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5.1 Introduction
The notion of equilibrium crystal shape (ECS) is arguably the platonic ideal of crystal

growth and underpins much of our thinking about crystals. Accordingly, it has been the

subject of several special reviews and tutorials [1–4,215] and is a prominent part of most

volumes and extended review articles and texts about crystals and their growth [5–9]. In

actual situations, there are many complications that thwart observation of such

behavior, including kinetic barriers, impurities, and other bulk defects like dislocations.

Furthermore, the notion of a well-defined equilibrium shape requires that there is no

contact of the crystal with a wall or surface, since that would alter its shape. By the same

token, the crystal cannot then be supported, so gravity is neglected. For discussions of

the effect of gravity or contact with walls, see, e.g., Ref. [7].

Gibbs [10] is generally credited with being the first to recognize that the equilibrium

shape of a substance is that which, for a fixed volume, minimizes the (orientation-

dependent) surface free energy integrated over the entire surface; the bulk free energy is

irrelevant since the volume is conserved, while edge or corner energies are ignored as

being higher order effects that play no role in the thermodynamic limit. Herring [11,12]

Surveys the early history in detail: The formulation of the problem was also carried out

independently by Ref. [13]. The solution of this ECS problem, the celebrated Wulff

construction, was stated by Ref. [14]; but his proof was incorrect. Correct proofs were

subsequently given by Ref. [15–17], who presented a critical review. However, these

proofs, while convincing of the theorem, were not general (and evidently applied only to

T ¼ 0, since they assumed the ECS to be a polyhedron and, compared the sum over the

facets of the surface free energy of each facet times its area with a similar sum over a

similar polyhedron with the same facet planes but slightly different areas (and the same

volume)). Dinghas [18] showed that the Brunn–Minkowski inequality could be used to

prove directly that any shape differing from that resulting from the Wulff construction

has a higher surface free energy. Although Dinghas again considered only a special class

of polyhedral shapes, Herring [11,12] completed the proof by noting that Dinghas’

method is easily extended to arbitrary shapes, since the inequality is true for convex

bodies in general. In their seminal paper on crystal growth, Burton, Cabrera, and Frank

[19] present a novel proof of the theorem in two dimensions (2D).

Since equilibrium implies minimum Helmholtz free energy for a given volume and

number, and since the bulk free energy is ipso facto independent of shape, the goal is to

determine the shape that minimizes the integrated surface free energy of the crystal. The

prescription takes the following form: One begins by creating a polar plot of the surface

free energy as a function of orientation angle (of the surface normal) and draws a

perpendicular plane (or line in 2D) through the tip of each ray. (There are many fine

reviews of this subject in Refs [20–23].) Since the surface free energy in three dimensions

(3D) is frequently denoted by g, this is often called a g plot. The shape is then the formed

by the interior envelope of these planes or lines, often referred to as a pedal. At zero
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temperature, when the free energy is just the energy, this shape is a polyhedron in 3D

and a polygon in 2D, each reflecting the symmetry of the underlying lattice. At finite

temperature, the shapes becomemore complex. In 2D, the sharp corners are rounded. In

3D, the behavior is richer, with two possible modes of evolution with rising temperature.

For what Wortis terms type-A crystals, all sharp boundaries smooth together, while in

type-B, first the corners smooth, then above a temperature denoted T0, the edges also

smooth. The smooth regions correspond to thermodynamic rough phases, with

height–height correlation functions that diverge for large lateral separation l—like la,

with a (typically 0 < a < 1) called the roughening exponent—in contrast to facets, where

they attain some finite value as l / N [5]. The faceted regions in turn correspond to

“frozen” regions. Pursuing the correspondence, sharp and smooth edges correspond to

first-order and second-order phase transitions, respectively.

The aim of this chapter is primarily to explore physical ideas regarding ECS and

the underlying Wulff constructions. This topic has also attracted considerable interest

in the mathematics community. Readers interested in more formal and sophisticated

approaches are referred to two books, Refs [24,25] and to many articles, including

[26–36]. Particular attention is devoted to the origin of sharp edges on the ECS, the

impact of reconstructed or adsorbed surface phases coexisting with unadorned phases,

and the role and nature of possible attractive stepestep interactions.

5.2 From Surface Free Energies to Equilibrium
Crystal Shape

5.2.1 General Considerations

To examine this process more closely, we examine the free energy expansion for a vicinal

surface, that is, a surface misoriented by some angle q from a facet direction. Cf.

Figure 5.1. Unfortunately, this polar angle is denoted by f in much of the literature on

vicinal surfaces, with q used for in-plane misorientation; most reviews of ECS use q for

the polar angle, as we shall here. The term vicinal implies that the surface is in the vi-

cinity of the orientation. It is generally assumed that the surface orientation itself is

rough (while the facet direction is below its roughening temperature and so is smooth).

We consider the projected surface free energy fp(q,T) [37] (with the projection being onto

the low-index reference, facet direction of terraces):

fpðq;T Þ ¼ f0ðT Þ þ bðT Þ jtan qj
h

þ gðTÞ
!!tan q

!!3 þ cðtan qÞ4: (5.1)

The first term is the surface free energy per area of the terrace (facet) orientation; it is

often denoted s. The average density of steps (the inverse of their mean separation h‘i) is
tan q/h, where h is the step height. In the second term, b(T) is the line tension or free

energy per length of step formation. (Since 2D is a dimension smaller than 3D, one uses

b rather than g. Skirting over the difference in units resulting from the dimensional

Chapter 5 • Equilibrium Shape of Crystals 217



difference, many use g in both cases.) While step free energy per length and line tension

are equivalent for these systems, where the surface is at constant (zero) charge, they are

inequivalent in electrochemical systems, where it is the electrode potential conjugate to

the surface charge that is held fixed [39]. The third term is associated with interactions

between steps, in this case assumed to be proportional to ‘(2 (so that this term, which

also includes the ‘(1 density of steps, goes like ‘(3). The final term is the leading

correction.

The ‘(2 interaction is due to a combination (not a simple sum) of two repulsive

potential energies: the entropic repulsion due to the forbidden crossing of steps and the

elastic repulsions due to dipolar strains near each step. An explicit form for g(T) is given

in Eqn (5.27) below. The ‘(2 of the entropic interaction can be understood from viewing

the step as performing a random walk in the direction between steps (the x direction in

“Maryland notation”1 as a function of the y direction (which is timelike in the fermion

transcription to be discussed later), cf. Figure 5.1, so the distance (y) it must go until it

touches a neighboring step satisfies ‘2 f y. To get a crude understanding of the origin of

the elastic repulsion, one can imagine that since a step is unstable relative to a flat

surface, it will try to relax toward a flatter shape, pushing atoms away from the location

of the step by a distance decaying with distance from the step. When two steps are close

FIGURE 5.1 Portion of a (3,2,16) surface, vicinal to an fcc (001), to illustrate a misoriented, vicinal surface. The
vicinal surface and terrace normals are bn ¼ ð3;(2; 16Þ=

ffiffiffiffiffiffiffiffi
269

p
and bn ¼ ð0; 0;1Þ, respectively. The polar angle q [with

respect to the (001) direction], denoted f in the original figure (consistent with most of the literature on vicinal
surfaces), is across ð16=

ffiffiffiffiffiffiffiffi
269

p
Þ, while azimuthal angle 4 (denoted q in most of the literature on vicinal surfaces),

indicating how much bn is rotated around bn0 away from the vertical border on which q0 is marked, is clearly
arctan(1/5); tan q0 ¼ tan q0cos f. Since h is a1=

ffiffiffi
2

p
, where a1 is the nearest-neighbor spacing, the mean distance ‘

(in a terrace plane) between steps is a1=ð
ffiffiffi
2

p
tan qÞ ¼ 8

ffiffiffiffiffiffiffiffiffiffiffi
2=13

p
a1 ¼ 3:138a1. While the average distance from one

step to the next along a principal, (110) direction looks like 3.5a1, it is in fact a1=ð
ffiffiffi
2

p
tan q0Þ ¼ 3:2a1. The “pro-

jected area” of this surface segment, used to compute the surface free energy fp, is the size of a (001) layer:
20a1 * 17a1 ¼ 340a21; the width is 20a1. In “Maryland notation” (see text), z is in the bn0 direction, while the
normal to the vicinal, bn, lies in the x–z plane and y runs along the mean direction of the edges of the steps. In
most discussions, f ¼ 0, so that this direction would be that of the upper and lower edges of the depicted sur-
face. Adapted from Ref. [38].

1This term was coined by a speaker at a workshop in Traverse City in August 1996—see Ref. [43] for the

proceedings—and then used by several other speakers.
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to each other, such relaxation will be frustrated because atoms on the terrace this pair of

steps are pushed in opposite directions, so they relax less than if the steps are widely

separated, leading to a repulsive interaction. Analyzed in more detail [7,40,41], this

repulsion is dipolar and so proportional to ‘(2. However, attempts to reconcile the

prefactor with the elastic constants of the surface have met with limited success. The

quartic term in Eqn (5.1) is due to the leading (‘(3) correction to the elastic repulsion

[42], a dipole-quadrupole repulsion. It generally has no significant consequences but is

included to show the leading correction to the critical behavior near a smooth edge on

the ECS, to be discussed below.

The absence of a quadratic term in Eqn (5.1) reflects that there is no ‘(1 interaction

between steps. In fact, there are some rare geometries, notably vicinals to (110) surfaces

of fcc crystals (Au in particular) that exhibit what amounts to ‘(1 repulsions, which lead

to more subtle behavior [44]. Details about this fascinating idiosyncratic surface are

beyond the scope of this chapter; readers should see the thorough, readable discussion

by van Albada et al. [45].

As temperature increases, b(T) decreases due to increasing entropy associated with

step-edge excitations (via the formation of kinks). Eventually, b(T) vanishes at a tem-

perature TR associated with the roughening transition. At and above this TR of the facet

orientation, there is a profusion of steps, and the idea of a vicinal surface becomes

meaningless. For rough surfaces, the projected surface free energy fp(q,T) is quadratic in

tan q. To avoid the singularity at q ¼ 0 in the free energy expansion that thwarts attempts

to proceed analytically, some treatments, notably Bonzel and Preuss [46], approximate

fp(q,T) as quadratic in a small region near q ¼ 0. It is important to recognize that the

vicinal orientation is thermodynamically rough, even though the underlying facet

orientation is smooth. The two regions correspond to incommensurate and commen-

surate phases, respectively. Thus, in a rough region, the mean spacing h‘i between steps

is not in general simply related to (i.e., an integer multiple plus some simple fraction) the

atomic spacing.

Details of the roughening process have been reviewed by Weeks [216] and by van

Beijeren and Nolden [9]; the chapter by Akutsu in this Handbook provides an up-to-date

account. However, for use later, we note that much of our understanding of this process

is rooted in the mapping between the restricted body-centered (cubic) solid-on-solid

(BCSOS) model and the exactly solvable [47,48] symmetric 6-vertex model [49], which

has a transition in the same universality class as roughening. This BCSOS model is based

on the BCC crystal structure, involving square net layers with ABAB stacking, so that sites

in each layer are lateral displaced to lie over the centers of squares in the preceding (or

following) layer. Being an SOS model means that for each column of sites along the

vertical direction, there is a unique upper occupied site, with no vacancies below it or

floating atoms above it. Viewed from above, the surface is a square network with one pair

of diagonally opposed corners on A layers and the other pair on B layers. The restriction

is that neighboring sites must be on adjacent layers (so that their separation is the

distance from a corner to the center of the BCC lattice). There are then six possible
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configurations: two in which the two B corners are both either above or below the A

corners and four in which one pair of catercorners are on the same layer and the other pair

are on different layers (one above and one below the first pair). In the symmetric model,

there are three energies, (e for the first pair, and +d/2 for the others, the sign depending

on whether the catercorner pair on the same lattice is on A or B [50]. The case d ¼ 0

corresponds to the F-model, which has an infinite-order phase transition and an essential

singularity at the critical point, in the class of the Kosterlitz-Thouless [51] transition [52].

(In the “ice” model, e also is 0.) For the asymmetric 6-vertex model, each of the six

configurations can have a different energy; this model can also be solved exactly [53,54].

5.2.2 More Formal Treatment

To proceed more formally, we largely follow [1]. The shape of a crystal is given by the

length RðbhÞ of a radial vector to the crystal surface for any direction bh. The shape of the

crystal is defined as the thermodynamic limit of this crystal for increasing volume V,

specifically.

r
%
bh;T

&
h lim

V/N

'
R
%
bh
&(

aV 1=3

)
; (5.2)

where a is an arbitrary dimensionless variable. This function rðbh;TÞ corresponds to a

free energy. In particular, since both independent variables are fieldlike (and so intrin-

sically intensive), this is a Gibbs-like free energy. Like the Gibbs free energy, rðbh;TÞ is
continuous and convex in bh.

The Wulff construction then amounts to a Legendre transformation2 to rðbh;TÞ from
the orientation cm-dependent interfacial free energy fiðcm;TÞ (or in perhaps the more

common but less explicit notation, gðcm;TÞ, which is fpðq;TÞ=cosðqÞ. For liquids, of

course,fiðcm;TÞ is spherically symmetric, as is the equilibrium shape. Herring [12]

mentions rigorous proofs of this problem by Schwarz in 1884 and by Minkowski in 1901.

For crystals, fiðcm;TÞ is not spherically symmetric but does have the symmetry of the

crystal lattice. For a system with cubic symmetry, one can write

fi

%
cm;T

&
¼ g0ðTÞ

h
1þ aðT Þ

%
m4

x þm4
y þm4

z

&i
; (5.3)

where g0(T) and a(T) are constants. As illustrated in Figure 5.2, for a ¼ 1/4 the

asymmetry leads to minor distortions, which are rather inconsequential. However, for

2As exposited clearly in Ref. [55], one considers a [convex] function y ¼ y(x) and denotes its derivative

as p ¼ vy/vx. If one then tries to consider p instead of x as the independent variable, there is information

lost: one cannot reconstruct y(x) uniquely from y(p). Indeed, y ¼ y(p) is a first-order differential equation,

whose integration gives y ¼ y(x) only to within an undetermined integration constant. Thus, y ¼ y(p)

corresponds to a family of displaced curves, only one of which is the original y ¼ y(x). The key concept is

that the locus of points satisfying y ¼ y(x) can be equally well represented by a family of lines tangent to

y(x) at all x, each with a y-intercept j determined by the slope p at (x,y(x)). That is, j ¼ j(p) contains all

the information of y ¼ y(x). Recognizing that p ¼ (y ( j)/(x ( 0), one finds the transform j ¼ y ( px.

Readers should recall that this is the form of the relationship between thermodynamic functions,

particularly the Helmholtz and the Gibbs free energies.

220 HANDBOOK OF CRYSTAL GROWTH

FIGURE 5.2 g-plots (plots of fiðcmÞ, 1/g-plots and x-plots for Eqn (5.3) for positive values of a). For a ¼ 1/4, all
orientations appear on the ECS. For a ¼ 1.0, the 1/g-plot has concave regions, and the x-plot has ears and flaps
that must be truncated to give the ECS essentially an octahedron with curved faces. From Ref. [8], which shows in
a subsequent figure that the g- and 1/g-plots for a ¼ (0.2 and (0.5 resemble the 1/g- and g-plots, respectively,
for a ¼ 1/4 and 1.
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a ¼ 1, the enclosed region is no longer convex, leading to an instability to be discussed

shortly.

One considers the change in the interfacial free energy associated with changes in

shape. The constraint of constant volume is incorporated by subtracting from the change

in the integral of fiðcm;TÞ the corresponding change in volume, multiplied by a Lagrange

multiplier l. Herring [11,12] showed that this constrained minimization problem has a

unique and rather simple solution that is physically meaningful in the limit that it is

satisfactory to neglect edge, corner, and kink energies in fiðcm;TÞ, that is, in the limit of

large volume. In this case l f V(1/3; by choosing the proportionality constant as

essentially the inverse of a, we can write the result as

r
%
bh;T

&
¼ min

bm

0
BB@
fi

%
cm;T

&

cm $ bh

1
CCA (5.4)

The Wulff construction is illustrated in Figure 5.3. The interfacial free energy fiðcmÞ, at
some assumed T is displayed as a polar plot. The crystal shape is then the interior en-

velope of the family of perpendicular planes (lines in 2D) passing through the ends of the

radial vectors cmfiðcmÞ. Based on Eqn (5.4) one can, at least in principle, determinecmðbhÞ
or bhðcmÞ, which thus amounts to the equation of state of the equilibrium crystal shape.

One can also write the inverse of Eqn (5.4):

1

fi

%
cm;T

& ¼ min
bm

0
BB@
1=fi

%
bh;T

&

cm $ bh

1
CCA (5.5)

FIGURE 5.3 Schematic of the Wulff construction. The interfacial free energy per unit area ficm is plotted in polar
form (the “Wulff plot” or “g-plot”). One draws a radius vector in each direction cm and constructs a
perpendicular plane where this vector hits the Wulff plot. The interior envelope of the family of “Wulff planes”
thus formed, expressed algebraically in Eqn (5.4), is the crystal shape, up to an arbitrary overall scale factor that
may be chosen as unity. From Ref. [1].
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Thus, a Wulff construction using the inverse of the crystal shape function yields the

inverse free energy.

To be more explicit, consider the ECS in Cartesian coordinates z(x,y), i.e.,
bhfðx; y; zðx; yÞÞ, assuming (without dire consequences [1]) that z(x,y) is single-valued.

Then, for any displacement to be tangent to bh, dz ( pxdx ( pydy ¼ 0

bh ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

x þ p2
y

q
%
( pxz;(pyz; 1

&
; (5.6)

where px is shorthand for vz/vx.

Then the total free energy and volume are

FiðTÞ ¼
ZZ

fp
5
px;py

6
dx dy

V ¼
ZZ

zðx; yÞdx dy

(5.7)

where fp, which incorporates the line-segment length, is fph½1þ p2
x þ p2

y -
1=2 fi.

Minimizing Fi subject to the constraint of fixed V leads to the Euler–Lagrange equation

v

vx

fp
5
vxz;py

6

px

þ v

vy

fp
5
px;py

6

py

¼ (2l (5.8)

(Actually, one should work with macroscopic lengths, then divide by the V1/3 times

the proportionality constant. Note that this leaves px and py unchanged [1].) On the

right-hand side, 2l can be identified as the chemical potential m, so that the constancy

of the left-hand side is a reflection of equilibrium. Equation (5.8) is strictly valid only if

the derivatives of fp exist, so one must be careful near high-symmetry orientations

below their roughening temperature, for which facets occur. To show that this highly

nonlinear second-order partial differential equation with unspecified boundary con-

ditions is equivalent to Eqn (5.4), we first note that the first integral of Eqn (5.8) is

simply

z ( xpx ( ypy ¼ fp
5
px;py

6
(5.9)

The right-hand side is just a function of derivatives, consistent with this being a Legendre

transformation. Then, differentiating yields

x ¼ (vfp

.
v
5
px

6
; y ¼ (vfp

.
v
5
py

6
(5.10)

Hence, one can show that

zðx; yÞ ¼ min
px ;py

5
fp
5
px;py

6
þ xpx þ ypy

6
(5.11)
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5.3 Applications of Formal Results
5.3.1 Cusps and Facets

The distinguishing feature of Wulff plots of faceted crystals compared to liquids is the

existence of (pointed) cusps in fiðcm;TÞ, which underpin these facets. The simplest way

to see why the cusp arises is to examine a square lattice with nearest-neighbor bonds

having bond energy e1, often called a 2D Kossel [56,57] crystal; note also [210]. In this

model, the energy to cleave the crystal is the Manhattan distance between the ends of

the cut; i.e., as illustrated in Figure 5.4, the energy of severing the bonds between (0,0)

and (X,Y) is just þe1 ðjX j þ jY jÞ. The interfacial area, i.e., length, is 2(X2 þ Y2) since the

cleavage creates two surfaces. At T ¼ 0, entropy plays no role, so that

fiðqÞ ¼
e1

2
ðjsin qj þ jcosqjÞwe1

2
ð1þ jqj þ.Þ (5.12)

At finite T fluctuations and attendant entropy do contribute, and the argument needs

more care. Recalling Eqn (5.1), we see that if there is a linear cusp at q ¼ 0, then

fi
5
q;T

6
¼ fi

5
0;T

6
þ B

5
T
6
jqj; (5.13)

where B ¼ b(T)/h, since the difference between fi(q) and fp(q) only appears at order q2.

Comparing Eqns (5.12) and (5.13), we see that for the Kossel square fi(0,0) ¼ e1/2 and

B(0) ¼ e1/2. Further discussion of the 2D fi(q) is deferred to Section 5.4.3 below.

To see how a cusp in fiðcm;TÞ leads to a facet in the ECS, consider Figure 5.5: the

Wulff plane for q a 0 intersects the horizontal q ¼ 0 plane at a distance fi(0) þ d(q)

from the vertical axis. The crystal will have a horizontal axis if and only if d(q) does not

FIGURE 5.4 Kossel crystal at T ¼ 0. The energy to cleave the crystal along the depicted slanted. Interface
(tan q ¼ Y/Z) is e1 (jXj þ jYj). From Ref. [1].
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vanish as q / 0. From Figure 5.5, it is clear that q z sin q z Bq/d(q) for q near 0, so that

d(0) ¼ B > 0. For a weaker dependence on q, e.g., Bjqjz with z > 1, d(0) ¼ 0, and there is no

facet. Likewise, at the roughening temperature, b vanishes and the facet disappears.

5.3.2 Sharp Edges and Forbidden Regions

When there is a sharp edge (or corner) on the ECS rðbh;T Þ, Wulff planes with a range of

orientations cm will not be part of the inner envelope determining this ECS; they will lie

completely outside it. There is no portion of the ECS whose surface tangent has these

orientations. As in the analogous problems with forbidden values of the “density” vari-

able, the free energy fiðcm;TÞ is actually not properly defined for forbidden values of cm;

those unphysical values should actually be removed from the Wulff plot. Figure 5.6

depicts several possible ECSs and their associated Wulff plots. It is worth emphasizing

that, in the extreme case of the fully faceted ECS at T ¼ 0, the Wulff plot is simply a set of

discrete points in the facet directions.

Now if we denote by cmþ and cm(, the limiting orientations of the tangent planes

approaching the edge from either side, then all intermediate values do not occur as

stable orientations. These missing, not stable, “forbidden” orientations are just like the

forbidden densities at liquid–gas transitions, forbidden magnetizations in ferromagnets

at T < Tc [58], and miscibility gaps in binary alloys. Herring [11,12] first presented an

elegant way to determine these missing orientations using a spherical construction. For

any orientationcm, this tangent sphere (often called a Herring sphere) passes through the

origin and is tangent to the Wulff plot at fiðcmÞ. From geometry, he invoked the theorem

that an angle inscribed in a semicircle is a right angle. Thence, if the orientation cm
appears on the ECS, it appears at an orientation that points outward along the radius of

that sphere. Herring then observes that only if such a sphere lies completely inside the

plot of fiðcmÞ does that orientation appear on the ECS. If some part were inside, its Wulff

FIGURE 5.5 Wulff plot with a linear cusp at q ¼ 0. If d(q) / 0 as q / 0, then there is no facet corresponding to
q ¼ 0, and the q ¼ 0 Wulff plane (dotted line) is tangent to the crystal shape at just a single point. Since d(q) ¼ B,
a cusp in the Wulff plot leads to a facet of the corresponding orientation on the equilibrium crystal shape.
From Ref. [1].
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plane would clip off the orientation of the point of tangency, so that orientation would be

forbidden.

The origin of a hill-and-valley structure from the constituent free energies

[59,221,222] is illustrated schematically in Figure 5.7. It arises when they satisfy the

inequality

fi

%
cm ¼ n1

&
A1 þ fiðn2ÞA2 < fiðnÞA; (5.14)

where A1 and A2 are the areas of strips of orientation n1 and n2, respectively, while A is

the area of the sum of these areas projected onto the plane bounded by the dashed lines

in the figure. This behavior, again, is consistent with the identification of the misori-

entation as a density (or magnetizationlike) variable rather than a fieldlike one.

The details of the lever rule for coexistence regimes were elucidated by Wortis [1]: As

depicted in Figure 5.8, which denotes as P and Q the two orientations bounding the

region that is not stable, the lever rule interpolations lie on segments of a spherical

surface. Let the edge on the ECS be at R. Then an interface created at a forbiddencm will

FIGURE 5.6 Some possible Wulff plots and corresponding equilibrium crystal shapes. Faceted and curved surfaces
may appear, joined at sharp or smooth edges in a variety of combinations. From Ref. [4]; the equilibrium crystal

shape are also in Ref. [12].
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evolve toward a hill-and-valley structure with orientations P and Q with a free energy per

area of

h
fi

%
cm
&i

avr

¼ xfi
5
P
6
þ yfi

5
Q
6

d
: (5.15)

It can then be shown that cm½fiðcmÞ-avr lies on the depicted circle, so that the Wulff plane

passes through the edge at R.

5.3.3 Experiments on Lead Going beyond Wulff Plots

To determine the limits of forbidden regions, it is more direct and straightforward to

carry out a polar plot of 1=fiðcmÞ [20] rather than fiðcmÞ, as discussed in Sekerka’s review

chapter [8]. Then a sphere passing through the origin becomes a corresponding plane; in

particular, a Herring sphere for some point becomes a plane tangent to the plot of

1=fiðcmÞ. If the Herring sphere is inside the Wulff plot, then its associated plane lies

outside the plot of 1=fiðcmÞ. If, on the other hand, if some part of the Wulff plot is inside a

FIGURE 5.8 Equilibrium crystal shape (ECS) analogue of the Maxwell double-tangent construction. O is the center
of the crystal. Points P and Q are on the (stable) Wulff plot, but the region between them is unstable; hence, the
ECS follows PRQ and has an edge at R. An interface at the intermediate orientation cm breaks up into the orien-
tations P and Q with relative proportions x:y; thus, the average free energy per unit area is given by Eqn (5.15),
which in turn shows that fiðcmÞavr lies on the circle. From Ref. [1].

FIGURE 5.7 Illustration of how orientational phase separation occurs when a “hill-and-valley” structure has a
lower total surface free energy per area than a flat surface as in Eqn (5.14). The sketch of the free energy versus
r h tan q shows that this situation reflects a region with negative convexity which is accordingly not stable. The
dashed line is the tie bar of a Maxwell or double-tangent construction. The misorientations are the coexisting
slatlike planes, with orientations n1 and n2, in the hill-and-valley structure. From Ref. [59].
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Herring sphere, the corresponding part of the 1=fiðcmÞ plot will be outside the plane.

Thus, if the plot of 1=fiðcmÞ is convex, all its tangent planes will lie outside, and all ori-

entations will appear on the ECS. If it is not convex, it can be made so by adding tangent

planes. The orientations associated with such tangent planes are forbidden, so their

contact curve with the 1=fiðcmÞ plot gives the bounding stable orientations into which

forbidden orientations phase separate.

Summarizing the discussion in Ref. [8], the convexity of 1=fiðcmÞ can indeed be

determined analytically since the curvature 1=fiðcmÞ is proportional (with a positive-

definite proportionality constant) to the stiffness, i.e., in 2D, gþ v2g=vq2 ¼ ~g, or pref-

erably bþ v2b=vq2 ¼ ~b as in Eqn (5.1) to emphasize that the stiffness and (step) free

energy per length have different units in 2D from 3D. Hence, 1=fiðcmÞ is not convex where

the stiffness is negative. The very complicated generalization of this criterion to 3D is

made tractable via the x-vector formalism of Refs [30,61], where x ¼ Vðr fiðcmÞÞ, where r is

the distance from the origin of the g plot. Thus.

fi
5
cm
6
¼ x $cm; cm $dx ¼ 0; (5.16)

which is discussed well by Refs [8,62]. To elucidate the process, we consider just the 2D

case [60].

The solid curve in Figure 5.10 is the x plot and the dashed curve is the 1/g-plot for

fiðcmÞhgf1þ 0:2cos4q. For this case, the 1/g-plot is not convex and the x plot forms

“ears.” The equilibrium shape is given by the interior envelope of the x plot; in this case it

exhibits four corners.

n

FIGURE 5.9 Graphical constructions for an anisotropic fiðcmÞ for various values of an anisotropy parameter a,
where f if 1 þ acos2 qsin2 q. In the left column fi(q) is plotted from top to bottom for a ¼ 1/2,1,2. Anisotropy
increases with positive a, so 1/a corresponds in some sense to a temperature in conventional plots. In the center
panel, n1

2 is cos2 q. The shape resulting from the gradient construction with the ears removed is the Wulff
equilibrium crystal shape. From Ref. [60].
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Pursuing this analogy, we see that if one cleaves a crystal at some orientation cm that

is not on the ECS, i.e., between cmþ and cm(, then this orientation will break up into

segments with orientationscmþ andcm( such that the net orientation is stillcm, providing

another example of the lever rule associated with Maxwell double-tangent constructions

for the analogous problems. The time to evolve to this equilibrium state depends

strongly on the size of energy barriers to mass transport in the crystalline material; it

could be exceedingly long. To achieve rapid equilibration, many nice experiments were

performed on solid hcp 4He bathed in superfluid 4He, for which equilibration occurs in

seconds [63–66], and many more (see Ref. [67] for a comprehensive recent review).

Longer but manageable equilibration times are found for Si and for Au, Pb, and other soft

transition metals.

5.4 Some Physical Implications of Wulff Constructions
5.4.1 Thermal Faceting and Reconstruction

A particularly dramatic example is the case of surfaces vicinal to Si (111) by a few de-

grees. In one misorientation direction, the vicinal surface is stable above the recon-

struction temperature of the (111) facet, but below that temperature, fi(111) decreases

significantly so that the original orientation is no longer stable and phase separates into

reconstructed (111) terraces and more highly misoriented segments [68,69]. The

FIGURE 5.10 The solid curve is the x plot, while the dashed curve is the 1/g-plot for fið bmÞhgf1þ 0:2 cos 4 q. For
this case (but not for small values of a), the 1/g-plot is not convex, and the x plot forms “ears.” These ears are
then removed, so that the equilibrium shape is given by the interior envelope of the x plot, in this case having
four corners. From Ref. [62].
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correspondence to other systems with phase separation at first-order transitions is even

more robust. Within the coexistence regime, one can in mean field determine a spinodal

curve. Between it and the coexistence boundary, one observes phase separation by

nucleation and growth, as for metastable systems; inside the spinodal, one observes

much more rapid separation with a characteristic most-unstable length [70]. This system

is discussed further below.

Wortis [1] describes “thermal faceting” experiments in which metal crystals, typically

late-transition or noble metal elements like Cu, Ag, and Fe, are cut at a high Miller index

direction and polished. They are then annealed at high temperatures. If the initial plane

is in a forbidden direction, optical striations, due to hill-and-valley formation, appear

once these structures have reached optical wavelengths. While the characteristic size of

this pattern continues to grow as in spinodal decomposition, the coarsening process is

eventually slowed and halted by kinetic limitations.

There are more recent examples of such phenomena. After sputtering and annealing

above 800 K, Au(4,5,5) at 300 K forms a hill-and-valley structure of two Au(111) vicinal

surfaces, one that is reconstructed and the other not, as seen in Figure 5.11. This seems

to be an equilibrium phenomenon: It is reversible and independent of cooling rate [77].

Furthermore, while it has been long known that adsorbed gases can induce faceting on

bcc (111) metals [72], ultrathin metal films have also been found to produce faceting of

W(111), W(211), and Mo(111) [73,74].

FIGURE 5.11 Morphology of the faceted Au(4,5,5) surface measured at room temperature. (A) 3D plot of a large-
scale (scan area: 1.4 * 1.4 mm) scanning tunneling microscopy (STM) image. Phases A and B form the hill-and-
valley morphology. (B) STM image zoomed in on a boundary between the two phases. All steps single-height, i.e.,
2.35Å high. Phase B has smaller terraces, 13Å wide, while phase A terraces are about 30Å wide. This particular
surface has (2,3,3) orientation. From Ref. [71].
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5.4.2 Types A and B

The above analysis indicates that at T ¼ 0, the ECS of a crystal is a polyhedron having the

point symmetry of the crystal lattice, a result believed to be general for finite-range in-

teractions [75]. All boundaries between facets are sharp edges, with associated forbidden

nonfacet orientation; indeed, the Wulff plot is just a set of discrete points in the sym-

metry directions. At finite temperature, two possibilities have been delineated (with

cautions [1], labeled nonmnemonically) A and B. In type A, there are smooth curves

between facet planes rather than edges and corners. Smooth here means, of course, that

not only is the ECS continuous, but so is its slope, so that there are no forbidden ori-

entations anywhere. This situation corresponds to continuous phase transitions. In type

B, in contrast, corners round at finite T but edges stay sharp until some temperature T0.

For T0 < T < T1, there are some rounded edges and some sharp edges, while above T1 all

edges are rounded.

Rottman and Wortis [4] present a comprehensive catalog of the orientation phase

diagrams, Wulff plots, and ECSs for the cases of nonexistent, weakly attractive, and

weakly repulsive next-nearest-neighbor (NNN) bonds in 3D. Figures 5.12 and 5.13 show

the orientation phase diagrams and the Wulff plots with associated ECSs, respectively,

for weakly attractive NNN bonds. As indicated in the caption, it is easy to describe what

then happens when e2 ¼ 0 and only {100} facets occur. Likewise, Figures 5.14 and 5.15

show the orientation phase diagrams and the Wulff plots with associated ECSs,

respectively, for weakly repulsive NNN bonds.

FIGURE 5.12 Interfacial phase diagrams for simple-cubic nearest-neighbor Kossel crystal with nearest-neighbor as
well as (weak) next nearest-neighbor (NNN) attractions. The angular variables q and f (not to be confused with 4,
cf. Section 5.2.1) interfacial orientation (cm) and equilibrium crystal shape (bh), respectively, in an equatorial sec-
tion of the full 3D phase diagram. (A) The T–q phase diagram (b) shows the locus of cusps in the Wulff plot along
the symmetry directions below the respective roughening temperatures. For no NNN interaction (ε2 ¼ 0), there
are only cusps at vertical lines at 0 and p/2. (B) The T ( bh phase diagram gives the faceted areas of the crystal
shape. The NNN attraction leads to additional (111) (not seen in the equatorial plane) and (110) facets at low
enough temperature. Thus, for e2 ¼ 0 the two bases of the (100) and (010) phases meet and touch each other at
(and only at) f ¼ p/4 (at T ¼ 0), with no intervening (110) phase. Each type of facet disappears at its own rough-
ening temperature. Above the phase boundaries enclosing those regions, the crystal surfaces are smoothly curved
(i.e., thermodynamically “rough”). This behavior is consistent with the observed phase diagram of hcp 4He. From
Ref. [4].
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FIGURE 5.13 Representative Wulff plots and equilibrium crystal shapes for the crystal with weak next nearest-
neighbor attractions whose phase diagram is shown in Figure 5.12. At low enough temperature there are (100),
(110), and (111) facets. For weak attraction, the (110) and (111) facets roughen away below the (100) roughening
temperature. For e2 ¼ 0, TR2 ¼ 0, so that the configurations in the second row do not occur; in the first row, the
octagon becomes a square and the perspective shape is a cube. Facets are separated at T > 0 by curved surfaces,
and all transitions are second order. Spherical symmetry obtains as T approaches melting at Tc. From Ref. [4].

FIGURE 5.14 Interfacial phase diagram with (weak) next nearest-neighbor (NNN) repulsion rather than attraction
as in Figure 5.12. The NNN repulsion stabilizes the (100) facets. Curved surfaces first appear at the cube corners
and then reach the equatorial plane at T3. The transition at the equator remains first order until a higher temper-
ature Tt. The dotted boundaries are first order. A forbidden (coexistence) region appears in the T ( bh phase dia-
gram. From Ref. [4].
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5.4.3 2D Studies

Exploring the details is far more transparent in 2D than in 3D. The 2D case is physically

relevant in that it describes the shape of islands of atoms of some species at low frac-

tional coverage on an extended flat surface of the same or another material. An entire

book is devoted to 2D crystals [76]. The 2D perspective can also be applied to cylindrical

surfaces in 3D, as shown by Ref. [7]. Formal proof is also more feasible, if still arduous, in

2D: An entire book is devoted to this task [25]; see also Refs [34,35].

For the 2D nearest-neighbor Kossel crystal described above [1] notes that at T ¼ 0 a

whole class of Wulff planes pass through a corner. At finite T, thermal fluctuations lift

this degeneracy and the corner rounds, leading to type A behavior. To gain further

insight, we now include a next nearest-neighbor (NNN) interaction e2, so that

fiðqÞ ¼
e1 þ e2

2
ðjcos qj þ jsin qjÞ þ e2

2
ðjcos qj ( jsin qjÞ (5.17)

For favorable NNN bonds, i.e., e2 > 0, one finds new {11} facets but still type A behavior

with sharp edges, while for unfavorable NNN bonds, i.e., e2 < 0, there are no new facets

but for finite T, the edges are no longer degenerate so that type B behavior obtains. Again

recalling that fi(q) ¼ fp(q) jcosqj, we can identify f0 ¼ e2 þ e1/2 and b/h ¼ e1/2, as noted in

other treatments, e.g., Ref. [77]. That work, however, finds that such a model cannot

adequately account for the orientation-dependent stiffness of islands on Cu(001).

FIGURE 5.15 Representative Wulff plots and
equilibrium crystal shapes for the crystal with
weak next nearest-neighbor repulsions whose
phase diagram is shown in Figure 5.14. Curved
surfaces appear first at the cube corners.
Junctions between facets and curved surfaces may
be either first or second order (sharp or smooth),
depending on orientation and temperature. From
Ref. [4].
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Attempts to resolve this quandary using 3-site non-pairwise (trio) interactions [78,79] did

not prove entirely satisfactory. In contrast, on the hexagonal Cu(111) surface, only NN

interactions are needed to account adequately for the experimental data [79,80]. In fact,

for the NN model on a hexagonal grid, [81] found an exact and simple, albeit implicit,

expression for the ECS. However, on such (111) surfaces (and basal planes of hcp

crystals), lateral pair interactions alone cannot break the symmetry to produce a dif-

ference in energies between the two kinds of step edges, viz. {100} and {111} microfacets

(A and B steps, respectively, with no relation to types A and B!). The simplest viable

explanation is an orientation-dependent trio interaction; calculations of such energies

support this idea [79,80].

Strictly speaking, of course, there should be no 2D facet (straight edge) and accom-

panying sharp edges (corners) at T > 0 (see Refs [82–85] and references therein) since

that would imply 1D long-range order, which should not occur for short-range in-

teractions. Measurements of islands at low temperatures show edges that appear to be

facets and satisfy Wulff corollaries such as that the ratio of the distances of two unlike

facets from the center equals the ratio of their fi [86]. Thus, this issue is often just

mentioned in passing [87] or even ignored. On the other hand, sophisticated approxi-

mations for fi(q) for the 2D Ising model, including NNN bonds, have been developed,

e.g., Ref. [88], allowing numerical tests of the degree to which the ECS deviates from a

polygon near corners of the latter. One can also gauge the length scale at which de-

viations from a straight edge come into play by using that the probability per atom along

the edge for a kink to occur is essentially the Boltzmann factor associated with the energy

to create the kink [89].

Especially for heteroepitaxial island systems (when the island consists of a different

species from the substrate), strain plays an important if not dominant role. Such systems

havebeen investigated, e.g., by Liu [90],whopoints out that for suchsystems the shapedoes

not simply scale with l, presumably implying the involvement of some new length scale[s].

A dramatic manifestation of strain effects is the island shape transition of Cu on Ni(001),

which changes from compact to ramified as island size increases [91]. For small islands,

additional quantum-size and other effects lead to favored island sizes (magic numbers).

5.5 Vicinal Surfaces–Entrée to Rough Regions
Near Facets

In the rough regions, the ECS is a vicinal surface of gradually evolving orientation. To the

extent that a local region has a particular orientation, it can be approximated as an

infinite vicinal surface. The direction perpendicular to the terraces (which are densely

packed facets) is typically called bz. In “Maryland notation” (cf. Section 5.2.1) the normal

to the vicinal surface lies in the x–z plane, and the distance ‘ between steps is measured

along bx, while the steps run along the by direction. In the simplest and usual approxi-

mation, the repulsions between adjacent steps arise from two sources: an entropic or
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steric interaction due to the physical condition that the steps cannot cross, since over-

hangs cannot occur in nature. The second comes from elastic dipole moments due to

local atomic relaxation around each step, leading to frustrated lateral relaxation of atoms

on the terrace plane between two steps. Both interactions are f1/‘2.

The details of the distribution P
n

ð‘Þ of spacings between steps have been reviewed in

many works [60,92,93,97]. The average step separation h‘i is the only characteristic

length in the bx direction. N.B., h‘i need not be a multiple of, or even simply related to,

the substrate lattice spacing. Therefore, we consider PðsÞ ¼ h‘i(1P
n

ð‘Þ, where s h ‘/h‘i, a
dimensionless length. For a “perfect” cleaved crystal, P(s) is just a spike d(s ( 1). For

straight steps placed randomly at any position with probability 1/h‘i, P(s) is a Poisson

distribution exp((s). Actual steps do meander, as one can study most simply in a terrace

step kink (TSK) model. In this model, the only excitations are kinks (with energy e) along

the step. (This is a good approximation at low temperature T since adatoms or vacancies

on the terrace cost several e1 (4e1 in the case of a simple-cubic lattice). The entropic

repulsion due to steps meandering dramatically decreases the probability of finding

adjacent steps at ‘ . h‘i. To preserve the mean of one, P(s) must also be smaller than

exp((s) for large s.

If there is an additional energetic repulsion A/‘2, the magnitude of the step

meandering will decrease, narrowing P(s). As A / N, the width approaches

0 (P(s) / d(s ( 1), the result for perfect crystals). We emphasize that the energetic and

entropic interactions do not simply add. In particular, there is no negative (attractive)

value of A at which the two cancel each other (cf. Eqn (5.30) below.) Thus, for strong

repulsions, steps rarely come close, so the entropic interaction plays a smaller role, while

for A < 0, the entropic contribution increases, as illustrated in Figure 5.16 and explicated

below. We emphasize that the potentials of both interactions decay as ‘(2 (cf. Eqn (5.27)�
FIGURE 5.16 Illustration of how entropic repulsion and energetic interactions combine, plotted versus the
dimensionless energetic interaction strength ~AhA~b=ðkBTÞ2. The dashed straight line is just ~A. The solid curve
above it is the combined entropic and energetic interactions, labeled ~Aeff for reasons explained below. The
difference between the two curves at any value of the abscissa is the dimensionless entropic repulsion for that ~A.
The decreasing curve, scaled on the right ordinate, is the ratio of this entropic repulsion to the total
dimensionless repulsion ~Aeff. It falls monotonically with ~A, passing through unity at ~A ¼ 0. See the discussion
accompanying Eqn (5.26) for more information and explicit expressions for the curves. From Ref. [92].
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below), in contrast to some claims in the literature (in papers analyzing ECS exponents)

that entropic interactions are short range while energetic ones are long range.

Investigation of the interaction between steps has been reviewed well in several

places [60,94–97]. The earliest studies seeking to extract A from terrace-width distribu-

tions (TWDs) used the mean-fieldlike Gruber–Mullins [96] approximation, in which a

single active step fluctuates between two fixed straight steps 2h‘i apart. Then the energy

associating with the fluctuations x(y,t) is

DE ¼ (bð0ÞLy þ
ZLy

0

bðqðyÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
8
vx

vy

92
s

dy; (5.18)

where Ly is the size of the system along the mean step direction (i.e., the step length with

no kinks). We expand b(q) as the Taylor series bð0Þ þ b0ð0Þqþ 1 =

2b00ð0Þq2 and recognize

that the length of the line segment has increased from dy to dy/cos qz dy(1 þ 1/2 q
2). For

close-packed steps, for which b0(0) ¼ 0, it is well known that (using qztan q ¼ vx/vy)

DEz
~b
5
0
6

2

ZLy

0

8
vx

vy

92

dy; ~bð0Þhbð0Þ þ b00ð0Þ; (5.19)

where ~b is the step stiffness [97]. N.B., the stiffness ~bðqÞ has the same definition for steps

with arbitrary in-plane orientation—for which b0ðqÞs0—because to create such steps,

one must apply a “torque” [98] which exactly cancels b0ðqÞ. (See Refs [88,99] for a more

formal proof.)

Since x(y) is taken to be a single-valued function that is defined over the whole

domain of y, the 2D configuration of the step can be viewed as the worldline of a particle

in 1D by recognizing y as a timelike variable. Since the steps cannot cross, these particles

can be described as spinless fermions in 1D, as pointed out first by de Gennes [100] in a

study of polymers in 2D [220]. Thus, this problem can be mapped into the Schrödinger

equation in 1D: vx/vy in Eqn (5.19) becomes vx/vt, with the form of a velocity, with the

stiffness playing the role of an inertial mass. This correspondence also applies to domain

walls of adatoms on densely covered crystal surfaces, since these walls have many of the

same properties as steps. Indeed, there is a close correspondence between the phase

transition at smooth edges of the ECS and the commensurate-incommensurate phase

transitions of such overlayer systems, with the rough region of the ECS corresponding to

the incommensurate regions and the local slope related to the incommensurability

[101–105]. Jayaprakash et al. [37] provide the details of the mapping from a TSK model to

the fermion picture, complete with fermion creation and annihilation operators.

In the Gruber–Mullins [96] approximation, a step with no energetic interactions be-

comes a particle in a 1D infinite-barrier well of width 2h‘i, with well-known groundstate

properties:

j0ð‘Þfsin

8
p‘

2h‘i

9
; PðsÞ ¼ sin2

%ps
2

&
; E0 ¼

ðpkBT Þ2

8~bh‘i2
(5.20)

236 HANDBOOK OF CRYSTAL GROWTH

Thus, it is the kinetic energy of the ground state in the quantum model that corresponds

to the entropic repulsion (per length) of the step. In the exact solution for the free energy

expansion of the ECS [106], the numerical coefficient in the corresponding term is 1/6

rather than 1/8. Note that P(s) peaks at s ¼ 1 and vanishes for s 0 2.

Suppose, next, that there is an energetic repulsion U(‘) ¼ A/‘2 between steps. In the

1D Schrödinger equation, the prefactor of (v
2j(‘)/v‘2 is ðkBTÞ2=2~b, with the thermal

energy kBT replacing Z. (Like the repulsions, this term has units ‘(2.) Hence, A only

enters the problem in the dimensionless combination ~AhA~b=ðkBTÞ2 [107]. In the

Gruber–Mullins picture, the potential (per length) experienced by the single active par-

ticle is ðwith ‘
n

h‘( h‘iÞ

~U
%
‘
n
&
¼

~A
%
‘
n

( h‘i
&2 þ

~A
%
‘
n

þ h‘i
&2 ¼

2 ~A

h‘i2
þ 6 ~A‘

n2

h‘i4
þO

 
~A‘

n4

h‘i6

!
(5.21)

The first term is just a constant shift in the energy. For ~A sufficiently large, the particle

is confined to a region
!!!‘
n

!!!. h‘i, so that we can neglect the fixed walls and the quartic

term, reducing the problem to the familiar simple harmonic oscillator, with the solution:

j0ð‘Þfe(‘
n2
=
4w2

; PGðsÞh
1

sG

ffiffiffiffiffiffi
2p

p exp

"
( ðs ( 1Þ2

2s2
G

#
(5.22)

where sG ¼ ð48 ~AÞ(1=4 and w ¼ sGh‘i.
For ~A of 0 or 2, the TWD can be computed exactly (See below). For these cases, Eqns

(5.20) and (5.22), respectively, provide serviceable approximations. It is Eqn (5.22) that is

prescribed for analyzing TWDs in the most-cited resource on vicinal surfaces [58].

Indeed, it formed the basis of initial successful analyses of experimental scanning

tunneling microscopy (STM) data [108]. However, it has some notable shortcomings.

Perhaps most obviously, it is useless for small but not vanishing ~A, for which the TWD is

highly skewed, not resembling a Gaussian, and the peak, correspondingly, is significantly

below the mean spacing. For large values of ~A, it significantly underestimates the vari-

ance or, equivalently, the value of ~A one extracts from the experimental TWD width

[109]: in the Gruber–Mullins approximation the TWD variance is the same as that of the

active step, since the neighboring step is straight. For large ~A, the fluctuations of

the individual steps on an actual vicinal surface become relatively independent, so the

variance of the TWD is the sum of the variance of each, i.e., twice the step variance.

Given the great (quartic) sensitivity of ~A to the TWD width, this is problematic. As ex-

perimentalists acquired more high-quality TWD data, other approximation schemes

were proposed, all producing Gaussian distributions with widths f ~A
(1=4

, but with pro-

portionality constants notably larger than 48(1/4 ¼ 0.38.

For the “free-fermion” ð ~A ¼ 0Þ case, [110] developed a sequence of analytic approx-

imants to the exact but formidable expression [111,112] for P(s). They, as well as a

slightly earlier paper [113], draw the analogy between the TWD of vicinal surfaces and
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the distribution of spacings between interacting (spinless) fermions on a ring, the

Calogero–Sutherland model [113,114], which, in turn for three particular values of the

interaction—in one case repulsive ð ~A ¼ 2Þ, in another attractive ð ~A ¼ (1=4Þ, and lastly

the free-fermion case ð ~A ¼ 0Þ—could be solved exactly by connecting to random matrix

theory [92,111,115]; Figure 5.5 of Ref. [117] depicts the three resulting TWDs.

These three cases can be well described by the Wigner surmise, for which there are

many excellent reviews [111,117,118]. Explicitly, for 9 ¼ 1, 2, and 4:

P9

5
s
6
¼ a9s

9exp
5
(b9s

2
6
; (5.23)

where the subscript of P refers to the exponent of s. In random matrix literature, the

exponent of s, viz. 1, 2, or 4, is called b, due to an analogy with inverse temperature in one

justification. However, to avoid possible confusion with the step free energy per length b

or the stiffness ~b for vicinal surfaces, I have sometimes named it instead by the Greek

symbol that looked most similar, 9, and do so in this chapter. The constants b9, which

fixes its mean at unity, and a9, which normalizes P(s), are

b9 ¼

2
664
G

8
9þ2
2

9

G

8
9þ1
2

9

3
775

2

a9 ¼
2

'
G

8
9þ2
2

9)9þ1

'
G

8
9þ1
2

9)9þ2
¼

2bð9þ1Þ=2
9

G

8
9þ1
2

9 (5.24)

Specifically, b9 ¼ p/4, 4/p, and 64/9p, respectively, while a9 ¼ p/2, 32/p2, and (64/9p)3,

respectively.

As seen most clearly by explicit plots, e.g., Figure 4.2(a) of Haake’s text [118], P1(s),

P2(s), and P4(s) are excellent approximations of the exact results for orthogonal, unitary,

and symplectic ensembles, respectively, and these simple expressions are routinely used

when confronting experimental data in a broad range of physical problems [118,119].

(The agreement is particularly outstanding for P2(s) and P4(s), which are the germane

cases for vicinal surfaces, significantly better than any other approximation [120].)

Thus, the Calogero–Sutherland model provides a connection between random matrix

theory, notably the Wigner surmise, and the distribution of spacings between fermions

in 1D interacting with dimensionless strength ~A. Specifically:

~A ¼ 9

2

%9
2
( 1
&

5 9 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 ~A

p
: (5.25)

For an arbitrary system, there is no reason that ~A should take on one of the three special

values. Therefore, we have used Eqn (5.28) for arbitrary 9 or ~A, even though there is no

symmetry-based justification of distribution based on the Wigner surmise of Eqn (5.26),

and refer hereafter to this formula, Eqns (5.26, 7.27), as the generalized Wigner distri-

bution (GWD). Arguably the most convincing argument is a comparison of the predicted

variance with numerical data generated from Monte Carlo simulations. See Ref. [92] for

further discussion.

There are several alternative approximations that lead to a description of the TWD as

a Gaussian [109]; in particular, focus on the limit of large 9, neglecting the entropic
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interaction in that limit. The variance s2f ~A
(1=2

, the proportionality constant is 1.8 times

that in the Gruber–Mullins case. This approximation is improved, especially for re-

pulsions that are not extremely strong, by including the entropic interaction in an

average way. This is done by replacing ~A by

~Aeff ¼
%9
2

&2
¼ ~Aþ 9

2
: (5.26)

Physically, ~Aeff gives the full strength of the inverse-square repulsion between steps, i.e.,

the modification due to the inclusion of entropic interactions. Thus, in Eqn (5.1)

gðTÞ ¼ ðpkBT Þ2

6h3~b
~Aeff ¼

ðpkBT Þ2

24h3~b

h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 ~A

p i2
: (5.27)

From Eqn (5.29) it is obvious that the contribution of the entropic interaction, viz. the

difference between the total and the energetic interaction, as discussed in conjunction

with Figure 5.16, is 9/2. Remarkably, the ratio of the entropic interaction to the total

interaction is (9/2)/(9/2)2 ¼ 2/9; this is the fractional contribution that is plotted in

Figure 5.16.

5.6 Critical Behavior of Rough Regions Near Facets
5.6.1 Theory

Assuming (cf. Figure 5.17) bz the direction normal to the facet and (x0,z0) denote the facet

edge, zw z0 ( (x ( x0)
w for x 0 x0. We show that the critical exponent w3 has the value 3/2

for the generic smooth edge described by Eqn (5.1) (with the notation of Eqn (5.13)):

fpðpÞ ¼ f0 þ Bpþ gp3 þ cp4: (5.28)

FIGURE 5.17 Critical behavior of the crystal shape near a smooth (second-order) edge, represented by the dot at
(x0,z0). The temperature is lower than the roughening temperature of the facet orientation, so that the region to
the left of the dot is flat. The curved region to the right of the dot correspond to a broad range of rough
orientations. In the thermodynamic limit, the shape of the smoothly curved region near the edge is described by
the power law z w z0 ( (x ( x0)

w. Away from the edge there are “corrections to scaling”, i.e., higher order terms
(cf. Eqn (5.33)). For an actual crystal of any finite size, there is “finite-size rounding” near the edge, which
smooths the singular behavior. Adapted from Ref. [120].

3The conventional designation of this exponent is l or q. However, these Greek letters are the Lagrange

multiplier of the ECS and the polar angle, respectively. Hence, we choose w for this exponent.
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Then we perform a Legendre transformation [55] as in Refs [125,126]; explicitly:

fpðpÞ ( ~f ðhÞ
p

¼
'
dfp

dp
hh

)
¼ Bþ 3gp2 þ 4cp3 (5.29)

Hence:

~f ðhÞ ¼ f0 ( 2gp3ðhÞ ( 3cp4ðhÞ (5.30)

But from Eqn (5.29):

p ¼
8
h( B

3g

91=2
"
1( 2c

3g

8
h( B

3g

91=2

þ.

#
(5.31)

Inserting this into Eqn (5.30) gives

~f ðhÞ ¼ f0 ( 2g

8
h( B

3g

93=2

þ c

8
h( B

3g

92

þO

8
h( B

3g

95=2

(5.32)

for h 0 B and ~f ðhÞ ¼ f0 for h 1 B. (See Refs [9,120,122].) Note that this result is true not

just for the free-fermion case but even when steps interact. Jayaprakash et al. [37] further

show that the same w obtains when the step–step interaction decreases with a power law

in ‘ that is greater than 2. We identify ~f ðhÞ with rðbhÞ, i.e., the magnetic-fieldlike variable

discussed corresponds to the so-called Andreev field h. Writing z0 ¼ f0/l and x0 ¼ B/l, we

find the shape profile

zðxÞ
z0

¼ 1( 2

8
f0
g

91=28
x ( x0
z0

93=2

þ cf0

g2

8
x ( x0
z0

92

þO

8
x ( x0
z0

95=2
(5.33)

Note that the edge position depends only on the step free energy B, not on the step

repulsion strength; conversely, the coefficient of the leading (x ( x0)
3/2 term is inde-

pendent of the step free energy but varies as the inverse root of the total step repulsion

strength, i.e., as g(1/2.

If, instead of Eqn (5.31), one adopts the phenomenological Landau theory of

continuous phase transitions [121] and performs an analytic expansion of fp(p) in p [123,

124] (and truncate after a quadratic term f2p
2), then a similar procedure leads w ¼ 2,

which is often referred to as the “mean-field” value. This same value can be produced by

quenched impurities, as shown explicitly for the equivalent commensurate-

incommensurate transition by [125].

There are some other noteworthy results for the smooth edge. As the facet roughening

temperature is approached from below, the facet radius shrinks like exp[(p2TR/4

{2ln2(TR ( T)}1/2] [122], in striking contrast to predictions by mean field theory. The

previous discussion implicitly assumes that the path along x for which w ¼ 3/2 in Eqn

(5.36) is normal to the facet edge. By mapping the crystal surface onto the asymmetric

6-vertex model, using its exact solution [53,54], and employing the Bethe ansatz to

240 HANDBOOK OF CRYSTAL GROWTH

expand the free energy close to the facet edge [127], find that w ¼ 3/2 holds for any

direction of approach along the rounded surface toward the edge, except along the

tangential direction (the contour that is tangent to the facet edge at the point of contact

x0). In that special direction, they find the new critical exponent wy ¼ 3 (where the

subscript y indicates the direction perpendicular to the edge normal, x [128]). Also,

Akutsu and Akutsu [128] confirmed that this exact result was universally true for the

Gruber–Mullins–Prokrovsky–Talapov free-energy expansion. (The Prokrovsky-Talapov

argument was for the equivalent commensurate-incommensurate transition.) They

also present numerical confirmation using their transfer-matrix method based on the

product-wave-function renormalization group (PWFRG) [129,130]. Observing wy exper-

imentally will clearly be difficult, perhaps impossible; the nature and breadth of cross-

over to this unique behavior has not, to the best of my knowledge, been published. A

third result is that there is a jump (for T < TR) in the curvature of the rounded part near

the facet edge that has a universal value [106,131], distinct from the universal curvature

jump of the ECS at TR [122].

5.6.2 Experiment on Leads

Noteworthy initial experimental tests of w ¼ 3/2 include direct measurements of the

shape of equilibrated crystals of 4He [132] and Pb [133]. As in most measurements of

critical phenomena, but even harder here, is the identification of the critical point, in this

case the value of x0 at which rounding begins. Furthermore, as is evident from Eqn

(5.36), there are corrections to scaling, so that the “pure” exponent 3/2 is seen only near

the edge and a larger effective exponent will be found farther from the edge. For crystals

as large as a few mm at temperatures in the range 0.7–1.1 K, 4He w ¼ 1.55 + 0.06 was

found, agreeing excellently with the Prokrovsky–Talapov exponent. The early measure-

ments near the close-packed (111) facets of Pb crystallites, at least two orders of

magnitude smaller, were at least consistent with 3/2, stated conservatively as

w ¼ 1.60 + 0.15 after extensive analysis. Sáenz and Garcı́a [134] proposed that in Eqn

(5.31) there can be a quadratic term, say f2p
2 (but neglect the possibility of a quartic

term). Carrying out the Legendre transformation then yields an expression with both

x ( B and ðx ( Bþ f 22 =3gÞ
3=2 terms, which they claim will lead to effective values of w

between 3/2 and 2. This approach provided a competing model for experimentalists to

consider but in the end seems to have produced little fruit.

As seen in Figure 5.18, STM allows detailed measurement of micron-size crystal

height contours and profiles at fixed azimuthal angles. By using STM to locate the initial

step down from the facet, first done by Surnev et al. [135] for supported Pb crystallites, x0
can be located independently and precisely. However, from the 1984 Heyraud–Métois

experiment [133] it took almost two decades until the Bonzel group could fully confirm

the w ¼ 3/2 behavior for the smooth edges of Pb(111) in a painstaking study [137]. There

were a number of noteworthy challenges. While the close-packed 2D network of spheres

has six-fold symmetry, the top layer of a (111) facet of an fcc crystal (or of an (0001) facet
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of an hcp crystal) has only three-fold symmetry due to the symmetry-breaking role of the

second layer. There are two dense straight step edges, called A and B, with {100} and

{111} microfacets, respectively. In contrast to noble metals, for Pb there is a sizable (of

order 10%) difference between their energies. Even more significant—when a large range

of polar angles is used in the fitting—is the presence of small (compared to {111}) {112}

facets for equilibration below 325 K. Due to the high atomic mobility of Pb that can lead

to the formation of surface irregularities, Bonzel’s group [135] worked close to room

temperature. One then finds strong (three-fold) variation of w with azimuthal angle, with

w oscillating between 1.4 and 1.7. With a higher annealing temperature of 383 K, [137]

report the azimuthal averaged value w ¼ 1.487 (but still with sizable oscillations of about

+0.1); in a slightly earlier short report [137], they give a value w ¼ 1.47 for annealing at

FIGURE 5.18 (A) Micron-size lead crystal (supported on Ru) imaged with a variable-temperature scanning
tunneling microscopy at T ¼ 95 2C. Annealing at T ¼ 95 2C for 20 h allowed it to obtain its stable, regular shape.
Lines marked A and B indicate location of profiles. Profile A crosses a (0 0 1)-side facet, while profile B a (1 1 1)-
side facet. (B) 770 * 770 nm section of the top part of a Pb crystal. The insert shows a 5.3 * 5.3 nm area of the
top facet, confirming its ð11 #1Þ-orientation. Both the main image and the insert were obtained at T ¼ 110 2C.
From Ref. [141].
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room temperature. Their attention shifted to deducing the strength of step–step re-

pulsions by measuring g [138,139]. In the most recent review of the ECS of Pb [140], the

authors rather tersely report that the Prokrovsky–Talapov value of 3/2 for w characterizes

the shape near the (111) facet and that imaging at elevated temperature is essential to get

this result; most of their article relates to comparison of measured and theoretically

calculated strengths of the step–step interactions.

Few other systems have been investigated in such detail. Using scanning electron

microscopy (SEM) [142] the researchers considered In, which has a tetragonal structure,

near a (111) facet. They analyzed the resulting photographs from two different crystals,

viewed along two directions. For polar angles 02 1 q < w52 they find w z 2 while for

52 1 q 1 152 determine wz 1.61, concluding that in this window w ¼ 1.60 + 0.10; the two

ranges have notably different values of x0. This group [143] also studied Si, equilibrated at

9002 C, near a (111) facet. Many profiles weremeasured along a high-symmetry h111i zone
of samples with various diameters of the order a few mm, over the range 32 1 q 1 172. The
results are consistent with w ¼ 3/2, with an uncertainty estimated at 6%. Finally, [144]

studied large (several mm) spherical cuprous selenide (Cu2(x Se) single crystals near a

(111) facet. Study in this context ofmetal chalcogenide superionic conductors began some

dozen years ago because, other than 4He, they are the only materials having sub-cm size

crystals with an ECS form that can be grown on a practical time scale (viz. over several

days) because their high ionic and electronic conductivity enable fast bulk atomic trans-

port. For 14.02 1 q1 17.12 [144] find w¼ 1.499+ 0.003. (They also report that farther from

the facet w z 2.5, consistent with the Andreev mean field scenario.)

5.6.3 Summary of Highlights of Novel Approach to Behavior Near
Smooth Edges

Digressing somewhat, we note that Ferrari, Prähofer, and Spohn [145] found novel static

scaling behavior of the equilibrium fluctuations of an atomic ledge bordering a crys-

talline facet surrounded by rough regions of the ECS in their examination of a 3D Ising

corner (Figure 5.19). This boundary edge might be viewed as a “shoreline” since it is the

edge of an islandlike region—the crystal facet—surrounded by a “sea” of steps [146].

Spohn and coworkers assume that there are no interactions between steps other than

entropic, and accordingly the step configurations can be mapped to the worldlines of

free spinless fermions, as in treatments of vicinal surfaces [37]. However, there is a key

new feature that the step number operator is weighted by the step number, along with a

Lagrange multiplier l
(1 associated with volume conservation of the crystallite. The

asymmetry of this term leads to the novel behavior found by the researchers. They then

derive an exact result for the step density and find that, near the shoreline:

lim
l/N

l1=3rl
5
l1=3x

6
¼ (xðAiðxÞÞ2 þ ðAi0ðxÞÞ2; (5.34)

where rl is the step density (for the particular value of l).
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The presence of the Airy function Ai results from the asymmetric potential implicit in

HF and preordains exponents involving 1/3. The variance of the wandering of the

shoreline, the top fermionic worldline in Figure 5.20 and denoted by b, is given by

Var
F
bl

5
t
6
( bl

5
0
6G
yl2=3g

5
l(2=3t

6
(5.35)

where t is the fermionic “time” along the step; g(s)w 2jsj for small s (diffusivemeandering)

andw1.6264( 2/s2 for large s. 1.202. is Apery’s constant andN is the number of atoms in

the crystal. They find:

Var ½b‘ð‘sþ xÞ ( b‘ð‘sÞ-yðA‘Þ2=3g
%
A

1=3‘(2=3x
&
; (5.36)

where A ¼ ð1=2Þb00
N. This leads to their central result that the width w w ‘1/3, in contrast

to the ‘1/2 scaling of an isolated step or the boundary of a single-layer island and to the

ln ‘ scaling of a step on a vicinal surface, i.e., in a step train. Furthermore, the

FIGURE 5.20 Snapshot of computed configurations of the top steps (those near a facet at the flattened side
portion of a cylinder) for a terrace-step-kink (TSK) model with volume constraint. From Ref. [145].

FIGURE 5.19 Simple-cubic crystal corner viewed from the {111} direction. From Ref. [145].
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fluctuations are non-Gaussian. The authors also show that near the shoreline, the de-

viation of the equilibrium crystal shape from the facet plane takes on the

Pokrovsky–Talapov [101,104] form with w ¼ 3/2.

From this seminal work, we could derive the dynamic exponents associated with this

novel scaling and measure them with STM, as reviewed in Ref. [150].

5.7 Sharp Edges and First-Order Transitions—
Examples and Issues

5.7.1 Sharp Edges Induced by Facet Reconstruction

Si near the (111) plane offers an easily understood entry into sharp edges [68,69]. As Si is

cooled from high temperatures, the (111) plane in the “(1 * 1)” phase reconstructs into a

(7 * 7) pattern [150] around 850 2C, to be denoted T7 to distinguish it clearly from the

other subscripted temperatures. (The notation “(1 * 1)” is intended to convey the idea

that this phase differs considerably from a perfect (111) cleavage plane but has no

superlattice periodicity.) For comparison, the melting temperature of Si isw1420 2C, and
the TR is estimated to be somewhat higher. As shown in Figure 5.21, above T7, surfaces of

FIGURE 5.21 Summary of experimental results for vicinal Si (111) surface: B denotes the temperature at which
faceting begins for surfaces misoriented toward the (110) direction, * the faceting temperatures for surfaces
misoriented toward the [112], and , the temperatures at which the step structure of surfaces misoriented
toward the [112] direction change. The dashed line displays a fit of the [110] data to Eqn (5.43). The dotted lines
show how a four sample phase separates into the states denoted by C as it is further cooled. From Ref. [69].

Chapter 5 • Equilibrium Shape of Crystals 245



all orientations are allowed and are unreconstructed. At T7, a surface in the (111) di-

rection reconstructs but all other orientations are allowed and are unreconstructed.

Below T7, surfaces misoriented toward [1 12] remain stable during cooling (although the

step structure changes). On the other hand, on surfaces misoriented toward [110] and

[112], the temperature at which the (7 * 7) occurs decreases with increasing misorien-

tation angle cm. Furthermore, just as the (7 * 7) appears, the surface begins to separate

into two phases, one a perfectly oriented (7 * 7) plane cm ¼ 0 and the second an un-

reconstructed phase with a misorientation greater than that at higher temperature. As

the temperature further decreases, the misorientation of the unreconstructed phase

increases. Figure 5.21 depicts this scenario with solid circles and dotted lines for a 42

misoriented sample at 840 2C. This behavior translates into the formation of a sharp edge

on the ECS between a flat (7 * 7) line and a rounded “(1 * 1)” curve.

To explain this behavior, one coplots the ECS for the two phases, as in Figure 5.22

[69]. The free energy to create a step is greater in the (7 * 7) than in the “(1 * 1)” phase.

In the top panels (A), the step energy for the (7 * 7) is taken as infinite, i.e., much larger

than that of the “(1 * 1)” phase, so its ECS never rounds. At T7 (Tc in the figure), the free

energies per area f0 of the two facets are equal, call them f7 and f1, with associated

FIGURE 5.22 Wulff plots illustrating the effect of a reconstructive transition on the equilibrium crystal shape
(ECS), and corresponding temperature-[mis]orientation phase diagrams. The solid curves represent the ECS with
an unreconstructed [“(1 * 1)”] facet, while the dashed curves give the ECS with a reconstructed facet. As temper-
ature decreases, the free energy of the reconstructed facet, relative to that of the unreconstructed facet, de-
creases. Below the transition temperature Tc (called T7 in the text), the two shapes intersect, giving a “net” ECS
that is the inner envelope of the two. The phase diagram shows regions where all orientations tan q (or cm) are
allowed for the unreconstructed crystal [“(1 * 1)”], regions of phase separation (labeled “coex.”), and regions
where the reconstruction (labeled “rec.”) is allowed for ranges of orientation. The relative size of the recon-
structed and unreconstructed facets depends on the free energy to create a step on the reconstructed (111) face,
compared to its unreconstructed counterpart: (A) the behavior for extremely large energy to create steps on the
(7 * 7) terrace and (A) a smaller such energy. Solid circles mark the sharp edge at the temperature at which the
crystal shapes cross. Crosses show the intersection of the facet and the curved part (i.e., the smooth edge) of
the crystal shape for the reconstructed phase. From Ref. [69].
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energies u7 and u1 and entropies s7 and s1 for the (7 * 7) and “(1 * 1)” phases,

respectively, near T7. Then T7 ¼ (u1 ( u7)/(s1 ( s7) and, assuming the internal energies

and entropies are insensitive to temperature:

f1 ( f7 ¼
5
T7 ( T

65
s1 ( s7

6
: (5.37)

Since s1 > s7 because the (7 * 7) phase is so highly ordered, we find that f1 ( f7 > 0 below

T7, as illustrated in Figure 5.22. Making connection to thermodynamics, we identify

L

T7

¼ ðs1 ( s7ÞT7 ¼
8
vf7
vT

9

T7

(
8
vf1
vT

9

T7

(5.38)

where L is the latent heat of the first-order reconstruction transition.

Corresponding to the minimum of a free energy as discussed earlier, the ECS of the

system will be the inner envelope of the dashed and solid traces: a flat (7 * 7) facet along

the dashed line out to the point of intersection, the sharp edge, beyond which it is

“(1 * 1)” with continuously varying orientation. If one tries to construct a surface with a

smaller misorientation, it will phase separate into flat (7 * 7) regions and vicinal unre-

constructed regions with the orientation at the curved (rough) side of the sharp edge. Cf.

Figure 5.23.

Using the leading term in Eqn (5.35) or (5.36), we can estimate the slope of the

coexisting vicinal region and its dependence on temperature4: First we locate the sharp

edge (recognizing f0 as f1 and z0 as z1) by noting

z7 ¼ z1 ( 2ðl=gÞ1=2ðx ( x0Þ3=2

ðT7 ( T ÞDsz
5
f1 ( f7

6
T
¼ l3=2g(1=2ðx ( x0Þ3=2

(5.39)

Since the slope m there is (3l(l/g)1/2(x ( x0)
1/2, the temperature dependence of the

slope is

m ¼ (3

8
L

2g

91=38
1( T

T7

91=3

(5.40)

If the step free energy of the reconstructed phase were only modestly greater than that of

the “(1 * 1)”, then, as shown in the second panel in Figure 5.22, the previous high-T

behavior obtains only down to the temperature T1 at which the “(1 * 1)” curve intersects

the (7 * 7) curve at its [smooth] edge. For T < T1 the sharp edge associated with the

interior of the curves is between a misoriented “(1 * 1)” phase and a differently

misoriented (7 * 7) phase, so that it is these two which coexist. All orientations with

smaller misorientation angles than this (7 * 7) plane are also allowed, so that the

forbidden or coexistence regime has the depicted slivered crescent shape. Some other,

but physically improbable, scenarios are also discussed by Bartelt et al. [69]. Phaneuf and

Williams [68] show (their Figure 3) the LEED-beam splitting for a surface misoriented

by 6.42 is f(T7 ( T)1/3 once the surface is cooled below the temperature (which is <T7)

when this orientation becomes unstable to phase separation; however, by changing the

4There are some minor differences in prefactors from Ref. [69].
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range of fitting, they could also obtain agreement with (T7 ( T )1/2, i.e., w ¼ 2. With high-

resolution LEED, [151] conclude that the exponent bhðw( 1Þ=w ¼ 0:33+ 0:05 (i.e., that

w ¼ 3/2. The result does depend somewhat on what thermal range is used in the fit, but

they can decisively rule out the mean-field value w ¼ 2. Williams et al. [152] give a more

general discussion of vicinal Si, with treatment of azimuthal in addition to polar mis-

orientations. In contrast, synchrotron X-ray scattering experiments by Noh et al.

[153,154] report the much larger w ¼ 2:3þ0:8
(0:3. However, subsequent synchrotron X-ray

scattering experiments by [155] obtain a decent fit of data with w ¼ 3/2 and a best fit

with w ¼ 1.75 (i.e., b ¼ 0:43+ 0:07). (They also report that above 1159 K, the surface exists

as a single, logarithmically rough phase.) The origin of the curious value of w in the Noh

et al. experiments is not clear. It would be possible to attribute the behavior to impu-

rities, but there is no evidence to support this excuse, and indeed for the analogous

behavior near the reconstructing (331) facet of Si (but perhaps a different sample), Noh

FIGURE 5.23 Microscopic view of what happens to a misoriented surface in Figure 5.22 as temperature decreases.
(A) At high temperature, the Si(lll) vicinal surface is a single, uniform phase. Initial terrace widths t are typically a
few nm, as determined by the net angle of miscut a0 (i.e., q0), and the step-height h, which is one interplanar
spacing (w0.31 nm). (B) Below the (7 * 7) reconstruction temperature (w850

2
C), the steps cluster to form a new

surface of misorientation angle a(T) (i.e., q). A facet of (111) orientation with (7 * 7) reconstruction forms simulta-
neously. The width of the (111) facet, ‘, is larger than the experimentally resolvable width of 500 Å. (C) Well
below the transition, the step separation reaches a minimum distance, tmin w 1 nm. No further narrowing occurs,
perhaps because surface diffusion is too slow T 1 600

2
C. From Ref. [3].
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et al. [156] found w ¼ 1.47 + 0.1. It is worth noting that extracting information from X-ray

scattering from vicinal surfaces requires great sophistication (cf. the extensive discussion

in Ref. [157]) and attention to the size of the coherence length relative to the size of the

scattering region [158], as for other diffraction experiments.

Similar effects to reconstruction (viz. the change in f0) could be caused by adsorption

of impurities on the facet [159]. Some examples are given in a review by Somorjai and

Van Hove [160]. In small crystals of dilute Pb-Bi-Ni alloys, cosegregation of Bi-Ni to the

surface has a similar effect of reversibly changing the crystal structure to form {112} and

{110} facets [161]. There is no attempt to scrutinize the ECS to extract an estimate of w.

Meltzman et al. [162] considered the ECS of Ni on a sapphire support, noting that, unlike

most fcc crystals, it exhibits a faceted shape even with few or no impurities, viz. with

{111}, {100}, and {110} facets; {135} and {138} emerged at low oxygen pressure and

additionally {012} and {013} at higher pressure.

The phase diagram of Pt(001), shown in Figure 5.24 and studied [163] using syn-

chrotron X-ray scattering, at first seems similar to that of Si near (111) [223,224,225],

albeit with more intricate magic phases with azimuthal rotations at lower temperatures,

stabilized by near commensurability of the period of their reconstruction and the sep-

aration of their constituent steps. In the temperature-misorientation (surface slope)

phase diagram, shown in Figure 5.24, the (001) facet undergoes a hexagonal recon-

struction at T6 ¼ 1820 K (well below the bulk melting temperature of 2045 K). For

samples misoriented from the (100) direction (which are stable at high temperature),

there is coexistence between flat reconstructed Pt(001) and a rough phase more highly

FIGURE 5.24 Orientational phase diagram of vicinal Pt (001) misoriented toward the [110] direction. Single-phase
regions are hatched, and two-phase coexistence regions are unhatched. Solid lines are boundaries between two
phases. Dashed lines mark triple points. Open circles show misorientation angles measured for a sample miscut by
1.42 toward the [110] direction, while solid circles show tilt angles measured for a sample miscut by 3.02. From
Ref. [163].
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misoriented than it was at high temperature, with a misorientation that increases as

temperature decreases. However, they find b ¼ 0:49+ 0:05, or w ¼ 1.96, consistent with

mean field and inconsistent with b ¼ 1=3 or w ¼ 3/2 of Prokrovsky–Talapov. The source

of this mean-field exponent is that in this case the (001) orientation is rough above T6.

Hence, in Eqn (5.31) B vanishes, leaving the expansion appropriate to rough orientations.

Proceeding as before, Eqn (5.35) becomes

fpðpÞ ¼ f0 þDp2
0

~f ðhÞ ¼ f0 ( h2
.
4D; (5.41)

where the result for ~f ðhÞ is reached by proceeding as before to reach the modification of

Eqn (5.35). Thus, there is no smooth edge take-off point (no shoreline) in the equivalent

of Figure 5.22, and one finds the reported exponent w near 2.

The effect of reactive and nonreactive gases metal catalysts has long been of interest

[211]. Various groups investigated adsorbate-induced faceting. Walko and Robinson

[164] considered the oxygen-induced faceting of Cu(115) into O/Cu(104) facets, using

Wulff constructions to explain their observations. The researchers found three temper-

ature regimes with qualitatively different faceting processes. Szczepkowicz et al. [165]

studied the formation of {211} facets by depositing oxygen and paladium on tungsten,

both on (111) facets and on soherical crystals. While the shape of the facets is different

for flat and curved surfaces, the distance between parallel facet edges is comparable,

although the area of a typical facet on a curved surface is an order of magnitude greater.

There is considerable information about facet sizes, width of the facet-size distribution,

and surface rms roughness.

For 2D structures on surfaces, edge decoration can change the shape of the islands. A

well-documented example is Pt on Pt(111). As little as 10(3ml of COproduces a 602 rotation
of the triangular islandsby changing thebalanceof the edge free energies of the twodifferent

kinds of steps forming the island periphery [166]. Stasevich et al. [167] showed how deco-

ration of single-layer Ag islands onAg(111) by a single-strand “necklace” of C60 dramatically

changes the shape from hexagonal to circular. With lattice-gas modeling combined with

STM measurements, they could estimate the strength of C60-Ag and C60-C60 attractions.

Generalizations to decoration on systems with other symmetries is also discussed [167].

5.8 Gold–Prototype or Anomaly of Attractive
Step–Step Interaction?

Much as 4He and Pb are the prototypical materials with smooth edges, Au is perhaps the

prime example of a surface with sharp edges, around (1111) and (100) facets (cf. e.g.,

Ref. [1]). Care must be taken to ensure that the surface is not contaminated by atoms

(typically C) from the supporting substrate [168]. (See similar comments by Handwerker

et al. [169] for ceramics, which have a rich set of ECS possibilities.) To describe these

systems phenomenologically, the projected free energy expansion in Eqn (5.1) requires a

negative term to generate a region with negative curvature, as in Figure 5.7, so that the
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two orientations joined by the Maxwell double-tangent construction correspond to the

two sides of the sharp edge. Thus, for sharp edges around facets, the more-left minimum

must be in the high-symmetry facet direction.

In a mean field-based approach, Wang and Wynblatt [168] included a negative

quadratic term, with questionable physical basis. Emundts et al. [170] instead took the

step–step interaction to be attractive (g < 0) in Eqn (5.1). Then, proceeding as above,

they find

x0 ¼
1

l

'
B( 4

27
jg j
%g
c

&2)
; pc ¼

2jg j
3c

; (5.42)

where pc is the tangent of the facet contact angle. Note that both the shift in the facet

edge from B and the contact slope increase with jgj/c. Emundts et al. [170] obtain esti-

mates of the key energy parameters in the expansion for the sharp edges of both the

(111) and (100) facets. They also investigate whether it is the lowering of the facet free

energy f0 that brings about the sharp edges, in the manner of the case of Si(111) dis-

cussed above. After reporting the presence of standard step–step repulsions (leading to

narrowing of the TWD) in experiments on flame-annealed gold, Shimoni et al. [171] then

attribute to some effective long-range attraction—with undetermined dependence on

‘—the (nonequilibrium) movement of single steps toward step bunches whose steps are

oriented along the high-symmetry h110i.
Is it possible to find a generic long-range attractive A‘(2 step–step interaction (A < 0)

for metals and elemental semiconductors (where there is no electrostatic attraction

between oppositely charged atoms)? Several theoretical attempts have only been able to

find such attractions when there is significant alternation between “even” and “odd”

layered steps. Redfield and Zangwill consider whether surface relaxation can produce

such an attraction, pointing out a flaw in an earlier analysis assuming a rigid relaxation

by noting that for large step separations, the relaxation must return to its value for the

terrace orientation. Since atomic displacements fall off inversely with distance from a

step, the contribution to the step interaction can at most go like ‘(2 and tend to mitigate

the combined entropic and elastic repulsion. They argue that this nonlinear effect is

likely to be small, at least for metals. It is conceivable that on an elastically highly

anisotropic surface, the elastic interaction might not be repulsive in special directions,

although I am not aware of any concrete examples.

By observing that the elastic field mediating the interaction between steps is that of a

dipole applied on a stepped rather than on a flat surface, Kukta et al. [172] deduce a

correction to the ‘(2 behavior of the Marchenko–Parshin [41] formula that scales as

‘(3 ln ‘. Using what was then a state-of-the-art semiempirical potential, the embedded

atom method (EAM) [228], the authors find that this can lead to attractive interactions at

intermediate values of ‘. However, their “roughness correction” term exists only when

the two steps have unlike orientations (i.e., one up and one down, such as on opposite

ends of a monolayer island or pit). For the like-oriented steps of a vicinal surface or near

a facet edge, the correction term vanishes. The oft-cited paper then invokes three-step
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interactions, which are said to have the same size as the correction term, as a way to

achieve attractive interactions. Although the authors discuss how this idea relates to the

interaction between an isolated step and a step bunch, they do not provide the explicit

form of the threefold interaction; their promise that it will be “presented elsewhere” has

not, to the best of my searching, ever been fulfilled. Prévot and Croset [173] revisited

elastic interactions between steps on vicinals and found that with a buried-dipole model

(rather than the surface-dipole picture of Marchenko and Parshin), they could achieve

“remarkable agreement” with molecular dynamics simulations for vicinals to Cu and Pt

(001) and (111), for which data is fit by EMD
2 ‘(2 þ EMD

3 ‘(3. The tabulated values of EMD
2

indeed agree well with their computed results for their improved elastic model, which

includes the strong dependence of the interaction energy on the force direction. While

there is barely any discussion of E3, plots of the interaction are always repulsive. Hecquet

[174] finds that surface stress modifies the step–step interaction compared to the

Marchenko–Parshin result, enhancing the prefactor of ‘(2 nearly threefold for Au(001);

again, there is no mention of attractive interactions over any range of step separations.

In pursuit of a strictly attractive ‘(2 step interaction to explain the results of Shimoni

et al. [171], Wang et al. [175] developed a model based on the SSH model [176] of pol-

yacetylene (the original model extended to include electron–electron interaction),

focusing on the dimerized atom rows of the (2 * 1) reconstruction of Si(001). The model

produces an attractive correction term to the formula derived by Alerhand et al. [177] for

interactions between steps on Si(001), where there is ABAB alternation of (2 * 1 and

1 * 2) reconstructions on neighboring terraces joined at single-height steps. For this type

of surface, the correction has little significance, being dwarfed by the logarithmic

repulsion. It also does not occur for vicinals to high-symmetry facets of metals. However,

for surfaces such as Au(110) with its missing row morphology [178] or adsorbed systems

with atomic rows, the row can undergo a Peierls [179] distortion that leads to an anal-

ogous dimerization and an ‘(2 attraction. There have been no tests of these unsung

predictions by electronic structure computation.

Returning to gold, applications of the glue potential (a semiempirical potential rather

similar to EAM), Ercolessi et al. [180] were able to account for reconstructions of various

gold facets, supporting that the sharp edges on the ECS are due to the model used for

Si(111) rather than attractive step interactions. Studies by this group found no real ev-

idence for attractive step interactions [181].

In an authoritative review a decade ago, Bonzel [2]— the expert in the field who has

devoted the most sustained interest in ECS experiments on elemental systems—

concluded that it was not possible to decide whether the surface reconstruction model or

attractive interactions was more likely to prove correct. In my view, mindful of Ockham’s

razor, the former seems far more plausible, particularly if the assumed attractive inter-

action has the ‘(2 form.

The phase diagram of surfaces vicinal to Si(113) presents an intriguing variant of that

vicinal to Si(111). There is again a coexistence regime between the (113) orientation and

progressively more highly misoriented vicinals as temperature is reduced below a
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threshold temperature Tt, associated with a first-order transition. However, for higher

temperatures T > Tt there is a continuous transition, in contrast to the behavior on (111)

surfaces for T > T7. Thus, Song and Mochrie [182] identify the point along (113) at which

coexistence vanishes, i.e., Tt, as a tricritical point, the first such point seen in a misori-

entation phase diagram. To explain this behavior, Song and Mochrie invoke a mean-field

Landau theory argument in which the cubic term in p is proportional to (T ( Tt), so

negative for T < Tt, with a positive quartic term. Of course, this produces the observed

generic behavior, but the exponent b is measured as 0.42 + 0.10 rather than the mean-

field value 1. Furthermore, the shape of the phase diagram differs from the mean-field

prediction and the amplitude of the surface stiffness below Tt is larger than above it,

the opposite of what happens in mean field. Thus, it is not clear in detail what the in-

teractions actually are, let alone how an attractive interaction might arise physically.

5.9 Well-Established Attractive Step–Step Interactions
Other Than ‘(2

For neutral crystals, there are two ways to easily obtain interactions that are attractive for

some values of ‘. In neither case are the interactions monotonic long range. The first is

short-range local effects due to chemical properties of proximate steps, while the other is

the indirect Friedel-like interaction.

5.9.1 Atomic-Range Attractions

At very small step separations, the long-range ‘(2 monotonic behavior is expected to break

down and depend strongly on the local geometry and chemistry. Interactions between

atoms near step edges are typically direct, thus stronger than interactions mediated by

substrate elastic fields or indirect electronic effects (see below). We saw earlier that a ‘(3

higher order term arises at intermediate separations [42], and further such terms should

also appear with decreasing ‘. On TaC(910) [vicinal to (001) and miscut toward the [010]

direction], Zuo et al. [183] explained step bunching using a weak ‘(3[+0.5] attraction in

addition to the ‘(2 repulsion. (The double-height steps are electrically neutral.) Density-

functional theory (DFT) studies were subsequently performed for this system by Shenoy

and Ciobanu [184]. Similarly, Yamamoto et al. [185] used an attractive ‘(3 dipole-

quadrupole interaction to explain anomalous decay of multilayer holes on SrTiO3(001).

More interesting than such generic effects are attractions that occur at very short step

separations for special situations. A good example is Ciobanu et al. [186], who find an

attraction at the shortest separation due to the cancellation of force monopoles of two

adjacent steps on vicinal Si(113) at that value of ‘.

As alluded to above, most of our understanding of the role of ‘(2 step interactions

comes from the mapping of classical step configurations in 2D to the worldlines of

spinless fermions in 1D. Unlike fermions, however, steps can touch (thereby forming

double-height steps), just not cross. Such behavior is even more likely for vicinal fcc or
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bcc (001) surfaces, where the shortest possible “terrace,” some fraction of a lateral

nearest-neighbor spacing, amounts to touching fermions when successive layers of the

crystal are described with simple-cubic rather than layer-by-layer laterally offset co-

ordinates. Sathiyanarayanan et al. [187] investigated some systematics of step touching,

adopting a model in which touching steps on a vicinal cost an energy et. Note that et ¼N

recoups the standard fermion model. For simplicity, the short study concentrates on the

“free-fermion” case ~A ¼ 0, i.e., 9 ¼ 2 (cf. Eqn (5.28)). Even for et ¼ 0, there is an effective

attraction, i.e., 9 < 2, since the possibility of touching broadens the TWD. This broad-

ening is even more pronounced for et < 0. In other words, such short-range effects can

appear, for a particular system, to contribute a long-range attraction. Closer examination

shows that this attraction is a finite-size effect that fades away for large values of h‘i. In
our limited study, we found that fits of simulated data to the GWD expression could be

well described by the following finite-size scaling form, with the indicated three fitting

parameters:

9eff ¼ 2( ð0:9+ 0:1Þh‘i(0:29+0:07
exp

h
( ð3:3+ 0:2Þet

.
kBT

i
: (5.43)

While Eqn (5.43) suggests that making the step touching more attractive (decreasing et)

could decrease beff without limit, instabilities begin to develop, as expected since Lässig

[188] showed that for ~A < (1=4, i.e., A < (ðkBTÞ2=4~b, a vicinal surface becomes unstable

(to collapse to step bunches). Correspondingly, the lowest value tabulated in

Sathiyanarayanan et al. [187] is et/kBT ¼ (0.2.

To distinguish true long-range (‘(2) attractions on vicinal surfaces requires mea-

surements of several different vicinalities (i.e., values of h‘i). Likewise, in analyses of ECS

data, consideration of crystallites of different sizes would seem necessary. Wortis [1]

noted the importance of size dependence in other contexts.

Along this theme, an instructive specific case is the “sticky-step” or, more formally,

the p-RSOS (restricted solid-on-solid with point-contact attractions between steps)

model explored in detail by Akutsu [189] using the product wavefunction renormaliza-

tion group (PWFRG) method, calculating essentially the ECS (see Figure 5.25) and related

properties. Steps are zig-zag rather than straight as in the preceding Sathiyanarayanan

model, so her “stickiness” parameter eint is similar but not identical to et. She finds that in

some temperature regimes, nonuniversal non-Prokrovsky–Talapov values of w occur.

Specifically, let Tf,111(eint/e,f0) and Tf,001(eint/e,f0) be the highest temperature at which a

first-order phase transition (sharp edge) occurs for the (111) and (001) facets,

respectively, where f0 indicates the position along the ECS. Note Tf,111(et/

e,f0) ¼ (0.3610 + 0.0005)e/kB > Tf,111(eint/e,f0) ¼ (0.3585 + 0.0007)e/kB. For kBT/e ¼ 0.37,

so T > Tf,111((0.5,p/4), Akutsu recovers Prokrovsky–Talapov values for w and wt, but for

kBT/e ¼ 0.36 (shown in Figure 5.26), so Tf,111((0.5,p/4) > T > Tf,001((0.5,p/4), the values

are very different: w ¼ 1.98 + 0.03 and wt ¼ 3.96 + 0.08, more like mean field. For f0 ¼ 0

(tilting toward the h100i direction), only standard Prokrovsky–Talapov exponents are

found. Upon closer examination with Monte Carlo simulations, Akutsu finds large step

bunches for T < Tf,100 but step droplets for Tf,001 < T < Tf,111. The details are beyond the
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scope of this review, but eventually Akutsu deduces an expansion of the projected free

energy that includes either a quadratic term or a term after the linear term that has the

form jpjz, with z > 1.

5.9.2 Attractions at Periodic Ranges of Separation via Oscillatory
Friedel-Type Interactions

Oscillatory (in sign) interactions, mediated by substrate conduction electrons, between

steps ipso facto lead to attractive interactions between steps. As reviewed by Einstein

[94], such interactions have been known for many decades to account for the ordered

patterns of adsorbates on metal surfaces [190]. While at short range, all electrons

FIGURE 5.25 Perspective views of essentially the equilibrium crystal shape (actually the Andreev surface free
energy divided by kBT) around the (001) facet calculated by the transfer-matrix method with the product-wave-
function renormalization group algorithm at kBT/e1 ¼ 0.3. (A) Restricted solid-on-solid with point-contact attrac-
tions between steps (p-RSOS) model (eint/e1 ¼ (0.5). (B) For comparison, the original unsticky RSOS model
(eint ¼ 0). From Ref. [189].

FIGURE 5.26 Profiles in the diagonal direction of the surface in Figure 5.25, still at kBT/e1 ¼ 0.3. Broken lines
represent metastable lines. (A) kBT/e1 ¼ 0.36, eint/e1 ¼ (0.5, on a very fine length scale. The edge of the (111)
facet is denoted by Xq. (B) The original RSOS model (eint ¼ 0) on a much coarser scale. On this scale (and on an
intermediate scale not included here), the profiles are flat until the edge. On the intermediate scale, the region
beyond Xq is starts deviating rather smoothly for kBT/e1 ¼ 0.35 but looks straight for kBT/e1 ¼ 0.36 and 0.37. See
text and source. From Ref. [189].
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contribute, asymptotically the interaction is dominated by the electron(s) at the Fermi

surface or, from another perspective, the nonanalyticity in the response function at the

nesting vector. The interaction energy has the form

E
asymp
pair f‘(ncos

%
2kF‘þ F

&
(5.47)

This, or its analogue for interacting local magnetic species, is called the RKKY [191,192]

interaction. (The community studying magnetism now labels as RKKY any interaction

mediated by substrate electrons, not just the asymptotic limit written down in the

RKKY papers.) The phase factor F is the nonperturbative result is the scattering phase

shifts at the two atoms that are interacting; it is absent in the perturbational approach

to this problem used in the RKKY papers. The exponent n indicates the decay envelope.

For interacting bulk entities, n ¼ 3, the standard RKKY results. On metal surfaces, the

leading term in the propagator is canceled by the image charge, leading to n ¼ 5, with

very rapid decay [94,190]. Such effects are insignificant for adatom interactions but can

be more potent when a whole step participates. Redfield and Zangwill [193] show that a

line of localized perturbations will generate an interaction with n reduced by subtracting

1/2 and F augmented by p/4. They used this result, with n ¼ 9/2, to account for Frohn

et al.’s [194] remarkable experimental results on vicinal Cu(001): from their observed

bimodal TWD, Frohn et al. deduced that the step–step interaction is attractive for inter-

mediate distances three to five atoms. Indeed, it was their striking observation that led to

several of the previously discussed theory papers that claimed to find long-range step

attractions.

When there are metallic surface states (i.e., surface states for which their 2D band

dispersion relation crosses the Fermi energy EF) of Shockley nature (lying in a 2D band gap

containing EF), the indirect interaction has a much slower decay, with n¼ 2 [94,195–199].

Furthermore, the Fermi wavevector typically is much smaller than that of bulk states, so

the period of the oscillation in real space ismuch larger. Perhaps themost familiarmetallic

surface onmetals is that at the center of the surface Brillouin zone (G) of the (111) surfaces

of noble metals, which exist inside the necks of the Fermi surface, discussed in textbooks,

e.g. [200]. This is the state that produces the famous wave structure in Eigler’s group’s

dramatic STM images [201] of atoms on metal surfaces. However, there is a less well-

known metallic surface state on Cu(001), discovered relatively late (compared to other

surface states) by Kevan [202]; it is centered at the zone-edge center X rather than G, and

may provide a better explanation of the Frohn et al. results in the Redfield–Zangwill

framework. For surface-statemediated interactions between steps, their formula indicates

n ¼ 3/2, comparable to the entropic and elastic repulsions.

The effect of surface-state mediated interactions on TWDs was elucidated by Pai et al.

[203] in combined experimental and theoretical examination of vicinal Ag(110), which

has a metallic surface state centered at Y , the middle of the shorter edge of the rectan-

gular surface Brillouin zone [204]. In essence, the surface state introduces a second length

scale, the Fermi wavelength lF, in addition to h‘i, with the major consequence that the

TWD is no longer a function of the single scaled dimensionless variable s but depends
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also on h‘i. With a suitable model potential, Pai et al. [203] could then account for the

different TWDs at a few different misorientations (i.e., mean step spacings). Indeed, to

establish convincingly that this Friedel-like effect is significant, one must measure several

different values of h‘i. While this paper has been cited with regard to other modifications

of TWDs (cf. e.g., Refs [205,206]), I have found no other investigations of Friedel-like

effects on TWDs for several misorientations of the same substance.

Patrone and Einstein [207] discuss other issues related to possible anisotropic surface

state dispersion as well as showing the insensitivity to the point in the surface Brillouin

zone about which the state is centered.

5.10 Conclusions
An aspect of ECS studies on which there has been substantial progress since the 1980s,

but which has received little attention in this chapter, is comparing and reconciling the

values of the characteristic energies (surface free energy per area, step free energy per

length, and step–step repulsion strength) that are extracted from experimental mea-

surements with ever-improving calculations (using density functional theory) of these

energies. Bonzel’s review [2], as well as Nowicki and Bonzel [140], Bonzel et al. [139],

Barreteau et al. [226], Yu et al. [227], contain extensive coverage of this issue for the soft

metals to which his group has devoted exhaustive attention. Williams [59] review most

results for silicon. Such efforts to find absolute energies has also taken place in studies of

island shapes, e.g., of TiN(001) [208] and (111) [209].

There are several significant advances in generic understanding of ECS since the

1980s. The Prokrovsky–Talapov (w ¼ 3/2) critical phenomena near the edge of the

smoothly curved region near a facet has proved to be far more robust and general than

originally realized, while novel behavior is predicted in a very special direction. Even

though invoked in many accounts of sharp edges, long-range attractive ‘(2 do not have

an apparent physical basis, except perhaps in idiosyncratic cases. The likely cause is a

reconstruction or adsorption that changes the surface free energy of the facet orienta-

tion. On the other hand, hill-and-valley structures are widely seen, and the possibility of

azimuthal in addition to polar misorientation can lead to astonishingly rich phase dia-

grams. Of course, nonequilibrium considerations open up a whole new universe of

behavior. Furthermore, at the nanoscale, cluster shape is very sensitive to the particulars

of a system, with the addition or removal of a single atom leading to a substantial change

in shape, rather like biological systems, in contrast to the macroscale phenomena that

have been treated in this chapter.
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[58] Garcı́a N, Sáenz JJ, Cabrera N. Physica 1984;124B:251.

[59] Jeong H-C, Williams ED. Surf Sci Rep 1999;34:171.

[60] Cahn JW, Carter WC. Metall Mater Trans A Phys Metall Mater Sci 1996;27:1431–40 [arXiv:cond-
mat/0703564v1].

[61] Hoffman DW, Cahn JW. Surf Sci 1972;31:368. Cahn JW, Hoffman DW. Acta Met 1974;22:1205.

[62] Wheeler AA. J Stat Phys 1999;95:1245–80.

[63] Balibar S, Castaing B. J Phys Lett 1980;41:L329.

[64] Keshishev KO, Parshin AY, Babkin AV. Sov Phys JETP 1981;53:362.

[65] Wolf PE, Balibar S, Gallet F. Phys Rev Lett 1983;51:1366.

[66] Wolf PE, Gallet F, Balibar S, Rolley E, Nozières P. J Phys Fr 1985;46:1987.

[67] Balibar S, Alles H, Parshin A Ya. Rev Mod Phys 2005;77:317.

[68] Phaneuf RJ, Williams ED. Phys Rev Lett 1987;58:2563.

[69] Bartelt NC, Williams ED, Phaneuf RJ, Yang Y, Das Sarma S. J Vac Sci Technol A 1989;7:1898.

[70] Phaneuf RJ, Bartelt NC, Williams ED, Swiech W, Bauer E. Phys Rev Lett 1993;71:2284.

[71] Rousset S, Berroir JM, Repain V, Garreau Y, Etgens VH, Lecoeur J, et al. Surf Sci 1999;443:265.

[72] Bonczek F, Engel T, Bauer E. Surf Sci 1980;97:595.

[73] Madey TE, Guan J, Nien C-H, Tao H-S, Dong C-Z, Campbell RA. Surf Rev Lett 1996;3:1315.

[74] Madey TE, Nien C-H, Pelhos K, Kolodziej JJ, Abdelrehim IM, Tao H-S. Surf Sci 1999;438:191.

[75] Fisher DS, Weeks JD. Phys Rev Lett 1983;50:1077.

[76] Lyuksyutov I, Naumovets AG, Prokrovsky V. Two-dimensional crystals. San Diego: Academic Press;
1992.

[77] Dieluweit S, Ibach H, Giesen M, Einstein TL. Phys Rev B 2003;67:121410(R).

[78] Stasevich TJ, Einstein TL, Zia RKP, Giesen M, Ibach H, Szalma F. Phys Rev B 2004;70:245404.

[79] Stasevich TJ, Einstein TL, Stolbov S. Phys Rev B 2006;73:115426.

[80] Stasevich TJ, Gebremariam H, Einstein TL, Giesen M, Steimer C, Ibach H. Phys Rev B 2005;71:
245414.

[81] Zia RKP. J Stat Phys 1986;45:801.

[82] Avron JE, van Beijeren H, Schulman LS, Zia RKP. J Phys A Math Gen 1982;15:L81–6.

[83] Gallavotti G. Commun Math Phys 1972;27:103.

[84] Abraham DB, Reed P. Phys Rev Lett 1974;33:377.

[85] Abraham DB, Reed P. Commun Math Phys 1976;49:35.

[86] Kodambaka S, Khare SV, Petrov I, Greene JE. Surf Sci Rep 2006;60:55–77.

[87] Michely T, Krug J. Berlin: Springer; 2004 [Chapter 3].

[88] Stasevich TJ, Einstein TL. [SIAM-]Multiscale Model Simul 2007;6:90.

260 HANDBOOK OF CRYSTAL GROWTH

[89] Weeks JD. Private discussions, 2014.

[90] Liu F. Modeling and simulation of strain-mediated nanostructure formation on surface. In:
Rieth M, Schommers W, editors. Handbook of theoretical and computational nanotechnology, vol.
4. American Scientific Publishers; 2006. p. 577–625.

[91] Müller B, Nedelmann L, Fischer B, Brune H, Barth JV, Kern K. Phys Rev Lett 1998;80:2642.

[92] Einstein TL. Appl Phys A 2007;87:375384 [cond-mat/0612311].

[93] Einstein TL, Richards HL, Cohen SD, Pierre-Louis O. Surface Sci 2001;493:460.

[94] Einstein TL. Interactions between adsorbate particles. In: Unertl WN, editor. Physical structure of
solid surfaces. Handbook of surface science, vol. 1. Amsterdam: Elsevier; 1996. Holloway S,
Richardson NV, series editors, 577–650.

[95] Giesen M. Prog. Surface Sci. 2001;68:1.

[96] Gruber E, Mullins WW. J Phys Chem Solids 1967;28:875.

[97] Fisher MPA, Fisher DS, Weeks JD. Phys Rev Lett 1982;48:368.

[98] Leamy HJ, Gilmer GH, Jackson KA. Statistical thermodynamics of clean surfaces. In: Blakely JM,
editor. Surface physics of materials, vol. 1. New York: Academic Press; 1975. p. 121 [Chapter 3].

[99] Stasevich TJ. 2006 [Ph.D. dissertation]. University of Maryland [unpublished].

[100] de Gennes PG. J Chem Phys 1968;48:2257.

[101] Prokrovsky VL, Talapov AL. Phys Rev Lett 1979;42:65. Sov Phys-JETP 1980;51:134.

[102] Haldane FDM, Villain J. J Phys Paris 1981;42:1673.

[103] Schulz HJ, Halperin BI, Henley CL. Phys Rev B 1982;26:3797.

[104] Prokrovsky VL, Talapov AL. Theory of incommensurate crystals, soviet scientific reviews supple-
ment series physics, vol. 1. Chur: Harwood Academic Publishers; 1984 [and references therein].

[105] Villain J. In: Riste T, editor. Ordering in strongly fluctuating condensed matter systems. New York:
Plenum; 1980. p. 221.

[106] Akutsu Y, Akutsu N, Yamamoto T. Phys Rev Lett 1988;61:424.

[107] Jeong H-C, Weeks JD. Surf Sci 1999;432:101 [and references therein].

[108] Wang X-S, Goldberg JL, Bartelt NC, Einstein TL, Williams ED. Phys Rev Lett 1990;65:2430.

[109] Ihle T, Misbah C, Pierre-Louis O. Phys Rev B 1998;58:2289.

[110] Joós B, Einstein TL, Bartelt NC. Phys. Rev. B 1991;43:8153.

[111] Mehta ML. Random matrices. 3rd ed. New York: Academic; 2004.

[112] Dyson FJ. Statistical Theory of the Energy Levels of Complex Systems. III. J. Math. Phys. 1962;3:166.

[113] Bartelt NC, Einstein TL, Williams ED. Surf Sci 1990;240:L591.

[114] Calogero F. J Math Phys 1969;10:2191. 2197.

[115] Sutherland B. J Math Phys 1971;12:246. Phys Rev A 1971;4:2019.

[116] Dyson FJ. Commun. Math. Phys. 1970;19:235.

[117] Haake F. Quantum signatures of chaos. 2nd ed. Berlin: Springer; 1991.

[118] Guhr T, Müller-Groeling A, Weidenmüller HA. Phys. Rept 1998;299:189.

[119] Gebremariam H, Cohen SD, Richards HL, Einstein TL. Phys Rev B 2004;69:125404.

[120] Jayaprakash C, Saam WF. Phys Rev B 1984;30:3916.

[121] Andreev AF. Sov. Phys.-JETP 1982;53:1063 [Zh. Eksp. Teor. Phys 1981;80:2042].

[122] Jayaprakash C, Saam WF, Teitel S. Phys Rev Lett 1983;50:2017.

Chapter 5 • Equilibrium Shape of Crystals 261



[123] Cabrera N, Garcı́a N. Phys Rev B 1982;25:6057.

[124] Cabrera N. The equilibrium of crystal surfaces. Surf Sci 1964;2:320.

[125] Kardar M, Nelson DR. Phys Rev Lett 1985;55:1157.

[126] Dahmen SR, Wehefritz B, Albertini G. A novel exponent in the equilibrium shape of crystals. 1998.
arXiv:cond-mat/9802152.

[127] Akutsu Y, Akutsu N, Yamamoto T. Universality of the tangential shape exponent at the facet edge
of a crystal. 1998. arXiv:cond-mat/9803189.

[128] Akutsu Y, Akutsu N. Prog Theor Phys 2006;116:983.

[129] Nishino T, Okunishi K. J Phys Soc Jpn 1995;64:4084.

[130] Okunishi K, Hieida Y, Akutsu Y. Phys Rev B 1999;59:6806. 1999;60:R6953.

[131] Sato R, Akutsu Y. J Phys Soc Jpn 1995;64:3593.

[132] Carmi Y, Lipson SG, Polturak E. Phys Rev B 1987;36:1894.

[133] Rottman C, Wortis M, Heyraud JC, Métois JJ. Phys Rev Lett 1984;52:1009.
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