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Abstract Spurred by theoretical predictions from Ferrari et al. (Phys Rev E 69:035102(R),
2004), we rederived and extended their result heuristically. With experimental colleagues we
used STM line scans to corroborate their prediction that the fluctuations of the step bounding
a facet exhibit scaling properties distinct from those of isolated steps or steps on vicinal
surfaces. The correlation functions was shown to go as t0.15(3), decidedly different from the
t0.26(2) behavior for fluctuations of isolated steps.
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1 Introduction

Fluctuations of steps on surfaces play a central role in determining their impact on surface
processes and the evolution of surface morphology. In the past nearly-two decades, the step
continuum model has allowed several successful quantitative correlations of direct observa-
tions of step fluctuations with kinetic and thermodynamic descriptions of nanoscale structural
evolution [1–6], bridging from the atomistic and nanoscale to the mesoscale. For steps on flat
or vicinal (misoriented modestly from a facet orientation) surfaces, there are two well-defined
scaling behaviors for temporal correlations, corresponding to cases B and A, conserved and
non-conserved dynamics, respectively, in the framework of dynamic critical phenomena [7].
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Dynamical Scaling Implications 1179

Fig. 1 Simple-cubic crystal corner viewed from the {111} direction, from Refs. [15–18]

Several examples of both behaviors have been observed experimentally in physical systems
[1,2,8] and numerically in Monte Carlo simulations [9–11].

For complex structures where mass transport is limited by geometry, the fundamental
question of how fluctuations behave in a constrained environment becomes experimentally
accessible. These issues become particularly important for smaller structures, especially
nanostructures, where issues of finite volume (shape effects and volume conservation) become
non-negligible [12,13]. Although the step can still be viewed as a 1D interface obeying
a Langevin-type equation of motion, not only local deformation but global effects must
be considered when calculating the step chemical potential. These considerations alter the
equation of motion, including the noise term, resulting in different universality classes of
dynamic scaling [14] (see Table II below).

Thus, it was especially enlightening and inspiring to read of a well-defined intermediate
scaling regime in Ferrari, Prähofer, and Spohn’s stimulating paper [15] (hereafter FPS) (as
well as related works [16–18]), in which they computed the scaling of equilibrium fluctuations
of an atomic ledge bordering a crystalline facet surrounded by rough regions of the equilibrium
crystal shape in their examination of a 3D Ising corner (Fig. 1). We refer to this boundary edge
as the “shoreline” since it is the edge of an island-like region—the crystal facet-surrounded by
a “sea” of steps, a situation which can now be observed (cf. Fig. 2) and studied quantitatively
[19].

FPS derive an intriguing exact result, concerning how the width w of shoreline fluctuations
scales as a function of the linear size of the facet. This length corresponds to the length of a
step or the linear dimension of an island (or its circumference). This length is often called L
[20,21] and other times � [22] (while � has a closely related but slightly different meaning in
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1180 T. L. Einstein and A. Pimpinelli

Fig. 2 a Micron-size lead crystal
(supported on Ru) imaged with a
variable-temperature STM at
T = 95 ◦C. Annealing at
T = 95 ◦C for 20 h allowed it to
obtain its stable, regular shape.
Lines marked a and b indicate
location of profiles. Profile A
crosses a (0 0 1)-side facet, while
profile B a (1 1 1)-side facet. b
770 nm×770 nm section of the
top part of a Pb-crystal. The
insert shows a 5.3 nm×5.3 nm
area of the top facet, confirming
its (1 1 1)-orientation. Both the
main image and the insert were
obtained at T = 110 ◦C; from
Ref. [19]

Ref. [15]). To prevent any possible confusion, we henceforth denote this length by the Polish
crossed L , Ł, following the notation used in a celebratory presentation on this subject [23],
on which this article is based.

We anticipate that
w ∼ Łα, (1)

where the value of roughness exponent α depends on the mode of mass transport and the
geometry of the step. For the step that serves as the border a two-dimensional (2D) island on a
high-symmetry crystal plane, one expects (and finds in physical and numerical experiments)
that w ∼ Ł1/2, i.e. α = 1/2, since this step performs a random walk [24].

FPS show that, as we quipped in the title of our paper [22], “a crystal facet is not an
island”. Indeed, they find that instead of the expected random-walk behavior,

w ∼ Ł1/3, (2)

i.e. α = 1/3, for a crystal facet. They prove that the origin of the unusual Ł1/3 scaling lies in
the step-step interactions between the facet ledge and the neighboring steps under conditions
of conserved volume. Note that this value of α is intermediate between α = 1/2 for isolated
steps and α = 0 (w ∼ ln(Ł))) [25] for a step on a vicinal surface, i.e. in a step train.

FPS’s formidable calculation is based on the use of free spinless fermions, transfer matri-
ces, random-matrix properties, Airy functions, and specific models; as a purely static result,
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it does not address the question of the time behavior of step fluctuations, which are easier to
measure experimentally.

As alluded to above, this article is intended to be an expansion [26] of a celebratory talk
[23] which described the impact of FPS on our research, in particular the results found in
three publications [21,22,27]. In Sect. 2 we summarize highlights of FPS that motivated and
underpinned our subsequent work. In Sect. 3 we describe the relevant correlation functions.
Next we present a heuristic derivation extending the reasoning of Pimpinelli et al. [20]
that leads to the dynamic scaling of shoreline fluctuations, as well as the static result of
FPS. Then we present a more formal analysis of scaling for curved steps in an asymmetric
potential. In Sect. 4 we describe experiments using scanning tunneling microscopy (STM)
that demonstrate the novel scaling behavior in a physical system. The Conclusion section
offers some final remarks [28].1

2 Summary of Highlights of FPS

FPS assume that there are no interactions between steps beyond entropic (i.e., the steric
repulsions arising from the fact that steps cannot cross), so that the step configurations can
be mapped to the world lines of free spinless fermions; the entropic repulsion is captured by
the fermionic Pauli condition [29–31].2 A key new feature compared to treatments of vicinal
surfaces is that the volume of the crystallite is conserved. Their fermionic Hamiltonian HF

is

HF =
∑

j

(
−a†

j a j+1 − a†
j+1a j + 2a†

j a j + j

λ
a†

j a j

)
, (3)

where λ−1 is a Lagrange multiplier associated with conserved volume. See Fig. 3. It is this
final term that is new in their treatment. Its asymmetry is key to the novel behavior they find.
They then derive an exact result for the step density in terms of J j , the Bessel function of
integer order j , and its derivative. Near the shoreline they find

lim
λ→∞ λ1/3ρλ(λ

1/3x) = −x(Ai(x))2 + (Ai′(x))2, (4)

where ρλ is the step density (for the particular value of λ).
The presence of the Airy function Ai results from the asymmetric potential implicit in HF

and preordains exponents involving 1/3. The variance of the wandering of the shoreline, the
top fermionic world line in Fig. 3 and denoted by b, is given by

Var[bλ(t) − bλ(0)] ∼= λ2/3g(λ−2/3t) (5)

1 This paper encountered unfortunate refereeing difficulties regarding expanded expositions of some material
in the three refereed publications [21,22,27]. Since a great deal of time has already been spent on this project,
with much more likely needed to resolve disagreements, and because our primary objective is to highlight in
this celebratory volume—which will soon be sent to press—the importance of Prof. Spohn’s insights in our
work, we have followed the editor’s directive to delete sections 3.2 and 5 from Ref. [26]. Section 5 describes
a toy model; it was included in Ref. [26] because it had been mentioned in Refs. [21,23,27] rather than for its
import. On the other hand, Section 3.2 contains scaling relations and critical exponents for curved geometries
and asymmetric potentials that may be of interest, especially to those who do not dismiss results making use
of [28]. Curious readers are invited to view the deleted material on the arXiv [26] and judge for themselves.
2 Physically, steps–in contrast to fermions–actually can touch, just not cross, leading to a finite-size correction
to the standard fermion results, see Ref. [29].
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1182 T. L. Einstein and A. Pimpinelli

Fig. 3 a Magnified detail of the steps near the facet edge in Fig. 1, from Refs. [16,17]; b Snapshot of
computed configurations of the top steps (those near a facet at the flattened side portion of a cylinder) for a
terrace-step-kink (TSK) model with volume constraint, from Refs. [15,17]

where t is the fermionic “time” along the step; g(s) ∼ 2|s| for small s (diffusive meandering)
and∼ 1.6264−2/s2 for large s. They then setλ to a scaling parameter � = (4N/1.202 . . .)1/3,
where 1.202 . . . is Apery’s constant and N is the number of atoms in the crystal, as in Fig. 1.
They find

Var[b�(�τ + x) − b�(�τ)] ∼= (A�)2/3g
(A1/3�−2/3x

)
, (6)

where A = (1/2)b′′∞.3 This leads to the central result that the width w ∼ �1/3. Furthermore,
the fluctuations are non-Gaussian. They also show that near the shoreline, the deviation of
the equilibrium crystal shape from the facet plane takes on the Gruber-Mullins-Pokrovsky-
Talapov [30,31] form −(r − r0)

3/2, where r is the lateral distance from the facet center and
r0 is the radius of the facet.

3 Analytical Results and Heuristic Derivation

In this section, we discuss computation of the time scaling of step-edge fluctuations using
two approaches. First, we adopt a simple scaling argument, starting from FPS’s exact result.
Then we derive a continuum-equation description of the step bordering a crystal facet. Then,
with simple power counting we rederive FPS’s result, as well as the temporal power-law
scaling of edge fluctuations.

For straight steps, which underlie treatments of this problem, one adopts cartesian coor-
dinates (x, y), y being in the direction along the step edge, and x(y) describing the step
profile, in what has been called “Maryland notation” [32]. We focus attention on the step
autocorrelation function

G(t) = 〈[x(y0, t + t0) − x(y0, t0)]2〉y0,t0 ∼
t→0

t2β, (7)

which can readily be computed in a Monte Carlo simulation [9] and measured experimentally
with a scanning probe like STM. It is less feasible to measure spatial correlation functions
since such experiments do not take an instantaneous “snapshot.” Like a television screen,
different parts of the micrograph correspond to different times, and it is problematic to
deal with what transpires between successive visits by the STM tip to nearby positions.
Furthermore, in such experiments one does not do a full average over y0 but rather picks a
single value; for that case we replace G(t) by G(y0, t), for which there is no spatial average.
The resulting plot of displacement x vs. time looks similar to scans of x along a step, and
so are called “pseudo-images” [2]. (Cf. Fig. 6 below.) At short times G(y0, t) exhibits the

3 In Ref. [15] A is defined as b′′∞; writing A = (1/2)A simplifies Eq. (6).
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Fig. 4 Schematic of a stepped
surface seen from above, to
illustrate the “pipe” concept of
Ref. [20]. The fluctuating step,
depicted as a thick wavy line,
shows the definitions of w and
Ł. For the two particular cases
considered in the text, the
thickness Ls of the pipe-like
reservoir to the right of the step,
in which atom exchange occurs,
is of order the lattice spacing a.
Adapted from Ref. [20]

same t2β behavior as G(t). The value of exponent β depends on the atomistic processes
responsible for the fluctuations of the step, but also on the position of the step with respect
to a crystal facet, as we proved in Ref. [22] and recount shortly below. In the other limit,
G(t → ∞) saturates to 2w2, where w is width of the fluctuations.

When doing simulations [25] (or if one had a probe that could take instantaneous snap-
shots), one can probe

G(y, t0) = 〈[x(y0 + y, t0) − x(y0, t0)]2〉y0 ∼ w2, (8)

for large values of y. Then the roughness exponent α can be extracted from the saturation
value of the width w of the fluctuating step by using Eq. (1) and identifying Ł with the size
of the system in the y-direction.

Starting from FPS’s result that the roughness exponent α = 1/3 in Eq. (1), we apply
Pimpinelli et al.’s argument [20] for finding the temporal scaling: Referring to Fig. 4, consider
a protruding portion of step of length Ł and width w. At equilibrium, the protrusion is due
to fluctuations in the number of atoms to and from a reservoir. The reservoir is assumed to
be, depending on the limiting atom transport process, either another part of the same step,
or a region on the crystal surface. Before considering a specific kinetic process, let us derive
a few general relations. On average, a number N (t) of atoms continually move between
the step and the reservoir during a time interval t . The reservoir is by definition situated
one diffusion length Ls away from the protrusion. While the net flux to and from the step
vanishes, the number N (t) fluctuates around its vanishing mean; assuming that atom fluxes
in different time intervals are uncorrelated, we can compute the typical size of the fluctuation
δN , which is of order

√
N (t). Denoting by 	 the atomic area, we estimate the size w of the
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1184 T. L. Einstein and A. Pimpinelli

protrusion along the step edge (defined, as said above, as the amplitude or width of a typical
step fluctuation of length Ł) from w × Ł ≈ 	

√
N (t). To estimate N (t), we note that the

size (surface area) of the reservoir feeding the fluctuation is ŁLs . Then the number of atoms
moving to and from the step edge during time t is proportional to the number of diffusing
atoms in the region feeding the step, ceqŁLs (where ceq is the equilibrium particle density)
and to the fraction of time the atoms spend in this region, t/τ ∗. The characteristic time τ ∗
depends on the specific transport process (see below). Then, as in Ref. [20]:

N (t) ≈ ceq

τ ∗ ŁLst. (9)

Furthermore, the squared area of the fluctuating bulge is

w2Ł2 ≈ (δN )2 ≈ N , (10)

where we assume δN ≈ √
N .

While Ref. [20] considers several different cases, we focus here on the two primary
scenarios: i) non-conservative mass transport by attachment-detachment to/from the step
edge, with fast terrace diffusion (A/D) and ii) conservative mass transport by step-edge
diffusion (SED).

i) In the A/D case, 1/τ ∗ ≈ k, where k is an appropriate kinetic coefficient. For fast surface
diffusion, the step effectively exchanges atoms with a “2D adatom vapor” on the surface.
Then, Ls is of order the lattice spacing a, and Eq. (9) yields

w2Ł2 ≈ kceqŁat. (11)

Using Eq. (2) leads to Ł5/3 ∼ t , and eventually to

w ∼ t1/5 → G(t) ∼ t2/5. (12)

In comparison, G(t) ∼ t1/2 for a straight step or an isolated 2D island [10,20].
ii) For mass transport by step-edge diffusion along a portion of step of size Ł, 1/τ ∗ ≈ De/Ł2,

where De is the edge diffusion coefficient. Again in this case Ls ≈ a, so that Eq. (9)
becomes

N (t) ≈ tceq Dea/Ł. (13)

From Eq. (10)
w2 ≈ tceq Dea/Ł3. (14)

With Eq. (2) we now find t ∼Ł11/3, so that

w ≈ t1/11 → G(t) ∼ t2/11 (15)

(β = 1/11) for a crystal facet fluctuating through step edge diffusion. In comparison, G(t) ∼
t1/4 (β = 1/2) for a straight step or an isolated (large) 2D island [10,20].

4 STM Experiments

The first experimental observations of the novel scaling predicted for facet-edge fluctuations
on crystallites were performed at the University of Maryland by Masashi Degawa supervised
by Williams [21]. Crystallites were formed by depositing a 20–30 nm Pb film at room tem-
perature on a Ru(0001) substrate in UHV [34–36], and subsequently dewetting at 620 K. The
liquid Pb droplets solidified upon slow cooling and were left to equilibrate to a stable state
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Fig. 5 An STM image of a an
isolated step on a crystallite facet
(room temperature) and b a
crystal facet edge (350 K). The
small superimposed
double-arrow indicates the tip
path that leads to line-scan
images as in Fig. 6. From
Refs. [21,33]

at the T of the experiment [19,34,35,37]. The crystallites were observed with a variable-
temperature scanning tunneling microscope (VT-STM) after equilibration. Figure 5 depicts
an STM image of (a) an isolated step (at room temperature) and (b) facet-edge (at 350K).
A crystallite in a stable state as shown in (b) has a flat, close-to-circular (111) facet and a
smoothly-connecting vicinal region.

Since STM images are scans rather than instantaneous “snapshots”, the data for dynamic
scaling can be more compelling than that for static scaling. By repeatedly scanning perpendic-
ularly to a single position (y0) along the facet-edge or step (cf. Fig. 5), we obtain a line-scan
STM image [2] x(t), as shown in Fig. 6 for (a) an isolated step (step originating from a
screw dislocation) and (b) a facet-edge, both at 350 K. Digitized step-displacement positions
x(t) extracted from these “pseudoimages” are used for statistical analysis. To evaluate the
growth exponent β, we calculated the early behavior of the time correlation function G(t)
given in Eq. (7). To evaluate the roughness exponent α, we can calculate either the saturation
value of the width w of the fluctuating step as in Eq. (1) or the spatial correlation function
G(y, t0) ∼ y2α for y less than the correlation length [25].

Figure 7 shows G(t) determined for (a) facet-edges and (b) isolated step-edges. Squares,
circles, and triangles represent measurements at 300, 350 and 400 K, respectively. Each curve

Fig. 6 Segment of a line-scan pseudoimage of a an isolated step (step from screw dislocation) and b a facet-
edge at 350 K, showing also the correlated fluctuations of the neighboring steps. The time interval between
lines is 0.02 s, and 2,000 lines are measured per image. From Refs. [21,33]
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Fig. 7 Log-log plot of G([y0, ]t)
(cf. Eq. (7)) for a facet edges and
b isolated steps with facet radii
from 60 to 190 nm. The symbols
represent: 300 K (squares), 350 K
(circles), and 400 K (triangles).
For guidance, solid and dashed
lines show slopes 2/11 = 0.18
and 1/4, respectively. Individual
fits to each of the data sets yield
slopes of a facet edges: 300 K:
0.18(1), 0.13(6), 0.13(2); 350 K:
0.17(4), 0.17(4), 0.12(3), 0.11(5);
400 K: 0.12(12), and b isolated
steps: 300 K: 0.32(3), 0.26(1);
350 K: 0.24(3), 0.24(4); 400 K:
0.30(4). From Refs. [21,33]

(a)

(b)

displays the average over the correlation functions for 10–30 measurements of x(y0, t). The
exponent 2β for each temperature is obtained from the slope of the curve on the log-log plot;
the values of these slopes are listed in the figure caption. As expected the exponents show
no systematic thermal dependence: from all data sets, the σ−2-weighted average exponent
is 2β = 0.149 ± 0.032 for facet-edges and 2β = 0.262 ± 0.021 for isolated steps. With
over 99.9 % confidence (using Student’s t test), these values come from different parent
populations. Each of the two results is within one standard deviation, σ , of their respective
predicted values of 2/11 and 1/4.

Determination of the roughness exponent α requires evaluation of the system-size depen-
dence. A detailed examination is a challenge beyond the capability of the STM experi-
ments being used. However, we can demonstrate that size does affect fluctuations. Under the
assumption Ł∼ R (the facet radius) for confined steps (Fig. 7a), we expect w2 ∼ R2α . (For
the unconfined steps, the system size is larger than the limitations imposed by the finite mea-
surement time [4]). The effect of the facet size is apparent in Fig. 7a since the three upper sets
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Fig. 8 Product of squared
saturation width and reduced
stiffness as a function of facet
radius (facet-edge only). Circles
and squares are room
temperature and 350 K,
respectively. Solid and dashed
lines are a fit to the 350 K data
with α = 1/3 and α = 1/2,
respectively. From Refs. [21,33]

of data at 350 K were taken on larger crystallites, having radii >100 nm. More quantitatively,
Fig. 8 plots the characteristic length w2β̃/kB T versus facet radius at 300 K and 350 K, using
for the step stiffness β̃ the values 0.339 and 0.327 eV/nm [38,39], respectively. Fits to the data
yield exponents within the predicted range of α = 1/3 (solid) to α = 1/2 (dash). Although
there are insufficient data to distinguish between these two values,4 the results do show that
R influences the fluctuations, providing further evidence that effects of crystal confinement
govern the behavior of G(t).

The fluctuations of facet edges evidently belong to a different universality class of dynamic
scaling from that of an isolated step on a surface. In contrast to previous predictions for step
exponents [1,2,40–45], this difference does not stem from the type of kinetics. Instead, the
effect is predicted to result from the coupling of the step chemical potential to the fluctuations:
For facet-edge fluctuations the step confinement is produced by an increase in local step
chemical potential μ(x) when the step is displaced from equilibrium. The functional behavior
of μ(x) results from a competition between the step-repulsions from the vicinal region and
the 2D pressure of the adatom density on the facet, which in turn stems from the constraints
governing the crystallite shape [13,46]. For a step symmetrically confined on a vicinal surface,
the confinement corresponds to a potential that is quadratic in displacement [47]. However,
for the facet-edge step, the asymmetry in the μ(x) corresponds to an asymmetric confining
potential that includes a cubic term in displacement [48] and, consequently, leads to non-linear
terms in the equation of motion discussed above.

5 Conclusions

The work presented here is a very good example of the interplay in statistical physics between
exact results, scaling arguments, numerical simulations, and experiments. Spohn and cowork-
ers have produced a novel, exact static result. This has motivated us to apply old scaling
arguments to derive novel dynamical behaviors. In turn, the latter have opened new avenues
for experimentalists to explore. And the results of experiments have motivated numerical
simulations of model systems. In particular, for the first time it has been possible to observe
experimental evidence for a nonlinear term in equilibrium fluctuations. The result agrees with
our predictions for the case of geometrically confined fluctuations. When power-law temporal

4 Direct experimental observation, e.g. of the spatial correlation function on a quenched crystallite, would be
needed to obtain α for facet-edge fluctuations.
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correlations are measured, the measured value of the power β is significantly smaller than the
unconfined exponent of β = 1/8, and is within 1σ of the predicted value of β = 1/11 for a
universality class of dynamical scaling with α = 1/3 and z = 11/3. Thanks to the extensions
by Spohn and coworkers of earlier links between KPZ [49] behavior and the behavior of facet
edges [50,51], we were able, for the first time (to the best of our knowledge), to provide an
example in which a KPZ-type equation of motion accounted for equilibrium fluctuations
[26]. We were also able to experimentally verify the predictions of the theory. The experi-
ments spurred a more detailed numerical study of the problem. As a result, it was discovered
that the fluctuations and equation of motion of steps at equilibrium are very sensitive to the
step environment [52], a discovery that may introduce new opportunities for controlling the
fabrication of nanostructures and for understanding new aspects of their dynamic properties.
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