)
e $=4$ symplectic $H=H^{(0)}{ }_{m n}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)-i \sum_{j=1}{ }^{3} H^{(j)}{ }_{m n} \sigma_{\mathrm{j}}$: $\quad \sigma_{\mathrm{j}}$: Pauli spin matrices; $H^{(0)}$ real sym, $H^{(j)}$ real asym time-reversal invariant with 1/2-integer spin \& broken rotational sym

GRMT useless for average quantities, but fluctuations for large number of levels becomes independent of the form of the level spectrum and of the Gaussian weight factors, and attains universal validity; can also derive from maximum entropy

OTHER APPLICATIONS of RMT

- Localization theory--ensemble of impurity potentials - Transport in quasi-1D wires - Auctuations of persistent currents (esp. for non-interacting electrons) • Level spectra of small metallic particles \& their response to EM field • Atomic nuclei, atoms and molecules •Classical chaos (e.g. Bunimovich stadium, Sinai billiard) • QCD, supersymmetry, 2D quantum gravity

Wigner's surmise: approximate $N \times N$ random matrices, $N \rightarrow \infty$, by 2×2 matrices.

Wigner's argument re Surmise

GOE (orthogonal): real, symmetric $H, N \times N$ matrix,

$$
p(H) \sim \exp \left(-\frac{N}{\lambda_{0}^{2}} \operatorname{tr}\left(H^{2}\right)\right), \quad N \rightarrow \infty
$$

Opposite limit: $N=2$, with ${ }_{\wedge}^{3}$ random elements h_{11}, h_{12}, \& h_{22}

$$
H=\left(\begin{array}{ll}
h_{11} & h_{12} \\
h_{12} & h_{22}
\end{array}\right) \quad \text { splitting }
$$

Let $\bar{h} \equiv\left(h_{11}+h_{22}\right) / 2, u \equiv h_{11}-h_{22}, \& s \equiv\left(u^{2}+4 h_{12}^{2}\right)^{1 / 2}$.

- Eigenvalues of H are $E_{2,1}=\bar{h} \pm s / 2$ [independent of u] $-h_{12}= \pm\left(s^{2}-u^{2}\right)^{1 / 2}$
$-\mathrm{d} h_{11} \mathrm{~d} h_{22}=\mathrm{d} \bar{h} \mathrm{~d} u, \quad \mathrm{~d} \bar{h} \mathrm{~d} s=\mathrm{d} E_{1} \mathrm{~d} E_{2}$.

$$
\begin{aligned}
p\left(E_{1}, E_{2}\right) & \sim \exp \left(-\frac{2\left(E_{1}^{2}+E_{2}^{2}\right)}{\lambda_{0}^{2}}\right) \int_{-s}^{s} \mathrm{~d} u\left|\frac{\mathrm{~d} h_{12}}{\mathrm{~d} s}\right| \\
& =\frac{\pi}{2}\left(E_{2}-E_{1}\right) \exp \left(-\frac{2\left(E_{1}^{2}+E_{2}^{2}\right)}{\lambda_{0}^{2}}\right) \\
& \equiv \frac{\pi s}{2} \exp \left(-\frac{\left.4 \bar{h}^{2}+s^{2}\right)}{\lambda_{0}^{2}}\right)
\end{aligned}
$$

$\Rightarrow p(s)=\int_{-\infty}^{\infty} \mathrm{d} \bar{h} p\left(E_{1}, E_{2}\right) \sim s \exp \left(-s^{2} / \lambda_{0}^{2}\right)$

Wigner surmise

Exact for $N=2$ and excellent approximation as $N \rightarrow \infty$. For large N, the problem of level crossing $(s \rightarrow 0)$ still reduces to a 2×2 problem near the (usually avoided) degeneracy.
To get $s=0, u$ and h_{12} must vanish simultaneously.
$p(s)=\int \mathrm{d} u \int \mathrm{~d} h_{12} p\left(u, h_{12}\right) \delta\left(s-\left(u^{2}+4 h_{12}^{2}\right)^{1 / 2}\right) \sim s, s \ll 1$
GUE (Gaussian unitary ensemble): H is hermitean, so that h_{12} is complex, and three parameters must vanish simultaneously to get $s=0: \quad$ [4 random elements]

$$
s=\left[\left(h_{11}-h_{22}\right)^{2}+4\left(\Re \mathrm{e} h_{12}\right)^{2}+4\left(\Im \mathrm{~m} h_{12}\right)^{2}\right]^{1 / 2}
$$

Hence, $p(s) \sim s^{2}$, corresponding to a spherical (rather than circular) shell of radius s in parameter space.

From W. Zwerger, "Theory of Coherent Transport," in T. Dittrich, ..., W. Zwerger, Quantum Transport and Dissipation (Wiley-VCH, Weinheim, 1998), chap. 1

Difference between exact solution \& Wigner surmise for NN-spacing distribution Wigner surmise [distribution] is an excellent approximation but not exact! $\mathbf{P}(\mathbf{S})-\mathbf{P W}^{\text {Wigner }}(\mathbf{S})$
from F. Haake, Quantum Signatures of Chaos ('92,'01)

Examples of NN spacing distributions with GOE ($\varrho=1$)

Fig. 1. Nearest-neighbor spacing distribution for the "Nuclear Data Ensemble" comprising 1726 spacings (histogram) versus $s=S / D$ with D the mean level spacing and S the actual spacing. For comparison, the RMT prediction labelled GOE and the result for a Poisson distribution are also shown as solid lines. Taken from Ref. [17.

Fig. 4. The nearest-neighbor spacing distribution versus s (defined as in Fig. 1) for the Sinai billiard. The histogram comprises about 1000 consecutive eigenvalues. Taken from Ref. [5].

Fig. 6. Nearest-neighbor spacing distribution for elastomechanical modes in an irregularly shaped quartz crystal.
T. Guhr et al. / Physics Reports 299 (1998) I89

Headway statistics of buses in Mexican cities, using $P_{2}(s)$

M. Krbálek \& P. Šeba, J. Phys. A 36 ('03) L7; 33 ('00) L229

Headway: time interval Δt between bus and next bus passing the same point No timetable for buses in Mexico; independent drivers seek to optimize \# riders/fares

WS $P_{2}(s)$ better than CA because in CA, correlations only between NNs

Modelling gap-size distribution of parked cars using RMT

A.Y. Abul-Magd, Physica A 368 ('06) 536

Unlike random sequential process, Coulomb gas extends repulsion beyond geometric size.

Wigner Surmise (WS) for TWD (terrace-width distribution)

Generalizing from the special cases: \quad WS \rightarrow GWS

- The three special cases correspond to $\varrho=1,2$, and 4 .

$$
\begin{gathered}
U(\ell)=A / \ell^{2} \\
\tilde{A} \equiv \frac{\tilde{\beta} A}{\left(k_{B} T\right)^{2}}
\end{gathered}
$$

- \tilde{A} and ϱ are related by: $\tilde{A}=(\varrho-2) \varrho / 4 ; \quad \varrho=1+\sqrt{1+4 \tilde{A}}$
- Simplest interpolation expression:

$$
P_{\varrho}(s)=a_{\varrho} s^{\varrho} \exp \left(-b_{\varrho} s^{2}\right)
$$

- Two conditions on $P_{e}(s)$: normalization \& unit mean \Rightarrow values of a_{e}, b_{e} (in terms of Γ functions),

Calogero-like Hamiltonian:

$$
\mathcal{H}=-\sum_{j=1}^{N} \frac{\partial^{2}}{\partial x_{j}^{2}}+2 \frac{\beta}{2}\left(\frac{\beta}{2}-1\right) \sum_{1 \leq i<j \leq N}\left(x_{j}-x_{i}\right)^{-2}+\omega^{2} \sum_{j=1}^{N} x_{j}^{2}
$$

[In the limit $N \rightarrow \infty, \omega \rightarrow 0$; in Calogero $\mathcal{H}, x_{j}^{2} \rightarrow\left(x_{j}-x_{i}\right)^{2}$.]

$$
\Psi_{0}=\prod_{1 \leq i<j \leq N}\left|x_{j}-x_{i}\right|^{\varrho / 2} \exp \left(-\frac{1}{2} \omega \sum_{k=1}^{N} x_{k}^{2}\right)
$$

The ground-state density Ψ_{0}^{2} is recognized as a joint probability distribution function from the theory of random matrices for Dyson's Gaussian ensembles.

Sutherland Hamiltonian:
Miraculously, Ψ_{0} of $\quad \mathcal{H}=-\sum_{j=1}^{N} \frac{\partial^{2}}{\partial x_{j}^{2}}+2 \frac{\beta}{2}\left(\frac{\beta}{2}-1\right) \frac{\pi^{2}}{L^{2}} \sum_{i<j}\left[\sin \frac{\pi\left(x_{j}-x_{i}\right)}{L}\right]^{-2}$
C-S models corresponds to that of RMT for cases
$\varrho=1,2, \& 4$. But no need for $\varrho=1+(1+4 \tilde{A})^{1 / 2}$
to have these values.

$$
\Psi_{0}=\prod_{i<j}\left|\sin \frac{\pi\left(x_{j}-x_{i}\right)}{L}\right|^{\varrho / 2}, \quad x_{j}>x_{i}
$$

$$
\theta_{i} \equiv 2 \pi x_{i} / L \quad \Rightarrow \quad \Psi_{0}^{2}=\prod_{i<j}\left|e^{i \theta_{j}}-e^{i \theta_{i}}\right|
$$

The ground-state density Ψ_{0}^{2} is also a joint probability distribution function from the theory of random matrices, now for Dyson's circular ensembles.

Note that the pair correlation functions and other properties of the ensembles can be evaluated exactly only for the cases $\beta=1,2$, or 4 , corresponding to orthogonal, unitary, or symplectic symmetry of the ensemble.

Comparison of variance of $P(s)$ vs. Ã computed with Monte Carlo:

 GWS does better, quantitatively \& conceptually, than any other approximation Hailu Gebremariam et al., Phys. Rev. B 69 ('04)125404
Experiments measuring variances of TWDs

Vicinal	$T(\mathrm{~K})$	a^{2}	e	A	A_{W} / A_{G}	$A_{\text {W }}(\mathrm{cV} \mathrm{A})$	Experimenters
Pt(110)-(1×2)	298		2.2	0.13	-	$\bar{\beta}=$?	Swamy, Bertel [36]
$\mathrm{Cu}(19,17,17)$	353	0.122	4.1	2.2	0.77	0.005	Geisen [5,54]
Si(lll)	1173	0.11	3.8	1.7	0.96	0.4	Bermond, Metois [55]
$\mathrm{Cu}(1,1,13)$	748	0.091	4.8	3.0	1.27	0.007	Giesen [5,56]
$\mathrm{Cu}(1,7,7)$	306	0.085	5.1	4	1.37	0.004	Geisen [5,54]
$\mathrm{Cu}(111)$	313	0.084	5.0	3.6	1.39	0.004	Geisen [5,54]
$\mathrm{Cu}(111)$	301	0.073	6.0	6.0	1.58	0.006	Geisen [5,54]
$\mathrm{Ag}(100)$	300	0.073	6.4	6.9	1.58	$\bar{\beta}=$?	P. Wang. . Williams
$\mathrm{Cu}(1,1,19)$	320	0.070	6.7	7.9	1.64	0.012	Geisen [5,56]
Si(1 11)-(7×7)	1100	0.068	6.4	7.0	1.67	0.7	Williams [57]
$\mathrm{Si}(111)-(1 \times 1) \mathrm{Br}$	853	0.068	6.4	7.0	1.67	0.1	X.-S. Wang, Williams [58]
Si(1 11)-Ga	823	0.068	6.6	7.6	1.67	1.8	Fujita. . .Ichikawa [59]
Si(1 11)-Al $\sqrt{3}$	1040	0.058	7.6	10.5	1.85	2.2	Schwennicke. . Williams [60]
$\mathrm{Cu}(1,1,11)$	300	0.053	8.7	15	1.95	0.02	Barbier et al. [21]
$\mathrm{Cu}(1,1,13)$	285	0.044	10	20	2.12	0.02	Geisen [5,56]
Pt(1 1 1)	900	0.020	24	135	2.59	6	Hahn. . Kern [61]
Si(1 13) rotated	1200	0.004	124	3.8×10^{3}	2.92	$\begin{aligned} & (27 \pm 5) \times \\ & 10^{2} \end{aligned}$	van Dijken, Zandvliet, Poelsema [9]

Monte Carlo data confronts approximations

Dots: MC data
Line: Wigner
Dashes: Gruber-Mullins (mean field)
Long-short [-short]: Grenoble (no entropic int'n, EA)
Long-long-short-short: Saclay (continuum roughening, R)

Lower plot highlights differences: remove ϱ^{-1} asymptotic decay Wigner is best, quantitatively and conceptually

Hailu Gebremariam et al., Phys. Rev. B 69 ('04)125404

What happens when steps are allowed to touch? Effective attraction: $\varrho=2 \rightarrow \varrho<2$, finite-size dep.

Rajesh Sathiyanarayanan, Ajmi BH Hamouda

NNI (NT) and NN2 Chains

- Map steps onto 1D free-fermions

- Overlapping steps (NN2) can be mapped onto NearestNeighbor Included (NNI) chain, then shifted and rescaled

NNE : S.-A. Cheong \& C. L. Henley (unpublished); S.-A. Cheong, dissertation

Why Look for Fokker-Planck Equation for TWD?

- Justification/derivation of generalized continuum Wigner surmise since no symmetry basis for $\varrho \neq 1,2$, or 4
- Dynamics: how non-equilibrium TWD (e.g. step bunch) evolves toward equilibrium
- Quench or upquench: sudden change of T does not change A much but changes Ã (and so ϱ) considerably
- Connections with other problems, e.g. capture zone distribution (\& Heston model of econophysics)

Derivation of Fokker-Planck for TWD

- Start with Dyson Coulomb gas/Brownian motion model: repulsions $\propto 1 /($ separation) \& parabolic well

$$
\dot{x}_{i}=-\gamma x_{i}+\sum_{i \neq j} \frac{\hat{\varrho}}{x_{i}-x_{j}}+\sqrt{\Gamma} \eta
$$

- Assume steps beyond nearest neighbors are at integer times mean spacing (cf. Gruber-Mullins)

$$
\check{s}=-\kappa s+\rho / s+n o i s e
$$

Noise sets time scale.

$$
\tilde{t} \equiv t /\langle\ell\rangle^{2}
$$

- Demand self-consistency for width of parabolic confining well: $\kappa \rightarrow 2 b_{\rho}$

$$
\frac{\partial P(s, \tilde{t})}{\partial \tilde{t}}=\frac{\partial}{\partial s}\left[\left(2 b_{\varrho} s-\frac{\varrho}{s}\right) P(s, \tilde{t})\right]+\frac{\partial^{2}}{\partial s^{2}}[P(s, \tilde{t})] \rightarrow P_{\varrho}(s)
$$

Check of Fokker-Planck with Monte Carlo

cleaved \rightarrow equilibrium TSK model (no adatom carriers)

Best match for 1.4 FP time units $=10^{3} \mathrm{MCS}$
$\sigma^{2}=\left\langle\mathrm{s}^{2}\right\rangle-\langle\mathrm{s}\rangle^{2}$ from $P(\mathrm{~s}, \mathrm{t})$,

As good agreement as might expect:	
1)	Metropolis rather than kinetic MC
2)	Just $N N$ step interactions in MC
3)	Discrete at early times
	8

Improved tests: Kinetic MC \& SOS model

$E_{\text {barrier }}=E_{d}+m E_{a}$ breaking m bonds

$$
\begin{gathered}
\mathrm{E}_{\mathrm{d}}=0.9-1.1 \mathrm{eV} ; \mathrm{E}_{\mathrm{a}}=0.3-0.4 \mathrm{eV} \\
\mathrm{~T}=520-580 \mathrm{~K} \\
\langle\ell\rangle=4-15,5 \text { steps, } 10000 \times L_{\mathrm{x}}
\end{gathered}
$$

Fit:

$$
\sigma(t)=\sigma_{\text {sat }} \sqrt{1-\exp (-t / \tau)}
$$

Expect $\tau \propto \exp \left(\mathrm{E}_{\text {barrier }} / \mathrm{k}_{\mathrm{B}} \mathrm{T}\right)$
Find $E_{\text {barrier }} \approx 1 E_{d}+3 E_{a}$

Behavior of τ in SOS via KMC: Ramp $\mathrm{E}_{\mathrm{d}}, \mathrm{E}_{\mathrm{a}}, \mathrm{T},\langle\ell\rangle$

$$
\mathrm{E}_{\text {barier }}=1 \mathrm{E}_{\mathrm{d}}+3 \mathrm{E}_{\mathrm{a}} \quad \text { (edge detachment) }
$$ is rate-limiting!

$$
\begin{aligned}
& \text { Ramp T }(520 \rightarrow 580 \mathrm{~K}) \text { with } \mathrm{E}_{\mathrm{a}}=0.3 \mathrm{eV}, \mathrm{E}_{\mathrm{d}}=1.0 \mathrm{OV} \\
& \Rightarrow \text { activation energy }=(0.989 \pm 0.005)\left(\mathrm{E}_{\mathrm{d}}+3 \mathrm{E}_{\mathrm{a}}\right)
\end{aligned}
$$

$\tau=\langle\ell\rangle^{2} / \Gamma, \operatorname{ramp}\langle\ell\rangle^{2}$: slope OK (18\% below expected)

Further checks to confirm that $\mathrm{m}=3$ (kink-antikink creation) determines rate

Main graph:
Evolution of 3 different initial conditions: straight, "decimated" , and crenelated. Comparable results, even though initial burst atoms from crenelated.

Inset: Surface azimuthally misoriented, 5 forced kinks in 10^{4} sites. Kinks initially 2000 sites apart, as before. With $\mathrm{m}=3$ moves frozen, slower.

Higher moments, not just variance, consistent with analytic predictions from F-P (characterized in detail)!

2 other situations of interest

Step Bunch: initially a delta function

$$
P(s, \tilde{t}) \rightarrow \frac{a_{\varrho} s^{\varrho}}{\left(1-\mathrm{e}^{-\tilde{t}}\right)(Q+1) / 2} \exp \left[-s^{2} b_{\varrho} /\left(1-\mathrm{e}^{-\tilde{t}}\right)\right]
$$

Quench or upquench: change from initial ρ_{0} to ρ, e.g. change in temperature

$$
P(s, \tilde{t})=a_{\varrho_{\varrho} s^{\varrho} \mathrm{e}^{-\tilde{b}_{\varrho}} s^{2}}^{\left(1-\mathrm{e}^{-\tilde{t})^{\frac{\varrho_{0}-\varrho}{2}}}\right.}\left(1-\mathrm{e}^{-\tilde{t}}\left(1-b_{\varrho} / b_{\varrho_{o}}\right)\right)^{\frac{\varrho_{0}+1}{2}}{ }_{1} F_{1}\left(\frac{\varrho_{0}+1}{2}, \frac{\varrho_{+} 1}{2}, \frac{\tilde{b}_{\varrho} s^{2}}{1+\left(b_{\varrho_{o}} / b_{\varrho}\right)\left(\mathrm{e}^{\tilde{t}}-1\right)}\right)
$$

Final

Does growth flux (step motion) alter TWD?

Test: no energetic interaction ($\varrho=2$), 150 ML

- Narrower \Rightarrow effective repulsion that rises with flux, higher ϱ, more Gaussian-like
- Decreased apparent stiffness $\widetilde{\beta}$

20 steps, $1000 \times 200, \mathrm{~T}=723 \mathrm{~K}, \mathrm{E}_{\mathrm{d}}=1.0 \mathrm{eV}, \mathrm{E}_{\mathrm{a}}=0.3 \mathrm{eV}$

...or etching? (non-equilibrium steady state)

from S. P. Garcia, H. Bao, \& M. A. Hines, "Effects of Diffusional Processes on Crystal Etching: Kinematic Theory (KT) Extended to 2D," J. Phys. Chem. B 108 (2004) 6062

Figure 1. STM image of a $\mathrm{Si}(111)$ surface miscut by 3.5° in the $\langle 112\rangle$ direction after etching for 5 min in an unstirred, room temperature, 50% (w/v) aqueous KOH solution. Although pronounced macrostep formation is visible, there are also many "crossing steps" connecting the macrosteps. A cross-sectional slice is indicated by the dashed line and displayed in the lower panel. No consistent preference for concavity or convexity is observed.

Figure 5. In the absence of diffusion-induced inhomogeneities, anisotropic step etching leads to relatively smooth surfaces, as shown by both the (a) steady state morphology and (b) terrace width distribution.

Description of deposition and island growth

J.W. Evans et al., Surf. Sci. Rept. 61 ('06) 1

$$
i=0 \quad i=1
$$

$i=2$

i+1 atoms: smallest stable island: critical nucleus
So i is size of largest unstable cluster

Can be more fruitful to study distribution of areas of capture zones (CZ) [Voronoi cells] than of island sizes!

CZ distribution reminiscent of TWD (terrace-width distrib'n) on vicinals!

Mulheran \& Robie, EPL 49 ('O0) 617

Giesen \& TLE, Surf. Sci. 449 ('00) 191

- Power-law rise (from 0), Gaussian decay
- Skewed, unlike Gaussian, but less so than popular gamma function
- Power-law exponent ϱ (related to TWD variance) has specific physical meaning for TWD, for CZ also??

Scaling During Growth in 1D: Going Beyond Mean-Field

 Rate Eqns. Blackman \& Mulheran, PRB 54 (96) 11681
$P_{4}(s)$ fits numerical data at least as well as B\&M's complicated theory expression (not expressible succinctly)

$$
d=1 \Rightarrow \varrho=2(i+1)
$$

Theory of CZ size distributions in growth, Mulheran \& Robbie, EPL 49(00)617

Wigner distribution $P_{\ell}(s)$ fits much better than M\&R theory

Island size distribution not so informative

Why it works: Phenomenological theory

CZ does "random walk" with 2 competing effects on $d s / d t$:
1] Neighboring CZs hinder growth \Rightarrow external pressure leads to force opposing large s Also noise since atom can go to "wrong" island

2] Non-symmetric confining potential, newly nucleated island has non-tiny CZ, comparable to neighbors so force stops fluctuations of CZ to tiny values
3] Nucleation rate \propto adatom density x density of critical nuclei \propto (adatom density) ${ }^{(i+1)} \quad$ [Walton relation]
4] New CZ in region of very small CZs will have size
 comparable to those nearby, so very small also

5] Combine to Langevin eq. $d s / d t=K[(2 / d)(i+1) / s-B s]+\eta$ Leads to Fokker-Planck eq. with stationary sol'n $P_{\varrho}(s)$ cf. AP, HG, \& TLE, PRL 95 ('O5) 246101

$$
\frac{\partial P(s, \tilde{t})}{\partial \tilde{t}}=\frac{\partial}{\partial s}\left[\left(2 b s-\frac{(2 / d)(i+1)}{s}\right) P(s, \tilde{t})\right]+\frac{\partial^{2}}{\partial s^{2}}[P(s, \tilde{t})]
$$

Why it works: Phenomenological theory

CZ does "random walk" with 2 competing effects on $d s / d t$:
1] Neighboring CZs hinder growth \Rightarrow external pressure, repulsion B leads to force $-K B s \quad$ Also noise η

2] Non-symmetric confining potential, new island nucleated with large size so force stops fluctuations of CZ to tiny values In Dyson model, logarithmic interaction, so $+K() / s$

3] Can argue in 2D that () is $i+1$ using critical density $\propto s^{i}$, \# sites visited in lifetime $\propto s^{1}$ entropy \propto - product $s^{i+1}, \&$ force $-\partial$ (entropy) / ∂s [Also $i+1$ in 3D \& 4D; but 2($i+1$) in 1D]

```
Ń=\sigmanN N}=\sigma\mp@subsup{N}{}{i+1
\sigma=D/\ell \-d }\quadS\equiv\mp@subsup{\ell}{}{d
n\propto\mp@subsup{\ell}{}{2}\approx\mp@subsup{s}{}{2/d}
prod \proptos s(2/d)(i+1)
```

4] Combine \Rightarrow Langevin eq. $d s / d t=K[(2 / d)(i+1) / s-B s]+\eta \quad[d=1,2]$
5] Leads to Fokker-Planck eq. with stationary sol'n $P_{\varrho}(s)$
cf. AP, HG, \& TLE, Phys. Rev. Lett. 95 (05) 246101

Applications to actual (not MC) experiments

- Pentacene/ SiO_{2}

- Pentacene-PentaceneQuinone
- Membrane area fluctuation in lipid bilayer
- Alq_{3} on passivated $\mathrm{Si}(100)$

Exp't: Pentacene/SiO 2 $_{2}$ Pratontop et al., 69 ('04) 165201

For large ϱ little difference in fit quality with GWS, Gamma or Gaussian. But notable difference in philosophy and what one learns!

Scale invariance in thin film growth: InAs quantum dots on GaAs(001)

AFM, 1.68 ML, $350 \times 350 \mathrm{~nm}^{2}, 500^{\circ} \mathrm{C}$

Membrane area fluctuation in lipid bilayer: Voronoi analysis
W. Shinoda \& S. Okazaki, JCP 109 ('98) 1517

Voronoi tessellation for $x-y$ projection of centers of mass of lipid molecules in upper half of bilayer

Distribution of area of triangle formed by 3 adjacent lipid molecules.
Dashed lines in inset show triangles analyzed.

Summary (see http://www2.physics.umd.edu/~einstein)

- TWD of vicinals provides physical entrée to intriguing 1D fermion models \& RMT, can connect to many other current physics issues --- universality in fluctuations --- Wigner surmise for 3 special cases based on explicit or implicit symmetry
- Generalized Wigner surmise $P_{e}(s)=a s^{e} e^{-b s^{2}}$ easy to use \& describes universal fluctuations \Rightarrow broad applications
- For TWD width $\varrho=1+(1+4 \tilde{A})^{1 / 2} \Rightarrow$ strength of elastic repulsion
- Fokker-Planck derivation \& application to relaxation of steps from arbitrary initial configurations
- Focus on distribution of areas of capture zones, rather than island sizes;
$\varrho=i+1$ [or $2(i+1)$ in 1D] \Rightarrow critical nucleus

TLE, Appl. Phys. A 87 ('07) 375
AP \& TLE, PRL 99 ('07) 226102

AP, HG, \& TLE, PRL 95 ('05) 246101
ABH, AP, \& TLE, JPCM ('08) \& preprint

