Fluctuations of Steps in Equilibrium Ted Einstein Physics, U. of Maryland, College Park einstein@umd.edu http://www2.physics.umd.edu/~einstein

In collaboration with Alberto Pimpinelli, Ferenc Szalma, Tim Stasevich, O. Pierre-Louis, S.D. Cohen, R.D. Schroll, N.C. Bartelt, and experimentalists Ellen D. Williams, J.E. Reutt-Robey, D.B. Dougherty, M. Degawa, et al. at UM, M.S. Altman at Hong Kong UST, M. Giesen & H. Ibach at FZ-Jülich, and J.-J. Métois at Marseilles

- Steps on vicinal surfaces as meandering fermions in (1+1)D...¿interactions?
- Steps as Brownian strings; seeking signatures of mass transport modes
- Langevin and heuristic analysis
- Islands as circular steps
- Novel applications
- Open questions

MRSEC

Note the overhangs.

Calanques are not fermions!!

Maryland is on the east coast of the USA. Founded as a Catholic haven, it is one of the original 13 colonies \rightarrow states. D.C. was carved from it to be the national capital (rather than Philadelphia), as part of the Constitution's "Great Compromise." Its northern border is the Mason-Dixon line.

which separated the North from the South, but it was prevented from joining the rebels. Historically conservative, it is now "liberal"; it has the highest mean income of any state.

Aerial view of UM

Grew large after World War 2

"A good university needs a good football and a good physics department." --UM Pres. C. Byrd

my office, in Physics Bldg

Chartered 1856 as agricultural college

Near College Park Airport,

oldest continually operated airport in world (>1909)!

Models & Key Energies Discrete/atomistic → Step Continuum

energy of unit height difference between NN sites + hopping barriers, attach/detach rates

kink energy

- step stiffness $\beta(\theta) + \beta''(\theta)$: inertial "mass" of step
- strength of step-step repulsion A/l² rate parameter, dependent on microscopic transport mechanism

Main test: Self-consistency of these 3 parameters to explain many phenomena Coarse-grain: Relation of 3 nano/mesoscale parameters to atomistic energies??

β

Α

Steps as Brownian strings: Langevin "capillary wave" approach

J. Villain, J. Phys. (Paris) I 1 (1991) 19

saturation $G_q \Rightarrow$ stiffness

Langevin "capillary wave" approach to isolated steps: behaviors

$$G_q(t-t') \equiv \left\langle \left| x_q(t) - x_q(t') \right|^2 \right\rangle = \frac{2k_BT}{\tilde{\beta}q^2L_y} \left(1 - \mathrm{e}^{|t-t'|/\tau_q} \right)$$

$$\begin{split} \tau^{-1} \propto q^{n} \\ \text{[Maryland notation]} \end{split} \begin{array}{l} \tau_{q}^{-1} = \frac{\tilde{\beta}}{k_{B}T} \times \begin{cases} \Gamma_{\text{attach}} q^{2} & \text{EC/AD}: \text{curvature-driven} \\ 2\Gamma_{\text{diffu}} |q|^{3} & \text{TD} \\ \Gamma_{\text{edge}} q^{4} & \text{PD/SED}: -\nabla^{2} \text{curvature} \end{cases} \end{split}$$

 $\tau_q^{-1} \Rightarrow$ transport mode & associated Γ

$$\tau_q^{-1} = (\Omega \tilde{\beta} / k_B T) q^2 \tilde{f}(q); \qquad \tilde{f}(q) = k_+ + k_-, \ 2D_{su} |q|, \ 2a_\perp D_{st} q^2$$

Single value of *y*

Pimpinelli et al., Surf Sci. 295 ('93) 143

Arguments of Pimpinelli et al. re healing time of bumps

$$\begin{split} \mathsf{B} \ & \mathsf{EC} \ (\mathsf{AD}) : \mathsf{L}_{\mathsf{S}} \thicksim \mathsf{1} \\ & \Rightarrow \tau \approx \mathsf{k}_{\mathsf{B}} \mathsf{T} \tau_{\mathsf{a}} \mathsf{k}^{2} / \beta^{\sim} \thicksim \mathsf{q}^{-2} \end{split}$$

$$\begin{split} \label{eq:FPD} \mathsf{F} \; & \mathsf{PD} \; (\mathsf{SED}) : \; \mathsf{L}_{\mathsf{S}} \thicksim \mathsf{1}, \; \flat \thicksim \mathsf{L}^2 / \mathsf{D}_{\mathsf{st}} \\ \Rightarrow \tau \approx \mathsf{k}_{\mathsf{B}} \mathsf{T} \mathsf{L}^4 / \beta^{\sim} \mathsf{c}_{\mathsf{st}} \mathsf{D}_{\mathsf{st}} \thicksim \mathsf{q}^{-4} \end{split}$$

 $w^{2}(k) = k_{B}T k/6\beta^{\sim}$ for fixed pts k apart, assuming w < $\langle \ell \rangle$

Bump: $\delta N(t) \sim \sqrt{N(t)} \sim w k$

impinging = # crossing pipe $N(t) \approx c_{eq} \& L_s t/\beta$, b is time to flow through pipe

Time to form bump $\tau(w, L) \approx w^{2} L \not p/c_{eq} L_{S}$ or $\tau_{\ell}(L) \approx (L^{2}/L_{S})(k_{B}T\not p/c_{eq}\beta^{\sim})$

C (TD):
$$L_S \sim \ell$$
, $\beta \sim \ell^2/D_s$
 $\Rightarrow \tau \approx k_B T \ell^3 / \beta^2 c_{eq} D_s \sim q^{-3}$

$$\begin{split} \mathsf{D} \ (\mathsf{DSS}): \ \mathsf{L}_{\mathsf{S}} &\thicksim \ell, \ \flat \thicksim \ell^2 / \mathsf{D}_{\mathsf{s}} \\ & \Rightarrow \tau \approx \mathsf{k} \mathsf{BT} \mathsf{k}^2 \ell \ / \beta^{\sim} \mathsf{c}_{\mathsf{eq}} \mathsf{D}_{\mathsf{s}} \nsim \mathsf{q}^{-2} \end{split}$$

Linear Relaxation: Velocity ∞ free energy change due to displacement

Evaporation-condensation (attachment-detachment): Model A, non-conserved

$$\frac{\partial x}{\partial t} = -\frac{\Gamma_a}{k_B T} \frac{\delta H}{\delta x} = \frac{\Gamma_a}{k_B T} \widetilde{\beta} \frac{\partial^2 x}{\partial y^2}$$

Add noise, Langevin:

$$\frac{\partial x(y,t)}{\partial t} = \frac{\Gamma_a}{k_B T} \widetilde{\beta} \frac{\partial^2 x}{\partial y^2} + \eta(y,t)$$
$$\langle \eta(y,t)\eta(y',t')\rangle = \frac{2a^3}{\tau_a} \delta(y-y')\delta(t-t')$$
$$\Gamma_a = \frac{2a^3}{\tau_a}$$
$$\tau^{-1}(q) = (\Gamma_a/k_B T)\widetilde{\beta}q^2$$

Edge-Diffusion Limited Case: PD or SED Model B, conserved dynamics

Particle conservation $\Rightarrow \text{extra} - (\partial^2 x / \partial y^2)$

$$\frac{\partial x(y,t)}{\partial t} = -\frac{\Gamma_{st}}{k_B T} \widetilde{\beta} \frac{\partial^4 x}{\partial y^4} + \eta(y,t)$$

$$\langle \eta(y,t)\eta(y',t')\rangle = \frac{2a^5}{\tau_a}\delta''(y-y')\delta(t-t')$$

$$\tau^{-1}(q) = (\Gamma_{st}/k_B T)\widetilde{\beta}q^4$$

Terrace Diffusion (TD)

Attachment-detachment fast compared to terrace diffusion. Step fluctuations governed by how concentration gradient decays.

$$c(x,y) = c_0 + c_0 a^2 (\widetilde{\beta}/k_B T) \Sigma_q q^2 x_q e^{-|q|x} \cos(qy)$$

$$\frac{\partial x}{\partial t} = \frac{2D_s c_s \widetilde{\beta}}{k_B T} \int_{-\infty}^{\infty} -\left(\frac{\partial^2 x}{\partial y^2}\right)_{y'} \frac{a^2 (y-y')^2}{[a^2 + (y-y')^2]^2} dy' + \eta(y,t)$$

$$\langle \eta(y,t)\eta(y',t')\rangle = \frac{4D_s c_s a^4}{k_B T} \frac{a^2 (y-y')^2}{[a^2 + (y-y')^2]^2} \delta(t-t')$$
$$\tau^{-1}(q) = 2D_s c_s (a^4/k_B T) \widetilde{\beta} |q|^3$$

Diffusion step-to-step (DSS)

 ℓ < diffusion length \Rightarrow q \rightarrow 1/ ℓ |q|³ \rightarrow q²/ ℓ

Lebel	EC	TD	D Q1
Limiting	Attachment-detachment	Terrace	Periphery (edge)
Process	(20) Evaporation - condensation (ModelA)	u diffusion	diffusion (Model B)
297	3 *	9 3	3
Adatom	d niform	Varies near step	≈ O
concentration	+ 1/2	L 1/3	+ 1/4
(Early-time) width		SIL Yest	L .
Prefector	kor la - Tatach	Psu the thop I	Setter - Thopister
Energy (microscopic! WARNING]	Step-edge well Sticking coefficient	Diffusion barrier (Exchange barrier) Barrier along edge Corner barrier
Analogy for sinuscidal corrugation	(3D) Evaporation - condensation	Voluma diffusion	Sur face diffusion
Asymptot cluster of radius	R RT (N-1/2)	R-2 (N-)	R^{-3} (N ⁻³)
Examples	Si(100) Tromp	[505 model]	Pb(111) Frenken
of vicinals	Sicui) Willions	Contractory	C. (dot) =1
	Aq (110) Reutt-Rober		+ Calconey + back
	Au (110) Frenken		· Ag (001) Williams
	DEAL STREET, AND STREET, STREET,		Pt(111) Giesen

Early Study of Si(111) N.C. Bartelt,...TLE, E.D. Williams,...J.-J. Métois,

Heyraud, Métois REM image

 $\frac{\partial x}{\partial t} = \frac{\Gamma_a \tilde{\beta}}{kT} \frac{\partial^2 x}{\partial y^2} - \frac{2\Gamma_a c x}{kT} + \eta_a(y,t)$

Measured time exponent 1/z on late transition & noble metals

Surface	Temperature range (K)	Time exponent 1/z			
Cu(100)°			Ag $(110)^{\ddagger}$	300	1/2
Cu(100)e					
Cu(100)°			Au(100)°		
Cu(100) ^e			Au(100)°		
Cu(100) ^e			A (1.1.1)@		
Cu(100) ^f			Au(111)*		
$Cu(100)^{\circ}$			$Au(110)^{\ddagger}$	300-590	1/2
$Cu(119)^{\ddagger}$ $Cu(1111)^{\ddagger}$	293		Ni(111) ^e		
$Cu(1111)^{\ddagger}$	300	1/4	Ni(100) ^e		
$Cu(1113)^{\ddagger}$	300-370	1/4	Ni(100)		
$Cu(1119)^{\ddagger}$	310-360	1/4	NI(100)		
$Cu(1119)^{\ddagger}$	290-370		NI(100)*		
Cu(1179) [‡]	390-600	1/4	$Pt(100)^{2}$ $Pt(111)^{\frac{1}{2}}$	530 800	1/4
Cu(111)¢			$P_{t}(111)$	550-800	1/4
$Cu(111)^{\circ}$			Pu(111)		
$Cu(171719)^{\ddagger}$	300-500	1/4	D4/1.1.13		
$Cu(212123)^{\ddagger}$	300-500	1/4	Pt(111)		
eu(212125)	600	1/2	$Pt(111)^{\circ}$		
Ag(100)°	000		$Pt(111)^{e}$		
Ag(100) ^{f,h} Ag(100) ^e			Pt(111) ^h		
Ag(119)e			$Pt(331)^{\ddagger}$	~80-300	
$Ag(111)^{\ddagger}$	300	1/4	$Pb(111)^{\ddagger}$	300	1/4
$Ag(111)^{\ddagger}$					
$Ag(111)^{\ddagger}$	300	1/4			
$Ag(111)^{\ddagger}$	310-390	1/4	M Gieser	n Proa Surf	Sci 68 (
	440-590	1/2		i, i iog. Ouii. (
$\begin{array}{c} Cu(171719)^{\ddagger} \\ Cu(212123)^{\ddagger} \\ Cu(212123)^{\ddagger} \\ Ag(100)^{e} \\ Ag(100)^{e} \\ Ag(110)^{e} \\ Ag(111)^{\ddagger} \\ Ag(111)^{\ddagger} \\ Ag(111)^{\ddagger} \\ Ag(111)^{\ddagger} \end{array}$	300-500 300-500 600 300 300 310-390 440-590	1/4 1/4 1/2 1/4 1/4 1/4 1/2	$\begin{array}{c} Pt(1\ 1\ 1)^{j} \\ Pt(1\ 1\ 1)^{e} \\ Pt(1\ 1\ 1)^{e} \\ Pt(1\ 1\ 1)^{h} \\ Pt(3\ 3\ 1)^{\dagger} \\ Pb(1\ 1\ 1)^{\dagger} \end{array}$	~80-300 300	1/4 Sci. 68 (

Ag(111)e

('01) 1

Summary of all cases studied in "unified" treatment paper

$A (3dEC): D_{st} = 0, \Lambda_q \approx x_s$ (i) $D_{su}/(x_sk_{\pm}) \ll 1 \ll \ell/x_s$ (ii) $x_sk_{\pm}/D_{su} \ll 1 \ll \ell/x_s$	(35) (35) w/ $2(D_{su}/\tau_e)^{1/2} \rightarrow k_+ + k$	$2(D_{ev}/\tau_e)^{1/2}$		
(i) $D_{su}/(x_sk_{\pm}) \ll 1 \ll \ell/x_s$ (ii) $x_sk_{\pm}/D_{su} \ll 1 \ll \ell/x_s$	(35) (35) w/ $2(D_{su}/\tau_e)^{1/2} \rightarrow k_+ + k$	$2(D_{ey}/\tau_e)^{1/2}$		
(ii) $x_s k_{\pm} / D_{su} \ll 1 \ll \ell / x_s$	(35) w/ $2(D_{su}/\tau_e)^{1/2} \rightarrow k_+ + k$	04 6/	*	*
		$k_{+} + k_{-}$	*	*
(iii) $\ell/x_s \ll 1 \ll D_{su}/(x_s k_{\pm})$	(36) w/ $4(k_{+}^{-1}+k_{-}^{-1})^{-1}$			
such that $D_{su} \ell / (x_s^2 k_{\pm}) \ge 1$	& $\ell/\tau_{e} \rightarrow k_{+} + k_{-}$	*	$k_{+} + k_{-}$	$k_{+} + k_{-}$
(iv) $\ell/x_s \ll D_{su}/(x_s k_{\pm}) \ll 1$	(36)	*	$4(k_{+}^{-1}+k_{-}^{-1})^{-1}$	$\ell \tau_e$
(v) $D_{su}/(x_sk_{\pm}) \ll \ell/x_s \ll 1$	(37)	*	$4D_{su}/\ell$	$D_{su}(k_{+}^{-1}+k_{-}^{-1})/\tau_{e}$
B (EC): $a_a^{\pm} \ge 1$ or $b_a^{\pm} \ge 1$				
(i) $D_{st}=0, a_a^{\pm} \ge 1$	(38), (39)	$k_{+} + k_{-}$	*	*
(ii) $D_{su} = 0, \ b_a^{\pm} \gg 1$	(38), (39)	$k_{+} + k_{-}$	*	*
(iii) $b_q^{\pm} \ge 1$, $a_q^{\pm} \ge 1$	(38), (39)	$k_{+} + k_{-}$	*	*
C (ISTD): $D_{st} = 0$				
(i) $k_{-}=0, a_{a}^{+} \ll 1$	(40), (41) w/ $D_{su} \rightarrow D_{su}/2$	$D_{su} q $		
(ii) $k_{+}=0, a_{a}^{-} \ll 1$	(40), (41) w/ $D_{su} \rightarrow D_{su}/2$	$D_{su}[q]$	*	*
(iii) a [±] _q ≪1	(40), (41)	$2D_{su} q $		
D (DSS): $D_{st} = 0$, $ q \ell \ll 1$				
(i) $a_a^{\pm} \ll q \ell$	(42)	*	$4D_{su}/\ell$	$D_{sy}^{2}(k_{-}^{-1}+k_{+}^{-1})q^{2}$
(ii) $ q \ell \ll a_a^{\pm} \ll 1$	(43)	*	$4(k_{+}^{-1}+k_{-}^{-1})^{-1}$	$D_{su} \ell q^2$
(iii) $a_q^{\pm} \ge 1$	(43) w/ $4(k_{+}^{-1}+k_{-}^{-1})^{-1}$			
such that $a_q^{\pm} q \ell \gg 1$	h that $a_q^{\pm} q \ell \gg 1$ & $D_{su} \ell q^2 \rightarrow k_+ + k$		$k_{+} + k_{-}$	$k_{+} + k_{-}$
$E(PSTD): k_=0, D_{st}=0$				
$\& q \ell \ll 1 \ll 1/a_q^{\pm}$	(44)	*	$D_{su} \ell q^2$	$D_{su} \ell q^2$
F (PD): $D_{su} = 0$				
 (i) b[±]_a ≪1 	(45), (46)	$2a_{\perp}D_{st}q^2$		
(ii) $b_q^- = 0, b_q^+ \ll 1$	(45), (46) w/ $D_{st} \rightarrow D_{st}/2$	$a_{\perp}D_{st}q^2$	*	*
(iii) $\dot{b}_q^+ = 0, \ \dot{b}_q^- \ll 1$	(45), (46) w/ $D_{st} \rightarrow D_{st}/2$	$a_{\perp}D_{st}q^2$		
G (3 d S): $D_{st}=D_{su}=0$				
$\& D_{va} q_z / k_{\pm} \ll 1$	(47)	$D_{va} q_z $	*	*

S.V. Khare & TLE, PRB 57 ('98) 4782

O. Pierre-Louis & TLE, PRB 62 ('00) 13697

Island – Adatom or Vacancy – Defined by Nearly Circular Step!

vacancy island

Dependence of cluster diffusion constant on vacancy island size

K. Morgenstern,...G. Comsa, PRL 74 ('95) 2058

Crossover for cluster diffusion exponent α

Size dependence of diffusion constant of Cu(001) and Ag(001)

W.W. Pai et al., PRL 79 ('97) 3210

Simulations with rather realistic potentials Xe/Pt(111)

Isolated Step Fluctuations: Signatures of Dominant Mass Transport Mechanism

	EC or AD (ADL)	TD (DL)	PD
Limited by	At/de/tach at step	Terrace diffu'n	Step-edge diffu'n
Fluctuation healing timewidth y	y ²	y ³	<i>y</i> ⁴
Size dep. of island diffu'n, <i>R ∝√</i> area	R^{-1}	R ⁻²	R ⁻³
$w^{2}(t)$	t ^{1/2}	t ^{1/3}	t ^{1/4}
Island area decay	t ¹	t ^{2/3}	N/A
Evolution of atom/ vacancy island	Shrink to round point <i>(Grayson's Thm)</i>		Wormlike, pinch-off
Height decay of cone ["facet"]	t ^{1/4}	t ^{1/4}	N/A
Height decay of paraboloid [rough]	t ^{1/3}	t ^{2/5}	N/A

Kinetic Monte Carlo & Analysis

F. Szalma, Hailu Gebremariam, & TLE, PRB 71 ('05) 035422

	Energy	Energy	Break-three energy
Process	(meV)	(K)	(K)
Surface diffusion	70	812	812
Edge diffusion	237	2749	2319
Break 1 bond	192	2227	2319
Break 2 bonds	359	4164	3826
Break 3 bonds	467	5417	5333
Attachment			812
Out			70000

With isotropy, F simplifies greatly: $\mathbf{A} = 0 \quad \mathbf{B} = (1/2)\mathbf{1}$

Detailed balance

Results of Analysis of KMC Simulation Data

Temporal correlations of "Fourier" modes and their time constants

Experiments, resolution

STM, Pb(111) (D.B.Dougherty, M. Degawa, et al. 05, 06)

Linear response, hopping rates

Langevin description of step fluctuations:

 $\frac{\partial x}{\partial t} = \frac{-\Gamma_{PD}\tilde{\beta}}{k_{B}T} \frac{\partial^{4}x}{\partial y^{4}} + \frac{\Gamma_{AD}\tilde{\beta}}{k_{B}T} \frac{\partial^{2}x}{\partial y^{2}} + \eta(x,t) \qquad \left\langle \eta(y,t)\eta(y',t') \right\rangle = -2\Gamma_{PD} \frac{\partial^{2}}{\partial x^{2}} \delta(y-y')\delta(t-t') + 2\Gamma_{AD}\delta(y-y')\delta(t-t') + 2\Gamma_{AD}\delta(y-y)\delta(t-t') + 2\Gamma_{AD}\delta(y-y)\delta(t-t')\delta(t-t') + 2\Gamma_{AD}\delta(y-y)\delta(t-t')\delta(t-t')\delta(t-t')\delta(t-t') + 2\Gamma_{AD}\delta(y-y)\delta(t-t')\delta$

Correlation function:

Kinetic Monte Carlo

				V				
	Config	E_b^{bb3}	E_b^{bb5}	E_b^{EAM}	$\Delta E_b^{\rm EAM}$	$E_b^{\rm Kaw}$		
	TD	70	70	70	0	70		
	0	200	200	192	116	200		
eV,	01	330	330	260	225	330		
neV	12	200	330	237	147	200		
	012	330	460	359	269	330		
	011'	460	460	467	386	460		
	123	200	330	108	0	70		
	011'2	460	590	598	469	460		
	1234	200	330	141	-162	70		
	23	70	200	86	-147	70		
	22'	70	330	130	0	70		
	11	330	330	312	235	330		
	023	200	200	135	-32	70		
		DEPENDENCE OF A DEPENDENCE OF						

SEAM

Cu(111) no strong effect of 2NN on static parameters *T.Stasevich et al. PRB 2005*

Cu(111) collective motion of clusters of adatoms *Trushin et al. PRB 2005 Karim et al. condmat/2005*

Long jumps in diffusion G. Antczak, G. Ehrlich, PRB 2005

Kinetic parameters

T (K)	z	L (Å)	n	$\lambda(\text{\AA})$	$ au(\lambda)$	$ au_h$
250	3.98	879.2	6	146.5	1.26ms	$5.91 \mu s$
300	3.81	439.6	5	87.9	$17.5 \mu s$	$0.382 \mu s$
350	4.02	439.6	5	87.9	$3.1 \mu s$	47.1ns
400	4.17	439.6	5	87.9	$0.66 \mu s$	7.59ns

	E_{coh}	ϵ_k^{Exp}	E_d^{Exp}	ϵ_k^{Th}	E_d^{Th}
Pt	5.84^{a}	167^{b}	-1000 ⁶ -	$161(A) \ 178(B)^{c}$	840(A) 900(I
Cu	3.49^{a}	$\frac{128^e}{113^f}$	320^e	90(A) $120(B)^g$	$\frac{228^h}{290^i}$
Ag	2.95^{a}	101^j	0 ± 100^{j}	74^k	220^{h}
Pb	2.03^{a}	$ \begin{array}{c c} 40(A) & 60.3(B)^{l} \\ 61(A) & 87(B)^{m} \end{array} $	585	41(A) $60(B)^n$	185

Conclusions re 2-parameter KMC on Pb(111)

- Static parameters such as line tensions, stiffnesses agree well with experiment
- . Low-T kinetics is well modelled by the KMC
- Higher T requires a more complex MC scheme (concerted or collective motion, corner rounding, long jumps)

Distinguishing step relaxation mechanisms via pair correlation functions

D. B. Dougherty, I. Lyubinetsky,* T. L. Einstein, and E. D. Williams[†]

Si(111) ($\sqrt{3} \times \sqrt{3}$) R30° Al at 970K

B. Blagojevic & P.M Duxbury, PRE 60 ('99) 1279

Mass transport mechanism	Time regime	<i>G</i> (0, <i>t</i>)
Evaporation-condensation (EC)	$t \to 0 \\ 0 \leqslant t \leqslant \tau_{\varepsilon}^{\mathrm{ST}}$	$\Omega\left(\frac{a_{\perp}}{a_{\perp}}\right)^{1/2} \left(\frac{t}{\tau_{\pi\pi\pi}}\right)^{1/2}$
	$t \gg \tau_z^{ST}$	$\frac{L\Omega}{12\tilde{s}} \left(1 - \frac{6}{\pi^2} e^{-t/\tau_s^{\rm EC}} \right)$
Step-edge diffusion (SE)	$t \longrightarrow 0$ $0 \ll t \ll \tau_z^{\text{SE}}$	$\frac{-t}{\frac{\Gamma(\frac{3}{4})}{\pi} \left(\frac{\Omega^{5} a_{l}}{2^{3}}\right)^{1/4} \left(\frac{t}{\tau_{\text{ex}}}\right)} J_{k,k}(x,t) = \int_{0}^{L/2} P_{0}(l) \{\mu_{k}(x+l,t) - 2\mu_{k}(x,t) + \mu_{k}(x-l,t)\} dx$
	$t \gg \tau_s^{\rm SE}$	$\frac{L\Omega}{12\tilde{s}} \left(1 - \frac{6}{\pi^2} e^{-t/\tau_s^{\rm SE}} \right) \tag{10}$
Terrace diffusion 1 (T1) $d \rightarrow \infty$	$t \to 0 \\ 0 \ll t \ll t_1^{T1}$	$\sum_{\alpha = \frac{1}{2}}^{T} \int_{0}^{1/2} \left(\frac{t}{\tau_{\text{TD}}}\right)^{1/2} \left(\frac{t}{\tau_{\text{TD}}}\right)^{1/2} \int_{0}^{1/2} P_1(l) \{\mu_{k\pm 1}(x+l,t) - 2\mu_k(x,t) + \mu_{k\pm 1}(x-l,t)\} dt$
(isolated step)	$t_1^{T1} \ll t \ll t_2^{T1}$	$\frac{\Omega\Gamma(\frac{2}{3})}{\pi} \left(\frac{a_{\perp}^2}{\widetilde{s}^2}\right)^{1/3} \left(\frac{t}{\tau_{\rm TD}}\right)^{1/3}$
	$t_2^{T1} \ll t \ll \tau_s^{T1}$	$\frac{\Omega\Gamma(\frac{2}{3})}{\pi} \left(\frac{2a_{\perp}^2}{\tilde{s}^2}\right)^{1/3} \left(\frac{t}{\tau_{\rm TD}}\right)^{1/3}$
	$t \gg \tau_s^{T1}$	$\frac{L}{12\tilde{s}}\left(1-\frac{6}{\pi^2}e^{-t/\tau_z^{T1}}\right)$
Terrace diffusion 2 (<i>T</i> 2) <i>d</i> finite, $\alpha_U = 0$ or $\alpha_L = 0$	$t \leq t_1^{T2} \\ t_1^{T2} \leq t \leq \tau_s^{T2}$	as for isolated step (T1) $\frac{\Omega\Gamma(\frac{3}{4})}{\pi} \left(\frac{da_{\perp}^2}{s^3}\right)^{1/4} \left(\frac{t}{\tau_{\text{TD}}}\right)^{1/4}$ $k = \frac{k}{k}$
(e.g., Schwoebel barrier $=\infty$)	$t \gg \tau_z^{T2}$	$\frac{L}{12\tilde{s}} \left(1 - \frac{6}{\pi^2} e^{-t/\tau_z^{T2}} \right) $ k+l
Terrace diffusion 3 (T3) d finite, $\alpha_{U,L} \neq 0$	$t \ll t_1^{T3}$ $t_1^{T3} \ll t \ll \tau_s^{T3}$	as for isolated step (T1) $4\Omega a_{\perp} \left(\frac{1}{\pi^{3} \widetilde{s}(d+d_{0})}\right)^{1/2} \left(\frac{t}{\tau_{\text{TD}}}\right)^{1/2}$
	$t \gg \tau_z^{T3}$	$\frac{L\Omega}{12\tilde{s}} \left\{ 1 - \frac{3L}{2\pi^3} \left(\frac{d+d_0}{\pi a_{\perp}^2 \tilde{s}} \right)^{1/2} \left(\frac{t}{\tau_{\rm TD}} \right)^{-1/2} e^{-(2\pi/L)^4 \tilde{s} a_{\perp}^2 dt/\tau_{\rm TD}} \right\}$

TABLE I. Limiting behaviors for G(0,t).

$$C_{1}(t) = \langle x_{n}(y_{0}, t+t_{0})x_{n+1}(y_{0}, t_{0}) \rangle = \sqrt{\frac{16Dck_{B}T\Omega^{2}t}{9\pi^{3}\hat{\beta}\langle\ell\rangle}} = \frac{1}{6}G_{\text{DSS}}$$

B. Blagojevic & P.M. Duxbury, PRE 60 ('99) 1279

Step-edge (periphery) diffusion Conserved noise

Non-conserved noise: Ag kicks C₆₀

C. G. Tao et al., PRB **73**, 125436 (2006) Nano Lett 7, 1495 (2007)

Island Fluctuations

Distribution of Distances between C₆₀ NNs

Analysis of Fluctuation Modes: Extract stiffness $\Rightarrow \beta \Rightarrow \varepsilon^{CC}$ Non-conserved dynamics [vs. conserved for bare Ag (111) islands]

Si(111) 1x1 Revisited: $\beta(T)$ & Morphological Evolution

A.B. Pang, K.L. Man, M.S. Altman, T. J. Stasevich, F. Szalma, & TLE, PRB 77 ('08) 115424

LEEM images 1163K single-height steps

L_y ~ 3400 nm

Shape anisotropy < 1% so $\tilde{\beta}(\theta) \approx \beta(\theta) \approx \beta$

Effect of Growth or Evaporation on Dispersion?

A. Pimpinelli, I. Elkinani, A. Karma, C. Misbah, & J. Villain, J. Phys. Cond. Matt. 6 ('94) 2661

BCF with weak and strong ES effect, e.g. limit of isolated step

$$\tau^{-1}(q) \approx D_s \left(c_{eq}{}^0\beta/k_BT \right) q^3$$

$$\tau^{-1}(q) \approx D_{s} c_{eq}^{0} \kappa \left[(\beta/k_{B}T) \{q^{2} + \kappa^{2}\}^{1/2} + d_{S}\kappa \right] q^{2} \qquad \kappa^{-2} = D_{s} \tau_{d}$$

FPS Analysis: steps as [free] fermion world lines

Exact result for step density $\rho_{\lambda}(j) = \langle a_j^{\dagger} a_j \rangle_{\lambda}$ in terms of Bessel function J_j & deriv's Near shoreline, $\lim_{\lambda \to \infty} \lambda^{1/3} \rho_{\lambda}(\lambda^{1/3} x) = -x \operatorname{Ai}(x)^2 + \operatorname{Ai}'(x)^2$

Shoreline wandering: $\operatorname{Var}[b_{\lambda}(t) - b_{\lambda}(0)] \cong \lambda^{2/3} g(\lambda^{-2/3} t) \quad g(s): 2|s| \to 1.6264 - 2/s^2$

$$\operatorname{Var}[b_{\ell}(\ell \tau + x) - b_{\ell}(\ell \tau)] \cong (\frac{1}{2}A\ell)^{\frac{2}{3}} \left(\frac{A^{1/3}}{2^{1/3}\ell^{2/3}}x\right) \qquad \ell \sim N^{1/3} \quad \text{cf. 3-d Ising corner}$$

In scaling regime shoreline fluctuations are non-Gaussian & related to GUE multimatrix models.

$$\kappa = \frac{1}{2} (\pi \gamma_{PT} k_B T / \tilde{\beta})^2$$
 where $h = -\frac{2}{3} \gamma_{PT} (r - \rho_0)^{3/2}$ (up to lattice consts)

Heuristic extraction of dynamic/growth exponent β

A. Pimpinelli, J. Villain, et al., Surf. Sci. **295** ('93) 143 Isolated steps: $G(t) \equiv \left\langle \left[x(t_0+t) - x(t_0)\right]^2 \right\rangle_{t_0[,y_0]} \propto t^{2\beta} = \begin{cases} t^{1/2} & A \\ t^{1/4} & B \end{cases}$

- # atoms entering/leaving in t. $N(t) \approx c_{eq} L_s t / \tau^*$
- fluctuating area²: $W^2 L^2 \approx (\delta N)^2 \approx N(t)$
- Ferrari *et al.* scaling: $W \sim \underline{k}^{\alpha} \rightarrow \underline{k}^{\frac{1}{3}}$

A) Attachment-detachment limited $1/\tau^* \approx$ kinetic coef. $w \approx t^{1/5}$ or $G(t) \approx t^{2/5}$

B) Step-edge diffusion limited $1/\tau^* \approx D_{se}/L^2$ $w \approx t^{1/11}$ or $G(t) \approx t^{2/11}$

A. Pimpinelli, M. Degawa, TLE, EDW, Surface Sci. 598, L355 (2005).

Scaling approach

$$\begin{split} x(y,t) &\to \tilde{r}(\theta,t) = [r(\theta,t) - \rho_0]/\rho_0 \\ \delta\mu &= a^2 \tilde{\beta} \left(\kappa - \frac{1}{\rho_0}\right) \approx \frac{a^2 \tilde{\beta}}{\rho_0} \left(-\tilde{r}_{\theta\theta} + \frac{1}{2}\tilde{r}_{\theta}^2\right) \end{split}$$

Nonlinear KPZ term in Langevin eqns due to curvature

(or from asymmetric potential due to step neighbor on just 1 side)

$$\frac{\partial \tilde{r}(\theta, t)}{\partial t} = \left(\Gamma_{\rm AD} \dots\right) \left[\frac{\partial^2 \tilde{r}}{\partial \theta^2} - \frac{1}{2} \left(\frac{\partial \tilde{r}}{\partial \theta}\right)^2\right] + \eta(\theta, t)$$
$$\frac{\partial \tilde{r}(\theta, t)}{\partial t} = \left(\Gamma_{\rm SED} \dots\right) \left[-\frac{\partial^4 \tilde{r}}{\partial \theta^4} + \frac{1}{2} \frac{\partial^2}{\partial \theta^2} \left(\frac{\partial \tilde{r}}{\partial \theta}\right)^2\right] + \eta_C(\theta, t)$$

Dilate by b, so $\pounds' = b \pounds$, $w' = b^{\alpha} w$, $t' = b^{z} t$; equate exponents of b

Class	$\partial/\partial t$	Lin. $\nabla^{2,4}$	NL KPZ	Noise	α	z	$\beta = \alpha/z$
Isolated AD	$\alpha - z$	$\alpha - 2$	-	-(1+z)/2	1/2	2	1/4
Isolated SED	$\alpha - z$	$\alpha - 4$	-	-(3+z)/2	1/2	4	1/8
Train AD	$\alpha - z$	$\alpha - 2$	-	-(2+z)/2	0 (ln)	2	0
Asymmtr. AD	$\alpha - z$	$\alpha - 2$	$2\alpha - 2$	-(1+z)/2	1/3	5/3	1/5
Asymmtr. SED	$\alpha - z$	$\alpha - 4$	$2\alpha - 4$	-(3+z)/2	1/3	11/3	1/11

STM images (scanned, not snapshot): step & facet edge

from screw dislocation

Equilibrium fluctuations studied by F. Szalma et al. '06

STM line-scans (pseudoimages) $\langle [x(t_0+t)-x(t_0)]^2 \rangle_{t_0}$ $\equiv G(t) \propto t^{2\beta}$ $w^2 = \frac{1}{2} G(t \rightarrow \infty)$

> Facet edge (shoreline) Analyzed on next slide

Next step edge

3rd step edge

fcc metals (late trans., noble,...): mass transport by SED (B)

Summary (see http://www2.physics.umd.edu/~einstein)

- Steps are useful for many applications, bear on many problems of current interest, and embody fascinating physics
- Sophisticated experiments, with powerful theoretical and computational calculations, allow for quantitative measurements that yield numerical assessment of key parameters and allow prediction of associated phenomena
- 3 special cases for isolated steps: EC (AD), TD, PD (SED)
- Capillary wave approach and time-dependence of pseudoscans both useful
- Can be hard to distinguish EC and DSS, both have $\tau^{\text{-1}} \propto q^2$
- Including anisotropy can be necessary, but not always
- How does growth or evaporation affect equilibrium analysis?
- Shorelines have remarkable physics