Interactions Between Steps: Entropic, Elastic, and Electronic

 Ted Einstein Physics, U. of Maryland, College Park einstein@umd.edu http://www2.physics.umd.edu/~einsteinIn collaboration with Alberto Pimpinelli, Rajesh Sathiyanarayanan, Ajmi BHadj Hamouda, Kwangmoo Kim, Hailu Gebremariam, T.J. Stasevich, H.L. Richards, O. Pierre-Louis, S.D. Cohen, R.D. Schroll, N.C. Bartelt, and experimental groups of Ellen D. Williams \&
J.E. Reutt-Robey at UM, M. Giesen \& H. Ibach at FZ-Jülich, \& J.-J. Métois at Marseilles

- Stiffness, characteristic energies, etc.
- Terrace width distributions, entropic interactions
- Steps on vicinal surfaces as meandering fermions in (1+1)D... ¿interactions?
- Elastic interactions, consequences of simplest isotropic LR form
- Corrections at short range, finite-size effects
- Scaling forms, generalized Wigner distribution for TWD; meaning of ϱ
- Interactions mediated by surface states; new length scale, breakdown of scaling
- Fluctuations of a facet edge (shoreline), understanding Spohn's results

SOS (solid-on-solid) model of vicinals

$f:$ projected free energy per area = surface free energy per area/cos (ϕ)

Vicinal expansion: $f=f_{0}+(\beta / \mathrm{h}) \tan \phi+\mathrm{g} \tan ^{3} \phi==f_{0}+\left[(\beta / \mathrm{h})+\mathrm{g} \tan ^{2} \phi\right] \tan \phi$

$$
\tan \phi=\mathrm{h} /\langle\ell\rangle=\text { step density }
$$

β since 1 dimension lower than γ ?!?
Rough: $f-f_{0} \propto \tan ^{2} \phi$

Kink energy ε : $\quad f\left(\phi_{0}, \theta\right)=f_{0}+\left(\tan \left(\phi_{0}\right) / h\right)[\beta(0)+(\varepsilon / b) \tan \theta]$

Extracting key energies from slab calculations

- To estimate energy of flat (singular) surface from slab calculation:

$$
\mathscr{E}_{\mathrm{fl}}-\mathscr{N}_{\mathrm{fl}} E_{\text {bulk }}=2 A_{\mathrm{ff}} f_{0}
$$

^ To estimate step energy per length, use awning ("auvent") approximation:

Step [free] energy per length $\beta=f$ of riser \times length along riser $-f$ of terrace plane \times shaded length $\left[f\right.$ has units of energy/length ${ }^{2}$]

$$
\begin{align*}
& \beta_{100-\mathrm{str}} \approx\left(\frac{\sqrt{3}}{2} f_{111}-\frac{1}{2} f_{100}\right) a_{1} \\
& \beta_{\mathrm{A}} \approx\left(f_{100}-\frac{\sqrt{3}}{3} f_{111}\right) a_{1} \quad \beta_{\mathrm{B}} \approx\left(f_{111}-\frac{1}{3} f_{111}\right) a_{1} \frac{\sqrt{3}}{2}=f_{111} a_{1} / \sqrt{3}
\end{align*}
$$

^ Similarly, kink energy ε_{k} can be obtained using a lower-D awning approximation.

Terrace-Width Distribution $P(s)$ for Special Cases

"Perfect Staircase" $\ell=\langle\ell\rangle \equiv 1 / \tan \phi \quad s \equiv \ell /\langle\ell\rangle$

Terrace-Width Distribution $P(s)$ for Special Cases

"Perfect Staircase" $\ell=\langle\ell\rangle \equiv 1 / \tan \phi \quad s \equiv \ell /\langle\ell\rangle$
Straight steps, randomly placed

Terrace-Width Distribution $P(s)$ for Special Cases
"Perfect Staircase" $\ell=\langle\ell\rangle \equiv \mathrm{h} / \tan \phi \quad s \equiv \ell /\langle\ell\rangle$
Straight steps, randomly placed

Steps as polymers in 2D \Rightarrow non-crossing

THE JOURNALOF CHEMICAL PHYSICS
VOLUME 48, NUMBER 5
1 MARCII 1968
Soluble Model for Fibrous Structures with Steric Constraints

Fig. 1. Model for a two-dimensional fiber structure.

Models \& Key Energies
 Discrete/atomistic \rightarrow Step Continuum

energy of unit height difference between NN sites

+ hopping barriers, attach/detach rates

ε
kink energy

$\widetilde{\beta} \quad$ step stiffness $\beta(\theta)+\beta^{\prime \prime}(\theta)$: inertial "mass" of step
A strength of step-step repulsion A / ℓ^{2}
rate parameter, dependent on
I microscopic transport mechanism

Handwaving argument:
"time" (or y) until hit $\propto \ell^{2} \Rightarrow \#$ hits/"time" $\propto 1 / \ell^{2} \Rightarrow$ entropic int'n [per length] $\propto 1 / \ell^{2}$
Lose entropy $k_{B} \ln (2)$ at each hit \Rightarrow free energy rises by $k_{B} T \ln (2)$
Formal proof: M.E. \& D.S. Fisher, Phys. Rev. B 25 ('82) 3192

Why Stiffness?

$$
\mathcal{E}=\int \beta(\theta) \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y \sim \text { const. }+\frac{\tilde{\beta}(0)}{2} \int\left(\frac{d x}{d y}\right)^{2} d y \rightarrow \frac{" m "}{2} \int\left(\frac{d x}{d t}\right)^{2} d t
$$

$$
\begin{aligned}
& \mathcal{E}=\int \beta(\theta) \sqrt{1+\tan ^{2} \theta} d y=\int d y\left[\beta(0)+\frac{1}{2} \beta^{\prime \prime}(0) \theta^{2}\right] / \cos (\theta) \\
& \approx \int d y\left[\beta(0)+\frac{1}{2} \beta^{\prime \prime}(0) \theta^{2}\right]\left(1+\frac{1}{2} \theta^{2}+\ldots\right)
\end{aligned}
$$

$d y$

$$
\left.\approx \int d y\left[\beta(0)+\frac{1}{2}\left\{\beta(0)+\beta^{\prime \prime}(0)\right\}\right) \theta^{2}\right]
$$

M.P.A. Fisher, D.S. Fisher, \& J.D. Weeks, PRL 48 ('82) 368

What if we expand around θ_{0}, where $\beta^{\prime}\left(\theta_{0}\right) \neq 0$?

$$
\beta(\theta)=\beta\left(\theta_{0}\right)+\beta^{\prime}\left(\theta_{0}\right)\left(\theta-\theta_{0}\right)+\frac{1}{2} \beta^{\prime \prime}\left(\theta_{0}\right)\left(\theta-\theta_{0}\right)^{2}+\ldots,
$$

To create this unfavorable orientation, one must apply a torque $-\beta^{\prime}\left(\theta_{0}\right)\left(\theta-\theta_{0}\right)$ which cancels linear term H.J. Leamy, G.H. Gilmer, K.A. Jackson, in: Surface Physics of Crystalline Materials, ed. by J.M. Blakely (Academic, New York, 1976)

$$
\widetilde{\beta}\left(\theta_{0}\right) \equiv \beta\left(\theta_{0}\right)+\beta^{\prime \prime}\left(\theta_{0}\right)
$$

Formal proof in T.J. Stasevich dissertation

Essence of Gruber-Mullins (MF)

Single active step meanders between 2 steps separated by twice mean spacing.
Fermion evolves in 1D between 2 fixed infinite barriers $2\langle\ell\rangle$ apart.

1D Schrödinger equation

$$
\underset{-\langle\ell\rangle}{\stackrel{\bullet}{\longleftrightarrow}} \stackrel{\frac{\hbar^{2}}{2 m} \rightarrow \frac{\left(k_{B} T\right)^{2}}{2 \tilde{\beta}}}{\langle\ell\rangle} \begin{gathered}
-\frac{\left(k_{B} T\right)^{2}}{2 \widetilde{\beta}} \frac{\partial^{2}}{\partial \ell^{2}} \psi(x)=E \psi(x)
\end{gathered}
$$

Ground State

$$
\begin{aligned}
\psi_{0}(x) & =\frac{1}{\langle\ell\rangle} \cos \left(\frac{\pi \ell}{2\langle\ell\rangle}\right) \\
E_{0} & =\frac{\left(k_{B} T\right)^{2} \pi^{2}}{8 \tilde{\beta}\langle\ell\rangle^{2}}
\end{aligned}
$$

Remarkably, E_{0} is exactly the entropic repulsion!

Origin of elastic (dipolar) step repulsions

-Frustration of relaxation of terrace atoms between steps

-Energy/length: $U(\ell)=A / \ell^{2} \quad$ (Same y for points on two interacting steps separated by ℓ along $x \Rightarrow$ "instantaneous")

Importance of step repulsions

-1 of 3 parameters of continuum step model of vicinals
-Determine 2D pressure
-Determine morphology: e.g. bunch or pair
-Drives kinetic evolution in decay
-Elastic and entropic repulsions $\propto \ell^{-2}$ (entropic from $-\partial^{2} / \partial \ell^{2}$)
\Rightarrow universality of $\langle\ell\rangle^{-1} P(\ell)$ vs. $s \equiv \ell \mid\langle\ell\rangle$ so $P(s ;\langle\ell\rangle) \rightarrow P(s)$ scaling
Metallic surface states \Rightarrow additional oscillatory term in U

$$
U(\ell) \propto \ell^{-3 / 2} \cos \left(4 \pi \ell / \lambda_{F}+\phi\right) \quad \text { new length scale } \lambda_{F}
$$

Per Hyldgaard \& TLE, J. Crystal Growth 275, e1637 (2005) [cond-mat/0408645].

How the stress dipole at step edges arises

Stewart et al., PRB 49 ('94) 13848
2D classical: springs (beyond NN) for Si

V.I. Marchenko \& Y.A. Parshin, Sov. Phys. JEIP 52 ('80) 129

Some useful reviews re elastic interactions...

P. Nozières, in C. Godrèche (ed.), Solids Far from Equilibrium [Lectures at BegRohu Summer School], Cambridge University Press ('93) p. 1.
P. Müller \& A. Saúl, Elastic effects on surface physics, Surf. Sci. Rept. 54 ('04) 157.
H. Ibach, The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures, Surf. Sci. Rept. 29 ('97) 193
and articles by Nanosteps attendees
P. Müller \& A. Saúl, Elastic effects on surface physics, Surf. Sci. Rept. 54 ('04) 157.
B. Houchmandzadeh \& C. Misbah, Elastic Interaction Between Modulated Steps on Vicinal Surfaces, J. Phys. (France) I 5 ('95) 685; P. Peyla, A. Vallat, \& C. Misbah, Elastic interaction between defects on a surface, J. Crystal Growth 201/202 ('99) 97
V.B. Shenoy \& C.V. Ciobanu, Orientation dependence of the stiffness of surface steps: an analysis based on anisotropic elasticity, Surf. Sci. 554 ('04) 222; C.V. Ciobanu, D.T. Tambe, \& V.B. Shenoy, Elastic interactions bet'n [100] steps and bet'n [111] steps on TiN(001), Surf. Sci. 582 ('05) 145
F. Leroy, P. Müller, J.-J. Métois \& O. Pierre-Louis, Vicinal silicon surfaces: From step density wave to faceting,Phys. Rev. B 76 ('07) 045402

Fig. 8. The elastic component of the step energy $\Gamma=R \gamma_{01 n}-$ $\left(n a_{0} \gamma_{001}\right) / 2=\gamma_{\text {step }}^{[100]}+\gamma_{\text {int }}(R)$ for [110] steps on the (001) Cu surface as a function of step spacing, R. The circles represent the energies determined based on our atomistic simulation results while the dashed and solid lines are calculated using the parameters found in fitting the ($\overline{1} 1 \mathrm{~m}$) surface energies to Eq. (7) with $k_{\max }=2$ and 3 , respectively.

Najafabadi \& Srolovitz, use EAM \& study EAM metals: Ni, Pd, Pt, $\mathrm{Cu}, \mathrm{Ag}, \mathrm{Au}$

$$
E_{\text {tot }}=\sum_{i=1}^{N} \sum_{j \neq i} \phi\left(r_{i j}\right)+\sum_{i=1}^{N} F\left(\sum_{j \neq i} \rho\left(r_{i j}\right)\right)
$$

- $\mathrm{A}_{2} / \ell^{2} \mathrm{OK}$ for $\ell>3 \mathrm{a}_{0}$
- Need $\mathrm{A}_{3} / \ell^{3}$ also, for $\ell<3 \mathrm{a}_{0}$
- Including $\mathrm{A}_{4} / \ell^{4}$, too, does not improve much

Table 1
The material dependent coefficients ζ_{k} of the R^{-k} terms in the expansion of the interaction energy between [100] steps (Eq. (7)) extracted from fitting the simulated ($01 n$) surface energies; The ζ_{k} are reported for fits to the expansion with $k_{\text {max }}=2,3$ and 4 for each of the six fcc metals examined; The goodness of fit parameter χ^{2} would be zero for a perfect fit

	$0^{13} \zeta_{2}$ $(\mathrm{~J} / \mathrm{m})$	$10^{13} \zeta_{3}$ $(\mathrm{~J} / \mathrm{m})$	$10^{13} \zeta_{4}$ $(\mathrm{~J} / \mathrm{m})$	χ^{2}
Ag	19			0.0013
	20	-7		0.0003
	20	-3	-7	0.0003
Au	73			0.0271
	88	-60		0.0022
	85	-34	-49	0.0021
Cu	41	-23		0.0014
	47	-14	-18	0.0007
	46			0.0006
Ni	26	-10		0.0027
	28	-5	-11	0.0003
	28			0.0003
				0.0278
Pd	87			
	101	-55		0.0032
	97	-22	-62	0.0030
Pt	146	165	-74	
	161	-40	-65	0.0078

Table 2
The material dependent coefficients ζ_{k} of the R^{-k} terms in the expansion of the interaction energy between [110] steps (Eq. (7)) extracted from fitting the simulated ($11 m$) surface energies

	$\begin{aligned} & 10^{13} \zeta_{2} \\ & (\mathrm{I} / \mathrm{m}) \end{aligned}$	$\begin{aligned} & 10^{13} \zeta_{3} \\ & (\mathrm{~J} / \mathrm{m}) \end{aligned}$	$\begin{aligned} & 100^{13} \zeta_{4} \\ & (\mathrm{~J} / \mathrm{m}) \end{aligned}$	χ^{2}
Ag	26			0.0003
	36	-34		0.0002
	34	-16	-35	0.0002
Au	108			0.0077
	142	-141		0.0004
	135	-78	-122	0.0003
Cu	56			0.0031
	78	-92		0.0017
	72	-48	-85	0.0017
Ni	36			0.0007
	48	-60		0.0004
	44	-29	-60	0.0004
Pd	126			0.0073
	165	-166		0.0004
	156	-97	-134	0.0004
Pt	206			0.0138
	263	-255		0.0015
	247	-123	-254	0.0016

How far apart must steps be just inverse-square repulsion?

Displacements (200x magnification near $\mathrm{Ni}(001)$ (100)steps (zig-zag), separated by 300a ${ }_{0}$ [Shillrot\&Srolovitz, PRB 53 ('96) 11120]

$$
E_{\text {int }}=\frac{A_{1}}{\ell}+\frac{A_{2}}{\ell^{2}}+\frac{A_{3}}{\ell^{3}} \begin{array}{|cccc|}
\hline & A_{1}(\mathrm{eV}) & A_{2}(\mathrm{eV} \AA) & A_{3}\left(\mathrm{eV} \AA^{2}\right) \\
\hline \mathrm{Au} & -0.0003 \pm 0.0002 & 0.17 \pm 0.02 & -0.62 \pm 0.34 \\
\mathrm{Ni} & -0.00003 \pm 0.00002 & 0.045 \pm 0.001 & -0.14 \pm 0.02 \\
\hline
\end{array}
$$

Including anisotropy (Stroh formalism) improves fit with dipole

Elastic Interactions on Principal Faces of Si

Leroy, Müller, Métois, Pierre-Louis, PRB 76 ('07) 045402
P. Müller, A. Saúl/Surface Science Reports 54 (2004) 157-258

mo-mo		$\alpha_{1} \ln (L / 2 \pi a)$	$\alpha_{1}=\frac{E a^{2} m_{o}^{2}}{\pi\left(1-v^{2}\right)}$
di-di	$\alpha_{2}(a / L)^{2}$	$\alpha_{2}=\frac{2 A^{2}(1-v)^{2}}{\pi E a^{4}}$	
mo-di		$\alpha_{3}(a / L)$	$\alpha_{3}=-\frac{A m_{o}}{\pi a}(1+v)$
di-mo	-		

TABLE III. (a) Elastic energy W / L for dipoles. Moreover the expressions are given per unit step-length, thus the unity is an energy over surface area. (b) Elastic energy W / L for alternated monopoles. Notice that $A_{d i p}=+\frac{1-\nu^{2}}{\pi E} A^{2}$ but $A_{m o n o p}=\frac{(1+\nu)(1-2 \nu)}{\pi E} F_{y}^{2}$ (see the Appendix). The + and - signs arise, respectively, for N even and N odd. Moreover, the expressions are given per unit step length; thus, the unity is an energy over surface area.

(a)	Intrabunch	Interaction between two bunches (interbunch)	Interaction energy for an infinite periodic surface
Exact expression	$\frac{A_{\operatorname{dip}}}{a^{2}} \sum_{i<j, j} \frac{1}{(i-j)^{2}}$	$\frac{A_{\operatorname{dip}}}{a^{2}} \sum_{i, j=1}^{N} \frac{1}{[M+(i-j)]^{2}}$	$\frac{A_{d i p}}{a^{2}} \sum_{k} \sum_{i, j=1}^{N} \frac{1}{[k M+(i-j)]^{2}}$
Approximated expression	$\frac{A_{\text {dip }}}{a^{2}}\left[N \frac{\pi^{2}}{6}-1-\ln N\right]$	$-\frac{A_{\text {dip }}}{a^{2}} \ln \left[1-\left(\frac{N}{M}\right)^{2}\right]$	$-\frac{A_{\text {dip }}}{a^{2}} \ln \left[\frac{\sin \left(\frac{\pi N}{M}\right)}{\left(\frac{\pi N}{M}\right)}\right]$
(b)	Intrabunch	Between two bunches (interbunch)	For an infinite pattern of bunches

Exact
expression $\frac{A_{\text {mon }}}{a_{0}^{2}} \sum_{i<j, j=1}^{N}(-1)^{j-i} \ln \left((j-i) \frac{a}{a_{0}}\right) \quad \frac{A_{m o n}}{a_{0}^{2}} \sum_{i, j=1}^{N}(-1)^{j-i} \ln \left((M+j-i) \frac{a}{a_{0}}\right) \quad \frac{A_{\text {mon }}}{4 a_{0}^{2}} \sum_{k} \sum_{i, j=1}^{N}(-1)^{j-i} \ln \left[\left((k M+j-i) \frac{a}{a_{0}}\right)\right]$

Approximated
expression

$$
\frac{A_{\text {mon }}}{4 a_{0}^{2}}\left[2 N \ln \left(\frac{\pi a_{0}}{2 a}\right)-1 \pm \ln N\right] \quad \pm \frac{A_{\text {mon }}}{4 a_{0}^{2}} \ln \left[1-\left(\frac{N}{M}\right)^{2}\right]
$$

$$
\pm \frac{A_{\text {mon }}}{4 a_{0}^{2}} \ln \left(\frac{\sin \left(\frac{\pi N}{M}\right)}{\left(\frac{\pi N}{M}\right)}\right)
$$

Particle in 1D Box vs. Exact

$$
E=\int \beta \sqrt{1+x^{\prime 2}} d y \sim \text { const. }+\int \frac{\tilde{\beta} x^{\prime 2}}{2} \underbrace{}_{x^{\prime 2} \rightarrow \dot{x}^{2}} \text { 1-D Schrödinger eqn } \frac{\hbar^{2}}{2 m} \rightarrow \frac{\left(k_{B} T\right)^{2}}{2 \tilde{\beta}}
$$

- Free fermions: repulsion just entropic

$$
\psi_{0}=\frac{1}{\langle\ell\rangle} \sin \left(\frac{\pi x}{2\langle\ell\rangle}\right) \quad E_{0}=\frac{\left(k_{B} T\right)^{2} \pi^{2}}{8 \tilde{\beta}\langle\ell\rangle^{2}}
$$

- $U(\ell)=A l \ell^{2}$, large A

$$
\begin{aligned}
& \psi_{0} \propto \mathrm{e}^{-x^{2} / 4 w^{2}} \quad w^{4}=\frac{\left(k_{B} T\right)^{2}}{8 \tilde{\beta} U^{\prime \prime}(\langle\ell\rangle)} \\
& w=\text { const. } \tilde{A}^{-1 / 4}\langle\ell\rangle
\end{aligned}
$$

A enters only as $\tilde{A}: \quad \tilde{A} \equiv \frac{\tilde{\beta} A}{\left(k_{B} T\right)^{2}}$

const. changes with approximation

Entropic \& Elastic Not Simply Additive!

Large Ã keeps steps apart, decreasing contribution of entropic relative to energetic

Vicinal expansion: $\mathrm{f}=\mathrm{f}_{0}+(\beta / \mathrm{h}) \tan \phi+\mathrm{g} \tan ^{3} \phi$ $\mathrm{g}=\left(\pi^{2} / 6\right)(\mathrm{kT})^{2} / \beta^{\sim} \times$ Total

Entropic \& Elastic Not Simply Additive! Large Ã keeps steps apart, decreasing contribution of entropic relative to energetic

Jayaprakash, Rottman, \& Saam, PRB 30 ('84) 6549 \& factor 2 error

Particle in 1D Box vs. Exact

$$
E=\int \beta \sqrt{1+x^{\prime 2}} d y \sim \text { const. }+\int \frac{\tilde{\beta} x^{\prime 2}}{2} \underbrace{}_{x^{\prime 2} \rightarrow \dot{x}^{2}} \text { 1-D Schrödinger eqn } \frac{\hbar^{2}}{2 m} \rightarrow \frac{\left(k_{B} T\right)^{2}}{2 \tilde{\beta}}
$$

- Free fermions: repulsion just entropic

$$
\psi_{0}=\frac{1}{\langle\ell\rangle} \sin \left(\frac{\pi x}{2\langle\ell\rangle}\right) \quad E_{0}=\frac{\left(k_{B} T\right)^{2} \pi^{2}}{8 \tilde{\beta}\langle\ell\rangle^{2}}
$$

- $U(\ell)=A l \ell^{2}$, large A

$$
\begin{aligned}
& \psi_{0} \propto \mathrm{e}^{-x^{2} / 4 w^{2}} \quad w^{4}=\frac{\left(k_{B} T\right)^{2}}{8 \tilde{\beta} U^{\prime \prime}(\langle\ell\rangle)} \\
& w=\text { const. } \tilde{A}^{-1 / 4}\langle\ell\rangle
\end{aligned}
$$

A enters only as $\tilde{A}: \quad \tilde{A} \equiv \frac{\tilde{\beta} A}{\left(k_{B} T\right)^{2}}$

const. changes with approximation

Steps in 2D \rightarrow fermion worldlines in 1D

- Step non-crossing \Rightarrow fermions or hard bosons
- Energy \propto path-length \times free energy/length β, expand \Rightarrow 1D Schrödinger eqn., $m \rightarrow$ stiffness β
- Analogous to polymers in 2D (deGennes, JCP '68)
- Only dependence on A via $\tilde{A} \equiv \beta A\left(k_{B} T\right)^{2}$
- Mean-field (Gruber-Mullins): 1 active step, $0 \leq s \leq 2$
$-\tilde{A}=0$: particle in box, $P(s)=\psi_{0}{ }^{2} \propto \sin ^{2}(\pi s / 2)$, $\varepsilon_{0} \propto T^{2} / \beta\langle\ell\rangle^{2} \rightarrow$ entropic repulsion
$-\tilde{A} \geq 1^{1} / 2$ parabolic well, $P(s) \propto \exp \left[-(s-1)^{2} / 2 w_{M}^{2}\right], w_{M} \propto \tilde{A}^{-1 / 4}\langle\ell\rangle$
- $\tilde{A} \rightarrow \infty$: "phonons", variance of $P(s)$ is $2 w_{M}{ }^{2}$, not $w_{M}{ }^{2}$

Comparison of prefactors for Gaussian approximations

Measure variance σ^{2} of TWD

$$
\sigma^{2}=\kappa_{X} / \varrho
$$

Model	Approximation	NN/all	κ_{x}
Gruber-Mullins	Single active step	NN	(0.289)
		all	(0.277)
Grenoble	Entropy completely neglected, Independent steps	NN	(0.520)
	all	(0.475)	
Grenoble, modified	Entropy included only in average way	NN	0.520
	all	0.475	
Saclay	Continuum roughening theory	all	$4 \pi^{-2} \cong 0.405$
Wigner	Wigner surmise	all	$(1 / 2)$

Wigner Surmise (WS) for TWD (terrace-width distribution)

$U(\ell)=\tilde{A} \ell^{2}$
$\tilde{A} \equiv \frac{\tilde{\beta} A}{\left(k_{B} T\right)^{2}}$

Generalizing from the special cases: \quad WS \rightarrow GWS

- The three special cases correspond to $\varrho=1,2$, and 4 .

$$
P_{1}(s)=\frac{\pi}{2} s \exp \left(-\frac{\pi}{4} s^{2}\right)
$$

$$
\tilde{A}_{2}=0: \quad P_{2}(s)=\frac{32}{\pi^{2}} s^{2} \exp \left(-\frac{4}{\pi} s^{2}\right)
$$

$$
\tilde{A}_{4}=2: \quad P_{4}(s)=\left(\frac{64}{9 \pi}\right)^{3} s^{4} \exp \left(-\frac{64}{9 \pi} s^{2}\right)
$$

- \tilde{A} and ϱ are related by: $\tilde{A}=(\varrho-2) \varrho / 4 ; \quad \varrho=1+\sqrt{1+4 \tilde{A}}$
- Simplest interpolation expression:

$$
P_{\varrho}(s)=a_{\varrho} s^{\varrho} \exp \left(-b_{\varrho} s^{2}\right)
$$

- Two conditions on $P_{e}(s)$: normalization \& unit mean \Rightarrow values of a_{e}, b_{e} (in terms of Γ functions),

Calogero-like Hamiltonian:

$$
\mathcal{H}=-\sum_{j=1}^{N} \frac{\partial^{2}}{\partial x_{j}^{2}}+2 \frac{\beta}{2}\left(\frac{\beta}{2}-1\right) \sum_{1 \leq i<j \leq N}\left(x_{j}-x_{i}\right)^{-2}+\omega^{2} \sum_{j=1}^{N} x_{j}^{2}
$$

[In the limit $N \rightarrow \infty, \omega \rightarrow 0$; in Calogero $\mathcal{H}, x_{j}^{2} \rightarrow\left(x_{j}-x_{i}\right)^{2}$.]

$$
\Psi_{0}=\prod_{1 \leq i<j \leq N}\left|x_{j}-x_{i}\right|^{\beta / 2} \exp \left(-\frac{1}{2} \omega \sum_{k=1}^{N} x_{k}^{2}\right)
$$

The ground-state density Ψ_{0}^{2} is recognized as a joint probability distribution function from the theory of random matrices for Dyson's Gaussian ensembles.

Sutherland Hamiltonian:

$$
\begin{gathered}
\mathcal{H}=-\sum_{j=1}^{N} \frac{\partial^{2}}{\partial x_{j}^{2}}+2 \frac{\beta}{2}\left(\frac{\beta}{2}-1\right) \frac{\pi^{2}}{L^{2}} \sum_{i<j}\left[\sin \frac{\pi\left(x_{j}-x_{i}\right)}{L}\right]^{-2} \\
\Psi_{0}=\prod_{i<j}\left|\sin \frac{\pi\left(x_{j}-x_{i}\right)}{L}\right|^{\beta / 2}, \quad x_{j}>x_{i} \\
\theta_{i} \equiv 2 \pi x_{i} / L \quad \Rightarrow \quad \Psi_{0}^{2}=\prod_{i<j}\left|e^{i \theta_{j}}-e^{i \theta_{i}}\right|^{\beta}
\end{gathered}
$$

The ground-state density Ψ_{0}^{2} is also a joint probability distribution function from the theory of random matrices, now for Dyson's circular ensembles.

Note that the pair correlation functions and other properties of the ensembles can be evaluated exactly only for the cases $\beta=1,2$, or 4 , corresponding to orthogonal, unitary, or symplectic symmetry of the ensemble.

Generalized Wigner Surmise (GWS) for TWD

Generalizing from the special cases:

- The three special cases correspond to $\varrho=1,2$, and 4 .
- \tilde{A} and ϱ are related by: $\tilde{A}=(\varrho-2) \varrho / 4 ; \quad \varrho=1+\sqrt{1+4 \tilde{A}}$

$$
\begin{gathered}
U(\ell)=A / \ell^{2} \\
\tilde{A} \equiv \frac{\tilde{\beta} A}{\left(k_{B} T\right)^{2}}
\end{gathered}
$$

- Simplest interpolation expression: $\quad P_{\varrho}(s)=a_{\varrho} s^{\varrho} \exp \left(-b_{\varrho} s^{2}\right)$
- Two conditions on $P_{e}(s)$: normalization \& unit mean
\Rightarrow values of $a_{e}, b_{\boldsymbol{e}}$ (in terms of Γ functions),

Why is the Wigner surmise is so interesting and universal?
"Stay tuned" until next week!
Can still use Gaussian for large Ã, if generalize from $\tilde{A} \propto \sigma^{-4}$ to:

$$
\tilde{A} \approx \frac{1}{16}\left[\left(\sigma^{2}\right)^{-2}-7\left(\sigma^{2}\right)^{-1}+\frac{27}{4}+\frac{35}{6} \sigma^{2}\right]
$$

Discreteness of steps not important for $\langle\ell\rangle \geq 4$
System collapses for Ã <-1/4

Monte Carlo data confronts approximations

Dots: MC data
Line: Wigner
Dashes: Gruber-Mullins (mean field)
Long-short [-short]: Grenoble (no entropic int'n, EA)
Long-long-short-short: Saclay (continuum roughening, R)

Lower plot highlights differences: remove ρ^{-1} asymptotic decay Wigner is best, quantitatively and conceptually

Hailu Gebremariam et al., Phys. Rev. B 69 ('04)125404

Comparison of variance of $P(s)$ vs. Ã computed with Monte Carlo:

 GWS does better, quantitatively \& conceptually, than any other approximation Hailu Gebremariam et al., Phys. Rev. B 69 ('04)125404
Experiments measuring variances of TWDs

Vicinal	$T(\mathrm{~K})$	a^{2}	e	A	A_{W} / A_{G}	$A_{\text {W }}(\mathrm{cV} \mathrm{A})$	Experimenters
Pt(110)-(1×2)	298		2.2	0.13	-	$\bar{\beta}=$?	Swamy, Bertel [36]
$\mathrm{Cu}(19,17,17)$	353	0.122	4.1	2.2	0.77	0.005	Geisen [5,54]
Si(lll)	1173	0.11	3.8	1.7	0.96	0.4	Bermond, Metois [55]
$\mathrm{Cu}(1,1,13)$	748	0.091	4.8	3.0	1.27	0.007	Giesen [5,56]
$\mathrm{Cu}(1,7,7)$	306	0.085	5.1	4	1.37	0.004	Geisen [5,54]
$\mathrm{Cu}(111)$	313	0.084	5.0	3.6	1.39	0.004	Geisen [5,54]
$\mathrm{Cu}(111)$	301	0.073	6.0	6.0	1.58	0.006	Geisen [5,54]
$\mathrm{Ag}(100)$	300	0.073	6.4	6.9	1.58	$\bar{\beta}=$?	P. Wang. . Williams
$\mathrm{Cu}(1,1,19)$	320	0.070	6.7	7.9	1.64	0.012	Geisen [5,56]
Si(1 11)-(7×7)	1100	0.068	6.4	7.0	1.67	0.7	Williams [57]
$\mathrm{Si}(111)-(1 \times 1) \mathrm{Br}$	853	0.068	6.4	7.0	1.67	0.1	X.-S. Wang, Williams [58]
Si(1 11)-Ga	823	0.068	6.6	7.6	1.67	1.8	Fujita. . .Ichikawa [59]
Si(1 11)-Al $\sqrt{3}$	1040	0.058	7.6	10.5	1.85	2.2	Schwennicke. . Williams [60]
$\mathrm{Cu}(1,1,11)$	300	0.053	8.7	15	1.95	0.02	Barbier et al. [21]
$\mathrm{Cu}(1,1,13)$	285	0.044	10	20	2.12	0.02	Geisen [5,56]
Pt(1 1 1)	900	0.020	24	135	2.59	6	Hahn. . Kern [61]
Si(1 13) rotated	1200	0.004	124	3.8×10^{3}	2.92	$\begin{aligned} & (27 \pm 5) \times \\ & 10^{2} \end{aligned}$	van Dijken, Zandvliet, Poelsema [9]

Experimental Test of Thermal Dependence of \tilde{A}

Fig. 6. Temperature dependence of $T^{2} \tilde{A}_{\mathrm{w}}$ (solid circles) and $T^{2} \tilde{A}_{\mathrm{G}}$ (open squares) for $\mathrm{Cu}(1113)$, with error bars distinguished by narrow and wide feet respectively. The solid curve is calculated from Eq. (1), with $\tilde{\beta}$ obtained from Footnote 4 and A set to $7.1 \mathrm{meV} \AA$, the value determined in Ref. [9]. The gray band blanketing the data corresponds to a range of about $\pm 50 \%$ of A.

What happens when steps are allowed to touch? Effective attraction: $\varrho=2 \rightarrow \varrho<2$, finite-size dep.

NNI (NT) and NN2 Chains

- Map steps onto 1D free-fermions

- Overlapping steps (NN2) can be mapped onto NearestNeighbor Included (NNI) chain, then shifted and rescaled

NNE : S.-A. Cheong \& C. L. Henley (unpublished); S.-A. Cheong, dissertation

Anisotropy of Repulsion Strength

 (is much weaker than edge-diffusion anisotropy)M. Giesen, S. Dieluweit/Journal of Molecular Catalysis A: Chemical 216 (2004) 263.

Needs more study, especially from theory perspective

Essence of Indirect Interactions

- Symmetry determined by mediating state[s] \& by adatom-metal coupling

- Local, screened perturbation of robust substrate ψ
- Oscillatory in sign; power-law decay at long range; simple form only when asymptotic \& negligibly small
- Overwhelmed by any direct interaction at short-range
- Weaker than binding energy \& diffusion barrier
- Produces correlations measurable by FIM, STM, ...
- Produces ordered 2D superlattices measurable by LEED, RHEED, grazing x-ray...

Metallic Surface State on Noble Metal (111)

Indirect interaction via bulk vs. surface states

 Asymptotically $E_{\text {pair }}(d) \propto d^{-n} \sin \left(2 q_{F} d+2 \delta\right)$- $\lambda_{F} / 2 \approx 2.3 \AA ̊[\mathrm{Cu}]$
- Anisotropic $\varepsilon_{n}\left(\mathbf{k}_{\|}\right)$
- Messy computation: multiple 3D bands
- $\lambda_{F} / 2 \approx 15 \AA ̊[C u(111)]$
- Circular isotropy $\varepsilon=\left(\hbar k_{\|}\right)^{2 / 2 m *}$
- Analytically simple: single parabolic 2D band
- Asymptotic decay envelope ${ }^{\bullet}$ Asym decay env. $\propto d^{-2}$ $\propto d^{-5} \Rightarrow$ insignificant
\Rightarrow observable
- Trio asymptotic $\propto d^{-7}$
- Trio asymptotic $\propto d^{-5 / 2}$

Ripple Structures in Ag(111) Regions Confined by C_{60} : Evidence of Surface State

Topography image of ripple structures

Current image of ripple structures $204.18 \mathrm{~nm} \times 204.18 \mathrm{~nm}, \mathrm{~V}=-1.396 \mathrm{~V}, \mathrm{I}=0.101 \mathrm{nA}$, room temp.
C. Tao \& E.D. Williams

Strong, Slowly-Decaying Atom-Adchain Interaction

Asymptotic Evaluation:

$$
\Delta E_{L-A}(l) \approx-\frac{\varepsilon_{F}}{\sqrt{\pi}}\left(\frac{2 \sin \left(\delta_{F}\right)}{\pi}\right)^{2} A\left(\delta_{F}\right)\left(\frac{\lambda_{F} / 2}{a}\right) \frac{\sin \left(2 q_{F} l+2 \delta_{F}+\pi / 4\right)}{\left(q_{F} l\right)^{3 / 2}}
$$

Deducing ChainAtom Potential from 950^{+}STM

 imagesJ. Repp, dissertation '02

Adchain-Adchain Interaction: Prelude to Steps?

Surface-state mediated step interaction wrecks of

 TWD scaling w.W. Pai, TLE, J.E. Reutt-Robey, Surf. Sci. 307-9 ('94) 747

From Chains to Steps: Complications т. Greber: steps as actors or spectators?

q_{F} tunable by step width \& decoration
Baumberger, Greber,..., PRL 88 ('02) 237601

Suitch from terrace to step modulation Ortega, ...,Himpsel, PRL 84 ('00) 6110 ψ on vicinal $\mathrm{Cu}(111)$

vicinaldominated

terracedominated switch at $\alpha=7^{\circ}$

Broad Implications of Surface-State Mediated Int'ns

- Distribution $P(\ell /\langle\ell\rangle)$ of terrace widths ℓ becomes dependent on mean step spacing $\langle\ell\rangle$ (rather than universal form depending only on strength of ℓ^{-2} step-step repulsion). [Pai..., Surf Sci '94]
- Equilibrium crystal shape no longer scales arbitrarily with crystal size since introduction of new length scale λ_{F}. Pokrovsky-Talapov "critical behavior" of curved region near facet edges should be altered.
- Pair and trio interactions can affect the pathways of atoms approaching islands/clusters, enhancing or impeding growth.
- Magnetic interactions should have same periodicity as atomic interactions, but there is no obvious a priori reason for the phase factor δ_{F} to be the same, so rich behavior is possible.
- Intriguing possibilities for nanoengineering!

Facet edge vs. isolated step (or single-layer island) \& vicinal surface
"On the Beach": facet "shoreline"
...by a rough sea!
\boldsymbol{t} is along y direction.

FPS: Facet-edge step has much more space in which to meander than steps in rounded [rough] region.

AI/Si(111): $T=300 \mathrm{~K}$
D.B. Dougherty Ph.D.'04

FPS Analysis: steps as [free] fermion world lines

λ^{-1} is Lagrange multiplier re conserved volume, $\rightarrow 0$ in macro limit

Exact result for step density $\rho_{\lambda}(j)=\left\langle a_{j}^{\dagger} a_{j}\right\rangle_{\lambda}$ in terms of Bessel function J_{j} \& deriv's Near shoreline,

$$
\lim _{\lambda \rightarrow \infty} \lambda^{1 / 3} \rho_{\lambda}\left(\lambda^{1 / 3} x\right)=-x \operatorname{Ai}(x)^{2}+\operatorname{Ai}^{\prime}(x)^{2}
$$

Shoreline wandering: $\operatorname{Var}\left[b_{\lambda}(t)-b_{\lambda}(0)\right] \cong \lambda^{2 / 3} g\left(\lambda^{-2 / 3} t\right) \quad g(s): 2|s| \rightarrow 1.6264-2 / s^{2}$

$$
\operatorname{Var}\left[b_{\ell}(\ell \tau+x)-b_{\ell}(\ell \tau)\right] \cong\left(\frac{1}{2} A \ell\right)^{2 / 3} g\left(\frac{A^{1 / 3}}{2^{1 / 3} \ell^{2 / 3}} x\right) \quad \ell \sim N^{1 / 3} \quad \text { cf. 3-d Ising corner }
$$

In scaling regime shoreline fluctuations are non-Gaussian \& related to GUE multimatrix models.

$$
\kappa=1 / 2\left(\pi \gamma_{\mathrm{PT}} \mathrm{k}_{\mathrm{B}} \mathrm{~T} / \widetilde{\beta}\right)^{2} \quad \text { where } \mathrm{h}=-2 / 3 \gamma_{\mathrm{PT}}\left(\mathrm{r}-\rho_{0}\right)^{3 / 2} \text { (up to lattice consts) }
$$

Heuristic extraction of dynamic/growth exponent β

Isolated steps: $G(t) \equiv\left\langle\left[x\left(t_{0}+t\right)-x\left(t_{0}\right)\right]^{2}\right\rangle_{t_{0}\left[, y_{0}\right]} \propto t^{2 \beta}= \begin{cases}t^{1 / 2} & \mathrm{~A} \\ t^{1 / 4} & \mathrm{~B}\end{cases}$

Fig. 1. A stepped surface seen from above. A typical configu-
A. Pimpinelli, J. Villain, et al., Surf. Sci. 295, 143 ('93)

- \# atoms entering/leaving in $t: N(t) \approx c_{\text {eq }} \not L_{\mathrm{s}} t / \tau^{*}$
- fluctuating area': $W^{2} Ł^{2} \approx(\delta N)^{2} \approx N(t)$
- Ferrari et al. scaling: $W \sim \hbar^{\alpha} \rightarrow t^{1 / 3}$
- $L_{\mathrm{s}} \approx a$
A) Attachment-detachment limited

$$
\begin{aligned}
& 1 / \tau^{*} \approx \text { kinetic coef. } \\
& w \approx t^{1 / 5} \text { or } G(t) \approx t^{2 / 5}
\end{aligned}
$$

B) Step-edge diffusion limited

$$
\begin{aligned}
& 1 / \tau^{*} \approx D_{\text {se }} / t^{2} \\
& w \approx t^{1 / 11} \text { or } G(t) \approx t^{2 / 11}
\end{aligned}
$$

A. Pimpinelli, M. Degawa, TLE, EDW, Surface Sci. 598, L355 (2005).

$$
\begin{aligned}
& x(y, t) \rightarrow \tilde{r}(\theta, t)=\left[r(\theta, t)-\rho_{0}\right] / \rho_{0} \\
& \delta \mu=a^{2} \tilde{\beta}\left(\kappa-\frac{1}{\rho_{0}}\right) \approx \frac{a^{2} \tilde{\beta}}{\rho_{0}}\left(-\tilde{r}_{\theta \theta}+\frac{1}{2} \tilde{r}_{\theta}^{2}\right)
\end{aligned}
$$

Scaling approach
 Scaling approach

Nonlinear KPZ term in Langevin eqns due to curvature
(or from asymmetric potential due to step neighbor on just 1 side)

$$
\begin{gathered}
\frac{\partial \tilde{r}(\theta, t)}{\partial t}=\left(\Gamma_{\mathrm{AD}} \cdots\right)\left[\frac{\partial^{2} \tilde{r}}{\partial \theta^{2}}-\frac{1}{2}\left(\frac{\partial \tilde{r}}{\partial \theta}\right)^{2}\right]+\eta(\theta, t) \\
\frac{\partial \tilde{r}(\theta, t)}{\partial t}=\left(\Gamma_{\mathrm{SED}} \cdots\right)\left[-\frac{\partial^{4} \tilde{r}}{\partial \theta^{4}}+\frac{1}{2} \frac{\partial^{2}}{\partial \theta^{2}}\left(\frac{\partial \tilde{r}}{\partial \theta}\right)^{2}\right]+\eta_{C}(\theta, t)
\end{gathered}
$$

Dilate by b, so $Ł^{\prime}=b \notin, w^{\prime}=b^{\alpha} w, t^{\prime}=b^{\boldsymbol{z}} \boldsymbol{t}$; equate exponents of b

Class	$\partial / \partial t$	Lin. $\nabla^{2,4}$	NL KPZ	Noise	α	z	$\beta=\alpha / z$
Isolated AD	$\alpha-z$	$\alpha-2$	-	$-(1+z) / 2$	$1 / 2$	2	$1 / 4$
Isolated SED	$\alpha-z$	$\alpha-4$	-	$-(3+z) / 2$	$1 / 2$	4	$1 / 8$
Train AD	$\alpha-z$	$\alpha-2$	-	$-(2+z) / 2$	$0(\ln)$	2	0
Asymmtr. AD	$\alpha-z$	$\alpha-2$	$2 \alpha-2$	$-(1+z) / 2$	$1 / 3$	$5 / 3$	$1 / 5$
Asymmtr. SED	$\alpha-z$	$\alpha-4$	$2 \alpha-4$	$-(3+z) / 2$	$1 / 3$	$11 / 3$	$1 / 11$

STM images (scanned, not snapshot): step \& facet edge

(111) facet [close-packed] on supported Pb crystallite
a) isolated

Degawa et al.

from screw dislocation
Equilibrium fluctuations studied by F. Szalma et al. '06

Extract 2β from log-log plot of experimental $G(t)$

Exponent for facet edge is significantly smaller than for isolated step, with value consistent with expectation for asymmetric SED

C_{60} on $\mathrm{Ag}(111)$

Some Take-Away Messages

-Fermion picture is fruitful, and perhaps also seductive
-When energetic repulsions $\propto \mathrm{A} / \ell^{2}$, TWD is independent of $\langle\ell\rangle$
-Entropic and elastic interactions do not simply add
-Generalized Wigner surmise is useful to analyze TWD
-Short-range corrections to elastic interactions may lead to finite-
size corrections \Rightarrow may need to do several $\langle\ell\rangle$'s (i.e., ϕ 's)
-Interactions mediated by metallic surface states introduce new
length scale that leads to dependence of TWD on $\langle\ell\rangle$, no scaling

