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Step Position Distributions and the Generalized Wigner Distribution
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The approximation that justifies the use of the Generalized Wigner Distribution for Terrace
Width Distributions also predicts a specific form for the Step Position Distribution (SPD), i.e., the
probability density function for the fluctuations of a step about its average position. The predicted
form of the SPD is well approximated by a Gaussian, and it agrees well with numerical results
obtained from Monte Carlo simulations of the terrace-step-kink model.
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INTRODUCTION

A key factor determining the equilibrium morphology
of a vicinal crystal surface is the interaction between the
steps on that surface. In many cases, the elastic and
electronic contributions to the step-step interaction take
the form

V (L) =
A

L2
, (1)

where A determines the strength of the step-step inter-
action and L is the distance between steps. Because this
is a typical step-step interaction, and because it has the
remarkable property of yielding exact solutions to very
plausible approximate theories[1, 2, 3], we confine our-
selves in this paper to interactions of the form given in
Eq. (1). With this restriction, the quantities discussed in
this paper depend only on a single dimensionless param-
eter,

Ã ≡ β̃A

(kBT )2
, (2)

where β̃ is the step stiffness, kB is Boltzmann’s constant,
and T is the absolute temperature.

One of the easiest methods[4, 5, 6] for experimen-
tally determining the interaction between steps on a vic-
inal crystal surface is through the observation of the
Terrace Width Distribution (TWD). Typically, this has
been done by fitting the TWD to a Gaussian, which
is a good approximation and justified by the Gruber-
Mullins approximation[7, 8] if the steps strongly re-
pel each other. The step-step interaction is then ex-
tracted from the variance of the Gaussian. Unfortu-
nately, however, the Gaussian approximation is only
good for strongly interacting steps, and there are con-
flicting theories[7, 8, 9, 10, 11, 12, 13] regarding the rela-
tionship between the step-step interaction and the vari-
ance.

Over the past decade[4, 5, 6] it has become apparent
that the so-called Generalized Wigner Distribution pro-
vides a much better approximation to the TWD. The

Generalized Wigner Distribution exhibits the positive
skew observed in TWDs from experiments and simula-
tions, and it is a good fit quantitatively to TWDs pro-
duced from Monte Carlo simulations of the TSK model.
In this article we show that the same theory that pre-
dicts the Generalized Wigner Distribution for the TWD
also predicts a Gaussian-like distribution for the position

of steps. For reasons that will be discussed below, the
quantitative agreement between the theoretical predic-
tions and measured values of the Step Position Distribu-
tion (SPD) are not as good as in the case of the TWD,
although the agreement is quite good considering that it
is a prediction, not a fit.

PREDICTIONS FROM THE TWO-STEP

APPROXIMATION

As was shown in Ref. [3], the Generalized Wigner Dis-
tribution can be derived from a phenomenological treat-
ment in which only two steps are treated explicitly, the
rest contributing a “confinement potential” related to the
two-dimensional pressure and compressibility of the sys-
tem of steps. We use the usual trick of mapping steps
onto the worldlines of one-dimensional spinless fermions,
which in this case have the Hamiltonian

H = −1

2

(

∂2

∂x2
1

+
∂2

∂x2
2

)

+
Ã

(x2 − x1)2
+

ω2

2

(

x2
1 + x2

2

)

.

(3)
In this dimensionless formulation, we require that

〈x2 − x1〉 = 1 ; (4)

this fixes the value of ω to

ω = 2b̺ , (5)

where

b̺ ≡
[

Γ
(

̺+2
2

)

Γ
(

̺+1
2

)

]2

, (6)

and

̺ = 1 +
√

1 + 4Ã . (7)
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After a change of variables to

xcm =
x1 + x2

2
(8)

s = x2 − x1 , (9)

this Hamiltonian becomes separable,

H = −
(

∂2

∂s2
+

1

4

∂2

∂x2
cm

)

+
Ã

s2
+ b2

̺

(

s2 + 4x2
cm

)

, (10)

and it has the remarkable property that all of the eigen-
states are known. The only eigenstate of interest to us
at present, however, is the ground state, which can be
written

Ψ0,0(s, xcm) =

[

a1/2
̺ s̺/2 exp

(

−b̺s
2

2

)]

×
[

1

2
√

πb̺

exp
(

−4b̺x
2
cm

)

]

, (11)

where

a̺ =
2b

(̺+1)/2
̺

Γ[(̺ + 1)/2]
(12)

is a constant of normalization. The probability of finding
the combination a specific combination of relative separa-
tion and “center of mass” is, of course, just Ψ2

0,0(s, xcm),
which can be rewritten in terms of the original variables
x1 and x2:

P (x1, x2) = Ψ2
0,0(s, xcm)

=
a̺

√

πb̺

(x2 − x1)
̺ exp[−2b̺(x

2
1 + x2

2)] ,(13)

subject to the constraint x2 ≥ x1. We can integrate out
all possible values of x2 to find the probability density
function for x1:

Q1(x1) =

∫ ∞

x1

P (x1, x2) dx2

=
a̺

√

πb̺

exp(−2b̺x
2
1)

×
∫ ∞

x1

(x2 − x1)
̺ exp(−2b̺x

2
2) dx2 . (14)

As should be expected, the mean value of x1 is −1/2 and
the mean value of x2 is +1/2, so we define the analytic
SPD to be the calculated probability density function for
x1 − 〈x1〉:

Q(x) ≡ Q1

(

x +
1

2

)

=
a̺

√

πb̺

exp

[

−2b̺

(

x +
1

2

)2
]

×
∫ ∞

x

(

x2 − x +
1

2

)̺

exp(−2b̺x
2
2) dx2 .(15)

Although Q(x) can only be evaluated numerically (it
can be rewritten as a complicated expression involving
hypergeometric functions, but this does not seem to be
genuinely helpful), it is straightforward, though tedious,
to calculate its moments. The two most important are
the mean, which is zero by definition, and the variance,
which is given by

σ2
SPD =

1

4

(

̺ + 2

2b̺
− 1

)

(16)

∼ 3

8
̺−1 . (17)

These two moments would be enough to entirely spec-
ify the SPD if it were a Gaussian distribution, which it
should be approximately; the Gruber-Mullins approxi-
mation for the TWD, since it concerns the fluctuations
in position of only a single step, can be equally well in-
terpreted as an approximation for the SPD. In fact, both
the coefficient of skewness[14] and the kurtosis[14] vanish
in the limit of strong step-step repulsion. The coefficient
of skewness is given asymptotically by

γ1 ≡ 〈(x1 − 〈x1〉)3〉
σ3

SPD

∼ −
√

6

18
̺−1/2 ; (18)

note that the coefficient of skewness would have the op-
posite sign if it had been defined as 〈(x2 − 〈x2〉)3〉σ−3

SPD.
The kurtosis, which is the same regardless of which step
is considered, is given asymptotically by

γ2 ≡ 〈(x1 − 〈x1〉)4〉
σ4

SPD

− 3 ∼ 1

12
̺−2 . (19)

The fact that the kurtosis is not exactly zero is not in
itself surprising; even within the Gruber-Mullins approx-
imation, the Gaussian distribution is only obtained in
the limit of large Ã. The symmetry of our original prob-
lem of an infinite number of steps on an infinite vicinal
surface, on the other hand, means that the coefficient
of skewness, by contrast, must be zero for the original
problem. Any given step on the surface can be consid-
ered “step 1”, with its downhill neighbor as “step 2”, or
it can be considered “step 2”, with its uphill neighbor as
“step 1”; calling it one or the other breaks the symmetry
and permits a nonzero coefficient of skewness.

COMPARISON WITH MONTE CARLO

SIMULATIONS

In order to test the usefulness of Eq. (15), we have
performed Monte Carlo simulations of the terrace-step-
kink (TSK) model and measured the SPD for several
values of Ã.

The geometry of the simulated systems was as follows.
All simulations were for systems of 30 steps; the length
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of each of which was Ly = 1000a (where a is the lat-
tice constant) in the average direction of the steps (the
y-direction in “Maryland notation”). The mean step sep-
aration was 〈L〉=10a, and periodic boundary conditions
were applied.

The dynamic used was a local Metropolis update. The
temperature was set at kBT =0.45ǫ, where ǫ is the kink
energy; in a previous study, this was approximately the
temperature at which TWDs from the restricted TSK
model showed the best agreement with the Generalized
Wigner Distribution. Each simulation was equilbrated
for at least 500 000 Monte Carlo steps per site (MCSS) at
the temperature and value of Ã at which measurements
were taken; the initial configurations, however, were not
typically straight steps, but steps that had been equili-
brated at some other value of Ã. Data was taken from
500 “snapshots,” taken at intervals of 1 000 MCSS.

Although the terrace width is always an integer multi-
ple of a in the TSK model, the average step position can
be any rational number, depending only on the size of
the simulation. Since the step position x is always an in-
teger, the histogram of positions for any given step need
not be symmetric.

In order to show concretely what this means, consider
a situation in which a Gaussian distribution with mean
µ and variance σ2 is binned into a histogram as follows.
The weight assigned to each integer k is given by inte-
grating the Gaussian between k−1/2 and k+1/2:

W (k) =
1

σ
√

2π

∫ k+1/2

k−1/2

exp

[

− (x − µ)2

2σ2

]

dx

=
1

2

{

erf

[

k − (1/2) − µ

2σ

]

− erf

[

k + (1/2)− µ

2σ

]

}

. (20)

For our example, we choose σ=2.5 and three “random”
values of µ between -0.5 and +0.5. The results are shown
in Fig. 1. Clearly none of the histograms is completely
symmetric, and the differences between them are note-
worthy.

Something similar can and does happen when the
SPDs are calculated from Monte Carlo simulations by
binning the positions into histograms. As a result, the
statistical uncertainties are considerably larger than they
are for the corresponding TWDs, and the SPDs are not
perfectly symmetric about their peaks, as can be seen in
Figs. 2–3. Note the qualitative similarities between the
Monte Carlo results (circles) in Figs. 2–3 and the val-
ues of W (k) for µ = −0.279 (squares) and µ = −0.131
(diamonds) in Fig. 1. This agreement suggests that dur-
ing the process of equlibration, the majority of the steps
moved slightly to the left (i.e., uphill).

In spite of this, the agreement of the SPDs calcu-
lated from simulations and the theoretical Q(x) calcu-
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FIG. 1: An illustration of problem that can be caused by
the variability of the mean step position when the step posi-
tion distribution (SPD) is calculted from numerical or exper-
imental results. In this example, Gaussian distributions with
identical variances (σ2 =2.52) are binned into histograms by
means of Eq. (20). The only differences between the three
distributions are the values of µ: circles, µ = 0.452; squares,
µ=−0.279; diamonds, µ=−0.131.
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FIG. 2: Comparison of the SPD for Ã=0 given by Eq. (15)
(solid curve) with a histogram SPD from a Monte Carlo sim-
ulation (symbols). Also shown is a Gaussian (dotted curve)
with a mean of zero and a variance given by Eq. (16).
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FIG. 3: Comparison of the SPD for Ã=10 given by Eq. (15)
(solid curve) with a histogram SPD from a Monte Carlo sim-
ulation (symbols). Also shown is a Gaussian (dotted curve)
with a mean of zero and a variance given by Eq. (16).



4

lated from Eq. (15) is quite good. Even more impressive
is the agreement between Q(x) and the Gaussian with
zero mean and variance given by Eq. (16). Although
Eqs. (18) and (19) imply that the Gaussian approxima-
tion will be increasingly good as Ã becomes large, it is
clear from the figures that the Gaussian approximation
is good for even for Ã=0.

CONCLUSION

The satisfactory agreement between the SPDs calcu-
lated from Monte Carlo simulations and the theoreti-
cal SPD given by Eq. (15) are further evidence that the
two-step approximation, which also yields the Generlized
Wigner Distribution for the TWD, captures the essential
physics of a vicinal surface at equilibrium. On the other
hand, the nonvanishing coefficient of skewness is clearly
an error resulting from the approximation. It is conceiv-
able that the terms in the Hamiltonian given by Eq. (3)
representing the net effect of the other steps — i.e., the
term (ω2/2)(x2

1 + x2
2) — could be slightly modified in

such a way as to produce a symmetric SPD. However,
the asymmetry is already sufficiently small that it seems
unlikely that such a modification would be worthwhile,
especially since it would almost certainly mar all the main
attractions of the current approximation: it is simple, it
is separable, and exact expressions are known not only
for the ground state but for all of the excited states.

Because the SPD is so well approximated by a Gaus-
sian, it is tempting to compare it directly with Gaussian
theories of the TWD. As can be seen in Table 1, in the
limit of strongly interacting steps the variance of the SPD
is slightly larger than that of the Gruber-Mullins approx-
imation, but less than the variance of the TWD given
by either the “Saclay” or “modified Grenoble” approxi-
mations. This is reasonable; unlike the Gruber-Mullins
Hamiltonian, Eq. (3) does not have fixed walls, so the
steps can experience larger fluctuations. In spite of this,
since the Gruber-Mullins approximation allows only one
step to move, it can be regarded equally as an approxima-
tion for the TWD or for the SPD. The fact that the SPD
is smaller than the other approximations of the TWD
is apparently due to the fact that correlations between
fluctuations of adjacent steps are to some degree taken
into account in all these approximations, so that they are
specifically approximations for the TWD, not the SPD.

In principle, the SPD could be used to determine Ã.
However, because the SPD is strongly affected by the
random position of the average step position, the TWD
is a more practical alternative.

TABLE I: Asymptotic variances in the limit of strong step-
step repulsion. The Gaussian-like approximation for the step
position distribution (SPD) given by Eq. (15) is compared
with selected approximations for the TWD. Except for the
Generalized Wigner Distribution, all approximate TWDs are
Gaussian approximations. Note also that our approximation
for the SPD and the Generalized Wigner Distribution are
both independent of the number of interacting steps, whereas
the Gaussian approximations are not. (See also Table 1 of
Ref. [6].)

Distribution Reference Asymptotic Variance

SPD Eq. (16) 0.375̺−1

Generalized Wigner [15, 16, 17] 0.5̺−1

Gruber Mullins (all steps) [7] 0.278̺−1

” (nearest neighbors) ” 0.289̺−1

Modified Grenoble (all steps) [9, 10, 15] 0.495̺−1

” (nearest neighbors) ” 0.520̺−1

Saclay (all steps) [11, 12, 13] 0.405̺−1

Acknowledgment

This research was supported by an award from Re-
search Corporation. The authors also thank Jeremy
Yancey and April St. John for critical readings.

[1] F. Calogero, J. Math. Phys. 10, 2191, 2197 (1969).
[2] B. Sutherland, J. Math. Phys. 12, 246 (1971).
[3] H. L. Richards and T. L. Einstein, submitted to Phys.

Rev. E (unpublished).
[4] M. Giesen and T. L. Einstein, Surf. Sci. 449, 191 (2000).
[5] H. L. Richards, S. D. Cohen, T. L. Einstein, and M.

Giesen, Surf. Sci. 453, 59 (2000).
[6] T. L. Einstein, H. L. Richards, S. D. Cohen, and O.

Pierre-Louis, Surf. Sci. 493, 460 (2001).
[7] E. E. Gruber and W. W. Mullins, J. Phys. Chem. Solids

28, 875 (1967).
[8] N. C. Bartelt, T. L. Einstein, and E. D. Williams, Surf.

Sci. 240, L591 (1990).
[9] O. Pierre-Louis and C. Misbah, Phys. Rev. B 58, 2265

(1998).
[10] T. Ihle, C. Misbah, and O. Pierre-Louis, Phys. Rev. B

58, 2289 (1998).
[11] L. Masson, L. Barbier, J. Cousty, and B. Salanon, Surf.

Sci. 317, L1115 (1994).
[12] L. Barbier, L. Masson, J. Cousty, and B. Salanon, Surf.

Sci. 345, 197 (1996).
[13] E. L. Goff, L. Barbier, L. Masson, and B. Salanon, Surf.

Sci. 432, 139 (1999).
[14] B. P. Roe, Probability and Statistics in Experimental

Physics, 2nd ed. (Springer, New York, 2001), pp. 7,8.
[15] T. L. Einstein and O. Pierre-Louis, Surf. Sci. 424, L299

(1999).
[16] M. L. Mehta, Random Matrices, 2nd ed. (Academic, New

York, 1991).
[17] F. Haake, Quantum Signatures of Chaos (Springer,

Berlin, 1991).


