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Fluctuations, Line Tensions, and Correlation Times of Islands on Surfaces
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We analyze in detail the fluctuations of the (spatial) Fourier modes of nano-scale islands using
kinetic Monte Carlo simulations with realistic energy barriers for hopping rates. From the analyses of
the fluctuation of each individual mode we deduce absolute line tensions in the azimuthal directions
of the surface. We show that the coupling of the modes due to the anisotropy of a crystal surface
does not affect the fluctuations in the anticipated way. The autocorrelation functions of these
modes give the scaling of the correlation times with wavelength in the experimentally observed
regime. Both the energetic parameters and the correlation times give very good agreement with
available experimental data and also provide a tool to extrapolate to much more complex structures
than used in these MC simulations.

PACS numbers: 68.35.Md, 05.40.-a, 87.53.Wz, 68.65.-k

I. INTRODUCTION

Nanoscale islands consisting of 102 – 105 atoms have
captured great interest over recent years for a variety
of reasons. From a practical standpoint, they provide
a precursor to the formation of quantum dots, which,
if assembled in a controlled way, can serve as the basic
ingredients of nano-scale electronic and mechanical de-
vices. Many crystallites or nanomounds are best viewed
as “wedding-cake”-like stacks of such islands.1 They are
the intermediary between a flat surface and a small three-
dimensional structure. In contrast to steps, which re-
quire vicinal surfaces2 that often must be well character-
ized over mesoscopic regions, islands can be studied in
smaller-scale regions that are flat only locally.

Of particular interest to us are the shape and the fluc-
tuations of the perimeter of these islands. The shape
provides information about the line tension or step free
energy per length, from which one can compute the step
stiffness that describes the “inertial” properties of steps.
The “dipole” mode of these fluctuations are long known
to underlie the diffusion of such islands, but shorter-
wavelength modes are also of great interest, since they
can be correlated with similar fluctuations of steps and
provide a way to assess, again, the stiffness of the step
and also the kinetic or atomistic diffusion coefficient asso-
ciated with the mechanism that dominates the atomistic
processes underlying the fluctuations. Until recently, at-
tention was limited to structures for crystal anisotropy
could seemingly be ignored.

Here we pay particular attention to the role of the
inevitable anisotropy of crystal surfaces, which around
room temperature or even above it is typically sufficiently
strong that it should apparently be taken into account in
order to correctly characterize the morphology of the var-
ious (near) equilibrium structures appearing on surfaces
and their dynamics. In this paper we focus on the line
tension and stiffness and their orientation dependence;
we give an analytic method to calculating these physical
parameters from the fluctuation of nanoscale islands.

The little experimental data on such systems involve
runs of worrisome duration or use probes that provide
scanned rather than instantaneous images. To gener-
ate fully-characterized data, we turned to kinetic Monte
Carlo (KMC) simulations to mimic the equilibrium fluc-
tuations of islands. These simulations are the input of
our analytic theory which, starting from the excess free
energy corresponding to the capillary wave fluctuations
of the island edge, provides the eigenmodes of these fluc-
tuations. Since the 2D Wulff plot relating the equilibrium
island shape and the line tension in the azimuthal direc-
tions on the surface provides only relative line tensions for
various orientations, a key problem is always the deter-
mination of the chemical potential λ of the island edge,
which then produces an absolute relation. This potential
can be determined with surprisingly good (∼ 10%) accu-
racy from the spectrum of the modes of the system. We
compare these eigenmodes and the simple Fourier modes
of the fluctuations and reach the surprising conclusion
that neglecting anisotropy in our case can actually im-
prove results!

Another aim of the paper is to examine the correlation
of the fluctuations of the Fourier modes and thereby to
find the rate-limiting process driving the fluctuations in
a fairly realistic model. For our KMC simulations we
sought a system for which one could compute hop rates
with good accuracy and for which there was quantitative
experimental data with which to compare. Accordingly,
we have chosen Pb(111) so as to be able to compare with
intriguing recent experiments by Thürmer et al.

3 This
analysis gives the scaling of the correlation time with the
wavelength, that is the dynamic exponent z, and provides
us with characteristic times measured not only in MC
steps, but in real time. Thus, we can compare directly
with experiments and extrapolate to different structures
from the simple one considered here.

Utilizing direct surface imaging techniques, especially
scanning tunneling microscopy (STM), several attempts
have been made to measure and calculate step energies.
From a theoretical viewpoint the various methods that
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FIG. 1: Geometry of the MC simulation. The approximate
mean radius R of the island and the radius Rc of the container
are illustrated.

used the experimental data for calculations can be broken
down into two main groups. The first is based on a lattice
model which relates the island shape (radius and curva-
ture) to the temperature dependence of the free energy
and stiffness of the Ising model in the low-temperature
expansion, usually in high symmetry directions. By fit-
ting the functional shape of the free energy with vary-
ing temperature on the experimental data determined by
the equilibrium island shape4 gives the Ising kink energy,
which in turn provides the step energies and stiffnesses.
However, limitations of the Ising model to describe sur-
face structure have recently been noted.5

The other method is based on a step continuum model
which makes use of stochastic differential equations to de-
scribe the fluctuations of straight steps6 or island edges7,8

viewed as nearly circular closed-loop steps. Thus,
the initial calculations for island fluctuations assumed
isotropy:9 the power spectrum of the Fourier modes of the
step fluctuations were calculated and adapted with ap-
propriate modifications to nearly circular island shapes.10

If the anisotropy turns out to be strong, it cannot be han-
dled as a perturbation; a complete anisotropic calculation
without any such assumptions becomes necessary.

This challenge was recently been taken up by Khare
et al.,11 who give an approximate form for the free en-
ergy functional and calculate the chemical potential in-
tegrating all the Fourier modes in the system by using
the generalized equipartition theorem where the modes
are buried in a sum. However, these modes are coupled,
so any one mode missing (e.g. due to lack of experimen-
tal resolution) in the sum can contribute to a deviation
from the precise value of the chemical potential by it-
self and through its coupling to the other modes as well.
In contrast, our approach of analyzing individual modes
gives more insight into the extent to which this coupling
should be taken into account and provides the chemical

potential in a (mathematically) controlled way.

The autocorrelation function of fluctuations of step
edges and correlation times have been analyzed the-
oretically in Fourier space based on the Langevin
formalism,9,12 and in the context of straight-step fluctua-
tions on Si(111)13 and Si(001)6 surfaces for relatively long
wavelengths. The rate-limiting kinetics driving these
fluctuations are determined by the dynamic exponent,
which also sets the universality class to which the sys-
tem belongs,14 as the roughening exponent is always sup-
posed to be α = 2 in our cases. The correlation times
are theoretically identical to the relaxation time (or else-
where decay time) of surface features,15,16 like decay and
build-up of bumps and valleys in the step edge still near
equilibrium, of a (wave)length L, and also that of three
dimensional features like mesoscopic (or smaller) wires
on surfaces and surface corrugations as in earlier studies
by Mullins.17,18

The paper is organized as follows: In the next sec-
tion we give an analytic solution to the decoupling of
the Fourier modes of the system into the actual eigen-
modes and recalculate the free energy functional of the
edge fluctuations. The results can be understood with-
out the reader’s going through this algebra, only the re-
sult, expressed in Eq. (10), is used later. In Sec. III we
introduce the KMC simulation and in Sec. IV use its re-
sults to calculate the chemical potential and line tension.
In Sec. V we calculate the correlation functions of the
Fourier modes and deduce the scaling of the correlation
time with length, the dynamic exponent z. We compare
with available experimental data. Sec. VI concludes the
paper.

II. FOURIER MODES, EIGENMODES

The relationship between the equilibrium crystal shape
and the surface tension or, in our 2D case, between the
equilibrium island shape and the line tension of its edge
can be established by the minimization of the free energy
functional of the island edge. The orientation-dependent
line tension β(n) is defined as the work per unit length
necessary to create the ds line element with normal n

to the perimeter. The free energy is the integral of this
work along the whole perimeter. The equilibrium island
shape at a constant temperature T , number of particles
N , and area Σ, is determined by the minimization of the
free energy functional with respect to the shape with the
constraint that the island area is constant, typically using
the method of Lagrange multipliers:19

F [R, Ṙ, θ] =

∮

Leq

β(n)ds− λ

∫

Σ

dσ =

=

2π∫

0

β(ψ(θ))
(

R2 + Ṙ2
)1/2

dθ − λ

2π∫

0

R2

2
dθ. (1)
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FIG. 2: Equilibrium island shape

Here the second line is in polar coordinates with θ
the polar angle and R(θ) the radius of the equilibrium
shape. The dot denotes the differentiation with respect
to the angle, λ is the Lagrange multiplier (which actu-
ally turns out to be the chemical potential), and ψ is
the angle which characterizes the vector normal to the
shape (see Fig. 2). ds and dσ are the line element and
surface element, respectively. Formally minimizing the
F = F [R, Ṙ, θ] functional, the Euler-Lagrange equation
gives a relation between the equilibrium island shape
R(θ) and the orientation dependent line tension, β(ψ),
and between the two angles involved: ψ which depends
on the polar angle and the equilibrium shape.11,20

δF

δR
= 0 =⇒

β(ψ) = λ R2

(R2+Ṙ2)1/2

ψ = θ − arctan Ṙ
R

(2)

However, in this procedure λ is a prefactor and cannot
be determined, leaving the relation relative. Eq. (2) is
the seminal Wulff construction in polar coordinates.

In order to determine the chemical potential, the ther-
mal fluctuations of the island edge can be utilized. In this
case the free energy of the island changes as its shape
changes due to the fluctuations, and the free energy is
certainly not at its minimum but depends on the island’s
instantaneous shape. Then the free energy of this in-
stantaneous shape is the integral over the line elements
of the shape with their corresponding line tension, which
changes with time as the orientation of the shape element
changes:

F [r, ṙ, θ; t] =

∮

L

β(n)ds =

=

2π∫

0

β(ψ(θ))
(

(R + r)2 + (Ṙ+ ṙ)2
)1/2

dθ (3)

Here r and ṙ are time dependent and describe the devia-
tion of the instantaneous shape from the equilibrium one

L

Σ

n

Ṙ + ṙ

θ

r ψ

R

Ṙ

FIG. 3: Instantaneous island shape. For a particular az-
imuthal direction, θ, the deviation from the equilibrium island
shape, r, its derivative with respect to θ, ṙ, the unit vector
normal to the instantaneous shape, n, and the corresponding
angle, ψ, are all time dependent.

as shown in Fig. 3. The angle ψ is also time-dependent
since now it depends not only on R and Ṙ as in Eq. (2),
but also on r and ṙ. Considering only small deformations
from the equilibrium shape (as it is usually assumed in
the capillary wave theory) and also small slope deviations

from the equilibrium slope Ṙ, so that r, ṙ ≪ R, the Tay-
lor expansion (both in β and in the square root) in these
small parameters leads to the functional

F [r, ṙ, θ; t] = λ

2π∫

0

1

2

(

Ṙr −Rṙ
)2

R2 + 2Ṙ2 −RR̈
dθ. (4)

This functional contains 3 quadratic terms A(θ)r2,
Q(θ)rṙ and B(θ)ṙ2. The cross term Q drops out after
taking the ensemble average; both the two other terms
are determined by properties of the equilibrium island
shape:

A(θ) =
1

2

Ṙ2

R2 + 2Ṙ2 −RR̈
(5)

B(θ) =
1

2

R2

R2 + 2Ṙ2 −RR̈
, (6)

and provide the weightings of the fluctuations of the
deformations characterized by r2 and ṙ2, respectively.
These deformations at the microscopic level are due to
the thermal movement of adatoms surrounding the island
constantly attaching to its edge and coming off from it.

To diagonalize the free energy one rewrites the inte-
grand in Fourier form

F [{rn}; t] = 2πλ
∑

m,n

(Am−n +mnBm−n) rn(t)r∗m(t) ,

(7)

where rk =
∫ 2π

0
r(θ) exp[ikθ]dθ and similarly for Ak and

Bk. The Fourier modes are coupled due to the anisotropy,
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which is contained in A and B as we shall see shortly.
Here n = 0 is the expansion-contraction mode; n = 1,
which we called the dipole mode in the Introduction, is
related to the Brownian, diffusive motion of the island;
n = 2 is a quadrupolar distortion, i.e. an elongated shape
with two maxima and two minima in perpendicular di-
rections; and so on. The Fourier components have her-
mitian properties since A(θ) and B(θ), the factors associ-
ated with the equilibrium island shape, are real functions;
hence, A−i = A∗

i , B−i = B∗
i , and r−i = r∗i .

The free energy of Eq. (7) can readily be cast into
matrix form:

F [r; t] = 2πλr† (A + MBN) r , (8)

where r is a vector containing the Fourier components of
the instantaneous island shape, A and B are hermitian
matrices, [A]m,n = Am−n, [B]m,n = Bm−n, and M = N

are diagonal matrices with the wavenumbers along the
diagonal.

As in practice there are only a finite number of atoms
on the edge of the island, we discretize the problem. If
the number of atoms on the edge is 2N , there are as
many modes in the system; as we will see in Sec. IV, to
analyze the right number of modes is crucial to the prob-
lem. Now, if r contains the rk Fourier components from
−N+1 through N , the Fourier transform is discrete and

rk =
∑N

j=−N+1 r
θ
j exp[i k jπ/N ], where rθ

j is the devia-

tion from the equilibrium shape in the θ = jπ/N direc-
tion.

The Ak and the Bk can be obtained similarly; and A

and B are finite cyclic hermitian matrices, meaning that
their diagonal elements are the same. They also reflect
the symmetry of the equilibrium shape as e.g. in our case
due to the six-fold symmetry the principal diagonal is
filled with A0, the 6th to the right with A−6, etc. As
M and N are the same diagonal matrices, the MBN

product keeps the hermitian property.
In the isotropic case (when the equilibrium shape is

circular), A(θ) = 0 and B(θ) = 1/2 for all θ. After
the Fourier transformation this gives A = 0 (zero ma-
trix) and B = (1/2)11 (diagonal matrix). The anisotropy
comes into play when the equilibrium shape is not circu-
lar, so that A(θ) and B(θ) are not constants and their
higher order Fourier components fill the (off-)diagonals.
These off-diagonals couple the Fourier modes.

Due to hermiticity the above matrix form is diagonal-
izable

F [{hn}; t] = 2πλ
∑

n

Λnhnh
∗
n , (9)

and the eigenvalues Λn of the A + MBN matrix are all
real. As we see shortly (in Eq. (10)) these eigenvalues
are related to the strengths of the hn eigenmodes, which
at every time instant are just the transforms of the rn(t)
Fourier modes of the instantaneous island shape. Again
due to hermiticity, there is a unitary matrix U which

transforms Eq. (8) into Eq. (9) and gives the linear rela-
tionship between r and h: r = Uh, where the vector h

contains the hn as its elements.
This decomposition of the free energy into eigenmodes

in Eq. (9) facilitates the calculation of the Lagrange mul-
tiplier λ. In equilibrium, according to the equipartition
theorem, the ensemble average of each mode, represent-
ing a degree of freedom, must have the same Boltzmann
energy:

2πλ

En
︷ ︸︸ ︷

Λn〈|hn|
2〉 =

1

2
kBT. (10)

Λn and 〈|hn|
2〉 can be determined from the equilibrium

island shape and the fluctuating island perimeter, respec-
tively. Here En must be a constant in n, the modes, as
the temperature and the chemical potential, λ, are fixed
macroscopic parameters of the island. From this equa-
tion one can determine the same λ, in principle, from
any mode. Thus, either experimentally observing island
fluctuations or using Monte Carlo simulations one can
determine En, which in turn provides λ. This λ was the
missing parameter to determine absolute line tensions,
and plugging it back into Eq. (2), we get the line tension
in all azimuthal directions.

III. KINETIC MONTE CARLO

The scarcity of extensive experimental data leads us
to use Monte Carlo methods to simulate the behavior of
the system. Another advantage of computer simulations
will also become clear in the next section: analyzing cor-
relation times.

Since our original motivation was to simulate the re-
laxation of a Pb crystallite with a (111) facet, we place
a nanoscale island on a triangular lattice. We surround
it by a non-permeable circular container of radius Rc to
let the system reach its thermodynamic equilibrium, in
order to measure its equilibrium fluctuations.21,22 Thus,
this geometry corresponds to an island placed on top of a
facet of a crystallite (with an infinite Ehrlich-Schwoebel
barrier). Note that by adjusting the permeability one
can tune the overall decay rate of the island, which in
this paper we fix at zero.

Since the temperature of the systems of interest is low
compared to the energy barriers of adatomic hopping,
we have chosen to use the Bortz-Kalos-Lebovitz (BKL)
continuous-time MC algorithm23 as it is best suited to
low temperature systems and as its rejection-free method
allows us to greatly improve the efficiency of the simula-
tions compared to traditional Metropolis algorithms. Us-
ing the n-fold way method to keep track of the available
MC moves, we could improve the efficiency even further.
Because of the small number of energy barriers, the n-
fold way approach (6-fold) is superior to the binary tree
implementation of the BKL algorithm.24
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Process

Energy

(meV)

Energy

(K)

Trial energy

(K)
Surface diffusion 70 812 700
Edge diffusion 110 1276 1400
Break 1 bond 220 2552 2800
Break 2 bonds 360 4176 5600
Break 3 bonds 470 5452 5600
Break 4,5 bonds 600 6960 5600
Attach 700
Out 70000

TABLE I: Tabulation of the 8 energy barriers used in KMC
simulations of Pb(111). The energies in columns 2, 3 were
computed by M. Haftel using SEAM25 with glue potentials26.
The trial energies are the ones actually used in the simula-
tions.

The energy barriers for hopping rates are mainly
based on the semiempirical embedded atom method
(SEAM)25 using Ercolessi’s glue potentials for the
Pb(111) surface.26 As we are not interested in all the de-
tails of this surface in the simulations, but only try to cap-
ture the main mechanisms, we do not take into account
the ABC structure of the fcc lattice of Pb(111). Hence,
the top layer constitutes a triangular lattice with perfect
six-fold symmetry. Since there are 8 nearest neighbors to
the two sites involved in any hopping process, there are 28

different configurations and entries in our KMC look-up
table. We had energy barriers calculated for 13 different
hopping processes, with which we tried to find the main,
markedly different processes, and compare them to a few
others we suspected to be close to the main ones. In this
way the main processes fall into 8 groups. The terrace
diffusion barrier is the hopping barrier for adatoms with
no nearest neighbors, the edge diffusion barrier is the en-
ergy barrier for adatom rolling along a step edge with a
negative kink at its back, the “break 1 bond” barrier is
e.g. rolling along the step edge with no kinks etc., there
is an attachment barrier for adatoms which approach the
step edge with no nearest neighbors, and a (very high)
barrier that keeps adatoms from hopping out of the con-
tainer. We simplified this scheme even further according
to a simple pattern as can be seen in the last column of
Table I. Thus, the energy barriers are closer to realis-
tic ones than as if we had just used conventional bond
counting.

The basic parameters of the surface investigated and
the KMC simulations are: The nearest-neighbor spacing
a1 on the Pb(111) surface is 3.50Å. The typical island
diameter 2R is 40 to 80 a1, while the container diameter
Rc ranges from 12.5% to 300% larger than the island. We
examined temperatures 350K, 400K, and 500K. In each
MC snapshot of the island, we measure the island radius
from the instantaneous center of mass in 360 “equiangu-
lar” directions.

We start the simulations from a nearly circular shaped
configuration and let it relax to equilibrium, starting the
MC measurement of the fluctuation and shape after the
longest wavelength mode has passed its correlation time.

-60 -40 -20 0 20 40 60
n

0

1

2

3

E
n

FIG. 4: Eigenmodes (open squares) and Fourier (solid circles)
modes at T=400K, R=20a1, Rc=80a1. En is measured in
atomic spacing units.

Especially for the lower temperatures, the typical equi-
libration times are very long, consistent with reports in
other works.27,28 Ensemble averages are taken from 100
to 3000 different runs starting from the same initial con-
figuration, but with different random-number seeds. In
each run, after equilibration, we get statistically inde-
pendent fluctuations at time intervals again determined
by the relaxation time of the longest wavelength mode.
We take such independent “snapshots” of the islands 5
to 200 times in each run, so that we typically have 10,000
to 70,000 islands for taking averages.

IV. CHEMICAL POTENTIAL, LINE TENSION,
LINE STIFFNESS

As described in detail in Sec. II, the energetic parame-
ters of the island edge are determined by the island shape
and its edge fluctuation. The Wulff construction pro-
vides the relationship between the relative line tension in
the azimuthal directions on the crystal surface and the
equilibrium island shape, and the information from the
fluctuations 〈|hn|

2
〉 of each mode in Eq. (10) gives the

chemical potential λ that makes the Wulff construction
absolute in Eq. (2).

From our KMC simulations we determine En of Eq.
(10); it is depicted in Fig. 4 for T=400K and R=20a1

island radius. Since the perimeter is about 120a1, we use
120 points to describe the circumference out of the 360
available.

We calculate En both using the transformation to the
eigenmodes taking into account the anisotropy, and also
pretending the islands were isotropic. In this latter case
the hn = rn are simply the Fourier modes, and Λn =
(1/2)n2.

The Fourier modes are fairly constant, as might be
expected from equipartition for the isotropic case. How-
ever, we expect such a constant behavior after the trans-
formation to the eigenmodes, but, instead, the transfor-
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mation shifts En upward (cf. Fig. 4) and leads to greater
scatter than found for the Fourier modes. This surpris-
ing observation suggests that for these islands the Fourier
modes provide a better basis for chemical-potential cal-
culations. Thus, determining En from the Fourier modes
for intermediate wavenumbers, where the spectrum has a
clear plateau, givesEn =0.57a2

1 and through Eq. (10) and
Eq. (2) β =26.2 meV/Å for the line tension for the high-
symmetry direction. This value well approximates the
experimentally obtained ones for Pb(111) at T=393 K:
β1A = 27.9 meV/Å and β1B = 26.5 meV/Å for A- and B-
type steps, respectively.29 In our simulations the two di-
rections corresponding to the two different types of steps
are intrinsically equivalent because we assume six-fold
symmetry as the available values for energy barriers that
we use in our KMC do not distinguish between the A-
and B-directions, as mentioned in Sec. III.

At higher temperatures the eigenmodes and the
Fourier modes come closer together, as one would ex-
pect since the equilibrium shape is more nearly circular
and less affected by the underlying anisotropy, while at
lower temperatures the eigenmodes are shifted more than
in Fig. 4 compared to the Fourier modes (which still give
a nice constant for En), and are even fuzzier.

In earlier works11,20 where experimental data are used
as an input of similar calculations, there is a sum over
the modes, but because those modes are buried in a sum
in the generalized equipartition theorem, one cannot see
whether they are the modes which satisfy, at least to a
certain extent, the equipartition theorem. Such exper-
imental data may suffer from other problems which we
mention in the next section.

For the same temperature but larger system sizes,
R=40a1 and Rc=80a1, the Fourier modes are depicted
in Fig. 5. In this case there are about 240 atoms on
the perimeter. Since we cannot divide the 360 perimeter
points into 240 equiangular ones to make Fourier trans-
forms, we approximate it by N=180 or N=360 and ob-
serve how the plateau changes from what we saw in Fig.
4. The comparison of these two plots from MC sim-
ulations might help analyzing experimental data with
limited resolution as well, as it shows how the Fourier
modes behave in case of undersampling (N=180) and
oversampling (N=360). The undersampled modes give
higher values for En than expected for modes |n| > 30,
as if those modes took over the energy of the modes that
are missing (namely 180 < |n| ≤ 240) in the spectrum.
When oversampled there is not enough energy for all
modes in the sampling, so they go below the expected
value of En. This is the simple reason of the peculiar
shape of the two curves in Fig. 5 The value of En can
still be determined quite accurately from where the two
curves start to separate, providing En =1.22a2

1 which in
turn gives β = 24.6 meV/Å , again in the range of the
available experimental data.

From the equilibrium island shape using the Wulff con-
struction, we have determined the relative line tensions
in the azimuthal directions on the (111) surface (see Fig.

-180 -120 -60 0 60 120 180
n

0

0.5

1
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2

2.5

3

E
n

FIG. 5: Fourier modes for N=180 points (open squares)
and N=360 points (solid circles) on the perimeter modes at
T=400K, and R=40a1, Rc=80a1. En is measured in atomic
spacing units.

6). The equilibrium shape is almost faceted in the six
main directions, so the stiffness (not shown in the figure)
spikes out very much. This effect might be a peculiarity
of the KMC simulation since we take into account only a
small subset of energy barriers of adatom hops. Thus, we
lose subtle features such as the exact curvature especially
when it is almost singular. In terms of the Wulff plot,
cusp-like points are then hard to resolve in such simpli-
fied models. The limited statistics that could be reached
(see the next section and Ref. 28 for reasons) have been
a strong limiting factor as well.

-20 -10 10 20

-15

-10

-5

5

10

15

FIG. 6: Polar plot of the equilibrium island shape R(θ) (outer
dots) and the relative line tension β(ψ) (inner dots) in arbi-
trary units at T =400K, R=20a1, Rc=80a1.
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V. AUTOCORRELATIONS, CORRELATION
TIMES, KINETICS

Inspecting the autocorrelation functions in Fourier
space, the longest wavelengths have surprisingly long cor-
relation times (in CPU time), which made the full equi-
libration of these fairly large (at least for the computer)
systems very hard to reach in order to make MC measure-
ments in equilibrium. Most surprising is that the islands
relax to their equilibrium shape 10 to 100 times faster
than the longest-wavelength modes. Hence, estimating
the thermalization time from just the shape relaxation
may be very misleading and can give problematic results
not characteristic of equilibrium. Such behavior may in-
clude fake, strong mode coupling, or stronger fluctuations
in autocorrelation functions even in case of good statis-
tics. To get the following results it was necessary to have
a highly-optimized code.

The temporal correlations can be characterized by

G(t) =
〈

[r(t0) − r(t0 + t)]
2
〉

∝ t1/z. (11)

As we measure correlations in equilibrium, t0 must be
greater than the thermalization time of the system. Here
r(t) is the fluctuation from the equilibrium shape, as be-
fore, and depends on the angle, θ, and time. The average
is taken over angles and an ensemble as well. The angu-
lar averaging is strictly valid only for the isotropic case,
but the results of the previous section imply that it is
adequate in our case.

The typical behavior of the correlation function is that
the exponent, 1/z, remains at 1 for very short times27

and then crosses over to a value which characterizes the
rate-limiting kinetics driving the fluctuations of the is-
land edge; eventually it crosses over to zero if the system
is finite as this correlation function saturates.

Pure rate-limiting kinetics have been thoroughly
investigated9,12,30,31,32, and the dynamic exponent, z,
in these well-defined cases can take the values 2 for
attachment-detachment kinetics, 3 for terrace diffusion,
and 4 for step-edge diffusion, where the last mechanism
gives a very slow dynamics. There can be crossover
regimes between these pure cases, leading to values of
z between the quoted values, and certain geometries can
also effect the value of z. One should also see crossovers
as length scales vary.9,12,32

To investigate the length-scale dependence of the cor-
relation function, it is more appropriate to use the cor-
relation function in Fourier space.

Gn(t) =
〈

|rn(t0) − rn(t0 + t)|
2
〉

(12)

= Cn (1 − exp (− |t| /τn)) , (13)

where the Cn are twice the amplitudes of the fluctuations
of the modes, as analyzed in the previous section, and the
τn are their correlation times. The wavenumber depen-
dence of τn is known to have an intimate relationship
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FIG. 7: Correlation function Gn(t) of the Fourier modes for
n=2,...,10 from top to bottom. T =400K, R=20a1, Rc=80a1.

with the exponent in G(t), namely

τn ∼ n−z. (14)

Thus, the correlation time increases with increasing
wavelength, with the scaling exponent z. For larger expo-
nent z, the correlation times grow more rapidly, so that
for longer wavelengths the correlations and the dynamics
in general can slow down very quickly.

Here we pay particular attention to the longest wave-
length and its corresponding correlation time τ2, which
makes the largest contribution to the fluctuations and re-
laxes the most slowly. From the wavelength dependence
of the correlation time we also determine the dynamic
exponent and the rate limiting kinetics.

In the KMC simulations for T=400K and R=20a1, the
longest-wavelength mode, n=2, is 120a1 or 420Å long.
From Fig. 7, its relaxation time is τ2 = 6.7 × 108 MCS
(Monte Carlo steps). To give a crude estimate for τ2 in
real time, we consider the hopping rate

ν = νD exp[−βEb] (15)

to be the product of the attempt frequency, which we
identify with the Debye frequency of Pb: νD = 1.83×1012

Hz,33 and the Boltzmann factor of the energy barrier of
a particular hop. Hence, a MCS in this Monte Carlo
simulation is equivalent to a 1/νD time increment in real

time; thus, the relaxation time in this particular case is
τ2 = 0.37 msec.

For R=40a1 the n=2 mode is twice as long: 240a1

or 840Å. Its relaxation time is approximately 8 times as
large, 4.5 × 109 MCS or 2.5 msec.

As expected, these correlation times change dramati-
cally with temperature as the underlying physical phe-
nomena are activated. For R=40a1 at T=350K, τ2 =
4.8 × 1010 MCS or 26.4 msec, which means 10 times
slower relaxation compared to 400 K, while for 500 K
τ2 = 3 × 108 MCS or 0.16 msec, which represents 20
times faster behavior than for 400 K.
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The scaling of the relaxation time with (wave)length
can be seen in Fig. 8. In the plotted wavenumber
range, overall, τn behaves like z = 3 or 4 suggesting
that the mechanism driving the fluctuations is step-edge
diffusion34,35 or the system is in a crossover region be-
tween terrace diffusion and step-edge diffusion. The ap-
parent wiggle might be a precursor of an oscillatory be-
havior of the relaxation-time scaling with the wave num-
ber and is most probably due to the anisotropy or simply
the geometry of the system as it seems characteristic in-
dependent of system sizes. In our case, due to the six-fold
symmetry, the periodicity should be ∆n = 6. This im-
plies that it is not an oscillation between different rate
limiting behaviors for different wavelengths.

Comparison of these length scales and their corre-
sponding relaxation times with existing experimental ob-
servations might give interesting physical insight. For ex-
ample, in the experiment by Thürmer et al.,3 a small Pb
crystallite slightly larger than 1 µm relaxes at 383K to its
equilibrium (or at least steady-state) shape in 1-2 days
after being quenched from a higher temperature. As-
suming that the higher temperature thermodynamically
“drives” the system only marginally out of its equilibrium
state at 383K, the post-quench relaxation should respond
to the same thermodynamic forces as those producing
the fluctuations of the perimeter of a single-layer island
as considered so far; the relaxation time of the struc-
ture can then be readily evaluated based on the above
arguments. Since the crystallite is 50 times larger than
the longest wavelengths in our KMC simulations for the
larger system size, the relaxation time is 1.25×105 times
longer if the kinetics to be rate-limited by terrace diffu-
sion. Alternatively, τrelax is 6.25×106 times longer if the
kinetics to be rate-limited by step-edge diffusion (though,
of course, attachment-detachment and terrace diffusion
could be present but NOT rate-limiting). Specifically,
these values of τrelax are 312 sec and 4.3 h, respectively,
based on our KMC data at T=400K. As the actual tem-
perature of the experiment was lower than this, the ex-
trapolated KMC data are in remarkably good agreement
with the experimental time range.

The above arguments lead to a general view of the evo-
lution of surface structures. For Pb in the temperature
range 350 K–400 K, one observes the slow development
and relaxation of fluctuations at the µm scale in experi-
ments. Assuming that the rate-limiting kinetics retain
the same z =3, 4 range for even longer wavelengths,
structures of 10 µm size — step edges, islands, etc. —
take years to change, so in effect they look frozen under
laboratory conditions. This is the reason why structures
do not show any changes on the large scale at lower tem-
peratures while on a shorter scale they can be very active.

Lowering the temperature makes the length scales —
at which evolution or relaxation can be observed — ex-
ponentially shorter, which is readily understandable if
one looks at the converse of the above arguments. The
length scales with time like l ∼ τ−1/4 (for z = 4) whereas
τ scales like 1/ν in Eq. (15). Thus, the length scales

2 3 4 5 6 7 8 9
n
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1/
τ n (

10
7  M

C
S

)-1

FIG. 8: Correlation time τn vs. wave number n on a log-log
scale. The MC data (black circles) show a z = 4 step-edge dif-
fusion or z = 3 terrace diffusion kinetics as an overall behavior
in this wave number range. The dashed lines represent z=4,
3, and 2 (from top to bottom) dynamic exponents. T =400K,
R=40a1, Rc=80a1.

with temperature like l ∼ exp [Eb/4kBT ]. This basically
means that given the temperature and the time scale of
observation, one can calculate an effective length scale,
Leff on which the structures on a surface are in equi-
librium with their surroundings and actively changing
on the time scale of e.g. STM measurements. Having
the Eb energy barrier and Leff at a certain tempera-
ture, one can also make at least rough estimates of the
effective lengths at other temperatures using this scaling
argument. This picture is certainly a result of simplifi-
cation, as there is a whole set of energy barriers in such
a complex physical system as a crystal surface, and the
various atomistic mechanisms governed by different bar-
riers freeze out or get activated at different temperatures
depending on their corresponding energy barriers.

Comparison or extrapolation to other materials is pos-
sible if the energy-barrier set is similar to that of Pb(111).
Then the Debye frequency sets the time scale while the
energy barriers set the temperature scale, as one can
readily deduce it from Eq. (15). On the other hand, if the
energy-barrier set is completely different, as for example
for Si,36 it gives rise to a different rate-limiting mecha-
nism namely attachment-detachment for a wide range of
temperatures, and such extrapolation is not possible, but
a whole set of simulations should be done for the group
of materials with this sort of barriers.

VI. CONCLUSIONS

In this paper we deduce energetic and kinetic param-
eters of a sample metal surface below its roughening
temperature. We use kinetic Monte Carlo simulations
to mimic the fluctuations of large nanoscale islands on
these smooth surfaces in order to determine equilibrium
island shapes, anisotropic line tensions in the azimuthal
directions of the surface, and the correlation times of the



9

Fourier modes of the fluctuations.
We derive an analytic expression for the chemical

potential of the island edge from the equilibrium is-
land shape and the associated capillary wave fluctua-
tions around it. This chemical potential sets the scale
for the anisotropic line tension, [the azimuthal depen-
dence of] which is usually known only up to a multi-
plicative constant. To account for the anisotropy of the
line tension, this procedure contains a transformation
from the Fourier modes of the island edge fluctuations to
the true eigenmodes. However, detailed analysis of the
Fourier and eigen modes of the fluctuations reveals that
the transformation to the eigenmodes is unnecessary; at
least in our case, the Fourier modes seem to give better
results, as gauged by comparison with equipartition.

The obtained line tensions—one of the most impor-
tant physical parameters of steps on surfaces—are in the
correct range compared to known experimental results
even in this simplistic model with a rather small set of
hopping-energy barriers in the KMC simulation.

The analyses of the correlation times of the Fourier
modes show that nanoscale objects fluctuate on the msec
time range at moderately high temperatures (400K) on
Pb surfaces. Since the atomic processes are activated,
this time scale changes dramatically with temperature.

Inclosing, we make a comment on the equilibration
time of step structures in Monte Carlo simulations here.
The full equilibration of these structures is signalled by
the correlation time of the longest wavelength mode,
which can be very large (in CPU time) for system sizes
and temperatures studied in this paper. To do correct
MC measurements in equilibrium, one has to pass this
time, otherwise results for “equilibrium quantities” can
be very misleading as is well known from non-equilibrium
statistical mechanics. Without looking at correlation
times of Fourier modes it requires very careful analy-
sis to avoid such equilibration problems.27 Recently, sev-
eral works have appeared concerning temporal correla-
tion functions, persistence, etc., of steps much longer
than ours, and sometimes even several of them, in studies
of the interaction between them. They might well suffer
from these problems as this equilibration time scales with
system size as third or fourth power meaning that a twice

as big system need an order of magnitude longer CPU
time to be equilibrated. In the multi-step case a rem-
edy might be that the dynamic exponent may decrease
when the steps are really close to each other,15 but that
is apparently rarely the case.

Another comment is due on the measurement of these
fluctuations experimentally, which might be difficult be-
cause of the above mentioned time scale of the fluctua-
tions. One either has to use techniques with which snap-
shots of the surface can be taken,13 or, in direct visual-
ization methods (like STM measurements), the scan rate
of the equipment must be faster than the fluctuations of
a given wavelength of interest. Otherwise one measures
the two ends of a wavelength at such a time separation
that they are uncorrelated, which does not make much
sense. The “speed” of the fluctuations can be tuned by
changing the temperature, but one also has to take into
account that lowering the temperature decreases the size
of the fluctuations, rendering the measurement harder.

Finally, the extrapolation of our results for nanoobjects
to mesoscale features makes possible intriguing compar-
isons of correlation times of modes of certain wavelengths,
and decay or relaxation of larger structures to their equi-
librium forms. This comparison reveals a remarkable
coincidence in the correlation time of our basically one
dimensional features and real three-dimensional objects
like a crystallite.
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