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a b s t r a c t

We have argued that the capture-zone distribution (CZD) in submonolayer growth can be well described by
the generalized Wigner distribution (GWD) PðsÞ ¼ asβ expð�bs2Þ, where s is the CZ area divided by its
average value. This approach offers arguably the most robust (least sensitive to mass transport) method to
find the critical nucleus size i, since β� iþ2. Various analytical and numerical investigations, which we
discuss, show that the simple GWD expression is inadequate in the tails of the distribution, it does account
well for the central regime 0:5oso2, where the data is sufficiently large to be reliably accessible
experimentally. We summarize and catalog the many experiments in which this method has been applied.

& 2014 Elsevier B.V. All rights reserved.

1. Prelude

In the study of the early stages of thin-film growth, on which
there are several fine reviews in the last decade [1–4], a key goal to
understanding the growth process is to find (in the early, aggrega-
tion regime) the size of the smallest stable cluster (denoted iþ1,
where i is the size of the critical nucleus, the largest unstable
cluster [5–7]). While there are a few methods used traditionally to
do so, more recent work has shown that it is particularly fruitful to
consider the distribution of the area of capture zones [3,8–10], i.e.
Voronoi (proximity) cells constructed from the island centers
(cf. Fig. 1). In particular, we shall see that this analysis provides
information about the critical nucleus size i, i.e. the size of the
largest island unstable to decay (so that the size of the smallest
cluster that is assumed not to decay is iþ1), a crucial ingredient in
models of growth processes. For random nucleation centers, i.e.
Poisson–Voronoi (PV) diagrams, the capture-zone distribution
(CZD) is expected to follow a gamma distribution (ΓD) [11,12]

PðαÞ
Γ ðsÞ ¼ αα

ΓðαÞ s
α�1e�αs; ð1Þ

where s is the CZ area divided by its average value () 〈s〉¼ 1).
More generally we have argued [10], drawing from experiences

analyzing the terrace-width distributions of vicinal surfaces [13],

that the CZD is better described by the single-parameter general-
ized Wigner distribution (GWD):

PβðsÞ ¼ aβs
β expð�bβs

2Þ; ð2Þ
where aβ and bβ are constants [14] that assure normalization and
unit mean, respectively, of P(s). The derivation is rooted in a
Fokker–Planck approach rooted in an overdamped Langevin ana-
lysis of cell size in which an external pressure from other cells
hinders a cell from growing much larger than average while an
entropic force impedes it from getting much smaller. The entropic
term is rooted in the mean-field assumption that the island
nucleation rate is proportional to niþ1, the product of the number
n of adatoms and the density of critical nuclei (pni) [16], leading
to the prediction that β¼ iþ1 in two dimensions (2D) [and
higher]. In 2D, which is the experimentally relevant case and so
the focus of this short paper, this approximation turns out to be
inadequate since nucleation occurs preferentially near CZ bound-
aries rather than uniformly [17,18]. (It does work better in 1D, but
that case requires—and permits—a more complicated analysis
[9,19,20]; v.i.) As discussed in the following, more sophisticated
analysis in 2D points to β¼ iþ2 as better, consistent with most
large-scale simulations and experiments.

2. Refined analysis and simulations

The need to go beyond our mean field Fokker–Planck analysis
(and its key finding of β¼ iþ1) [10] were made evident by
extensive simulations by Amar's [21] and Evans's [17] groups.
The former carried out kinetic Monte Carlo calculations of
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irreversible growth (i¼1) of point islands with dimensions 1–4,
for both square and triangular lattices in 2D and for two different
point-island models. In order to compute asymptotic behavior,
they treat values of R¼ 105�1010, where R�D=F , D the diffusion
rate and F the deposition flux. They find better fits to CZDs with
β¼ 3 than with β¼ 2. The dependence on coverage (between
0.1 and 0.4 ML) is negligible, but there is some dependence on R
and on which of the two models of point islands is used. They also
find better scaling (with R) of the peak height of the CZD using
β¼ 3, and comparable results for the two models. Comparisons
with some earlier calculations on extensive islands show simila-
rities and differences, requiring further study to understand. Li
et al. [17] considered both i¼1 and i¼0 at 0.1 ML. As shown in
Fig. 2, β¼ 3 accounts better for their i¼1 CZD curve than β¼ 2.
While the GWD describes the CZD in the regime in which there is
significant data in experiments (0:5oso2 ), it has shortcomings
in the tails at both high and low s [17,22]. For large s, P(s) may
decay exponentially or like sβνexpð�As�νÞ (with non-integer ν and
A some constant) rather than in a Gaussian fashion. Thus, in their
short Comment, Li et al. [17] plot the data in Fig. 2 on a log–log
scale and get the best fit with ν¼ 1:5 and βν � 4 (and ν¼ 1:3 and
βν � 3 for i¼0). However, the relation between β and i should be
determined by the central part of the CZD rather than power-law
behavior for s{1, so that βν and β are expected to differ; i.e., β is
in essence an effective exponent. (Moreover, when fitting a parti-
cular curve, βν increases to “compensate” decreasing ν. The non-
Gaussian decay, specifically the exponent ν, comes the probability
qðsÞ � sν that a new CZ overlaps an existing CZ of scaled area s
[3,29]; ν can be extracted from numerical data since q(s) is hard to
calculate.) Their full report on this study is not yet published.

Most recently Oliveira and Aarão Reis [22] reported exten-
sive simulations in 2D for point and extended (fractal and
square) islands, with i¼1 and 2, for R¼ 106�1010. Rather than
using s as their independent (scaling) variable, they choose
u¼ ðx� 〈x〉Þ=sx-ðs�1Þ½ðβþ1Þ=ð2bβÞ�1��1=2, where x is the num-
ber of lattice sites within a CZ, and sx is the standard deviation;
the final expression is for the GWD. This scaling procedure
improves data collapse (for different values of R) by reducing
the corrections to scaling for small x, where the continuum
model underlying the derivation of Eq. (2) becomes inaccurate;

on the other hand, this scaling hinders distinguishing between
values of i (and so, by inference, β) in the central region [23]
(but highlights differences in the tails in their log-linear plots).
For point islands with i¼1, both β¼2 and 3 give “good fits” in
the central (peak) region, with β¼3 also adequate for small s
and neither doing well for large s; for i¼2, β¼3 gives a good fit
of the center and large-s tail. For fractal and for square islands,
there is good data for the various values of R, and β¼ iþ1 gives
a good fit in all 4 cases, while β¼ iþ2 is not mentioned.
Typically there is Gaussian decay for large s.

While the numerical studies leave some open questions, the
preponderance of evidence points to β� iþ2, which we can
retrieve by refining our derivation [24]: Noting that within a
circular zone of radius R, the adatom density nðrÞpR2�r2, so that
the integral over CZ area of ½nðrÞ�iþ1pR2iþ4 ) PðsÞpsiþ2. Fig. 2
also shows that a gamma distribution might also be used to
describe the numerical data, in this case with α¼ 7. (Indeed, Li
et al. [17] noted that the data lies between this curve and P3ðsÞ.)
More generally, experimental data that is well described by the
GWD with a particular value of β can also be fit with PðαÞ

Γ ðsÞ,
α� 2βþ1 [25]. (This approximation becomes progressively better
for larger exponents [narrower distributions]: for β47, 2βþ1
underestimates α by under 1%; for β43 by o2%; but for β¼1 by
� 7%.) However, the ΓD has no known intrinsic connection with
the critical nucleus size.

In a more detailed analysis based on a widely applicable
fragmentation model (FM) [9], we characterized systems in terms
of two physically rooted exponents, γ and δ [18], by taking (1) the
probability to nucleate in a cell of size s is psγPðsÞ, ultimately,
implying PðsÞ � expð�As�γÞ (with A some constant) for s41; and
(2) the probability that a new center lies at a position r relative to
the center of a preexisting cell is p jrjδ, assuming circular
isotropy for simplicity. The simplest case is the PV problem, for
which γ ¼ 1 and δ¼ 0, with the second probability r-independent
but ps�1 [18].

As an analytically tractable example, we considered a point-
island model with irreversible attachment in which zones are
approximated as circular [18]. The isotropic solution of the appro-
priate steady-state diffusion equation gives an adatom density nðrÞ
that increases from 0 at the interior island edge to a smooth
maximum at the outer edge. This leads to the deduction that γ ¼ 3
(more generally γ ¼ iþ2), which, with δ¼ 0, accounts adequately
for numerical data for P(s), but less well for island density and the
radial nearest-neighbor island probability distribution. This defi-
ciency can be remedied by taking δ¼ 1 near the center and δ¼ 0
near the edge [18]. In the FM model, the result [17] ν¼ 1:5 implies
γ ¼ 1:5, with δ� 1:2 near the center and δ¼ 0 near the edge [18].
Furthermore, the above mean-field-based argument for γ ¼ 3
overestimates γ (or ν in the notation of [17]), that extensive
simulations show to be close to 2 rather than 3 at low coverages
and large R [26].

Fig. 1. An example of (10 μm� 0 μm) AFM image of commercial pentacene. The
island centers and Voronoi polygons are indicated by black dots and lines,
respectively. From Ref. [15].
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Fig. 2. Plots of Li, Han, and Evans's numerical data [red dots] [17] for the CZD for
i¼1 and P2ðsÞ [dotted, blue line], P3ðsÞ [solid, green line], and P4ðsÞ [dash-dotted,
blue line], showing that β¼ iþ2¼ 3 does provide the best fit. Also included is Pð7Þ

Γ ðsÞ
[dashed, purple line]. From Ref. [24].
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For s⪡1, P(s) is expected to behave like a power law in s, but the
precise relation between this exponent and i has not yet been
determined, although for i¼1 good agreement with simulations
has been found for the (actual rather than effective) exponent
β¼ 4 [17,18,22]. In this regime P(s) depends on the concentration
of centers and ultimately, in the FM model, on δ [18]. The
skewness of the GWD also agrees well with numerical data in
simulations [22]. However, earlier efforts to fit experimental data
by just extracting the first few moments of the distribution were
unsatisfactory [27].

Alternatively, we considered a maximum-entropy approach,
noting that the first moment is unity by construction and the
second moment, proportional to the product of island and mono-
mer density, is also constant in the aggregation regime since the
latter cancels the former's θ1=3 behavior [28], where θ is the
coverage. Thus, we obtained

PMEMðsÞ � Asβe�Bs2 �Cs; ð3Þ
where A, B, and C are constants [19]. As shown in Fig. 3, the MEM
expression accounts excellently for the numerical data for i¼1 for
two different values of R, the ratio of the diffusion constant to the
deposition rate. In PMEM(s) we set β¼ 4 consistent with the
numerical results in Ref. [17]. In Table 1 we compare the quality
of fits to these expressions (See also Ref. [22]).

Another approach would be to allow two different values of γ:
2 for small s and 1 for large s, mindful of the earlier result that
γ � ð4þsÞ=ð2þsÞ [29]. While such a “two-regime model” is not
essential here, it is in the 1D case (where the γ values are 4 and 3)
[18]. More generally in 1D, there are several complications (e.g. the
need for an integro-differential equation in the fragmentation
analysis [19]), and more detailed analyses are possible, leading to
some controversies [9,17–22] beyond the scope—and length limit—
of this paper.

Two alternative approaches have long been used to gauge the
critical nucleus size from experiment. One is to measure the island
size distribution (ISD) [3,28,31] and then to fit it with the Amar-
Family scaling formula (at least for i¼1, 2, 3 and in 2D) [32],

f iðuÞ ¼ Ciuiexpð� iaiu1=ai Þ; Γ½ðiþ2Þai�
Γ½ðiþ1Þai�

¼ ðiaiÞai ; ð4Þ

with u now being the island size divided by its mean and Ci a
normalization constant; Eq. (4) was deduced empirically from the
expectations that (in the limit of large R) f i � ui for small u, cut off
exponentially for large u, and peak at u¼1 (in marked contrast to

the GWD, especially for small β). In the limit R-1, with scaling
assumptions for capture numbers and neglect of deposition
dependence, Bartelt and Evans [3,29,30] showed

f ðuÞ ¼ f ð0Þexp
Z u

0
dyf2z�1�Ctot' ðyÞg=fCtotðyÞ�zyg

� �
; ð5Þ

where Ctot is a linear combination of scaled capture numbers and
capture zones and z is the slope of a log–log plot of mean island
size vs. deposition (e.g., z¼ 2=3 for point islands). In principle,
then, one can obtain the ISD from a rate-equation approach if one
knows the capture numbers [1,30]; while calculating them is
intractable, they can be measured from simulations.

While ISD cannot be expected to mimic the CZD in general
[3,33] (NB: Eq. (5) implies that the ISD is finite at 0 while the CZD
vanishes), Fanfoni et al. very recently presented some kinetic
Monte Carlo (KMC) calculations on a simple model of quantum
dot growth that point to a similarity between ISD and CZD at lower
temperature T, when evolution of islands is dominated by atom
motion along the periphery rather than attachment/detachment [34].
(However, they favor the ΓD in their fits.) See Ref. [22] for recent
results on the high-end tails.

Second, based on rate equation theory, it has long been known
[5,6] that at constant, relatively low T, the density N of [stable]
islands (particularly the maximum density) satisfies the scaling
relation [6,35]

N� Fχi ; χDLA
i ¼ i=ðiþ2Þ; χALA

i ¼ 2i=ðiþ3Þ ð6Þ
where the two relations of χi to i are for diffusion-limited (DLA)
and attachment-limited aggregation (ALA) regimes [36] in 2D,
respectively. There are many other regimes with signature rela-
tions for χi [35,37]. Also, the values in 3D differ, e.g. being
2i=ð2iþ5Þ for DLA (with compact islands and with no desorption).
In short, the value of i deduced from χi depends strongly on the
dominant mode of mass transport. In many cases one can
characterize the T dependence by writing N� ðF=DÞχ i , where D
has an activated, Arrhenius form, so that N is expected to decrease
rapidly with increasing T [7].

3. Experimental applications

Pentacene on SiO2 [38]: Islands were fractal rather than com-
pact/circular. The CZD was found to depend on deposition rate.
We could fit the published data well with the GWD, with β¼9 and
6 for high (1.5 nm/min) and low (0.15 nm/min) flux, respectively.
For high flux the ISD looked similar to the GWD, but for low flux it
was far broader and much more skewed.

Polar-conjugated molecule Alq3 on passivated Si(100) [39]: Brink-
mann et al. fit their data with the ΓD, quoting α¼ 1072. Our fitting
the areal data in their Fig. 6 is best with β¼ 5, lying between ΓD

Fig. 3. Capture zone distribution in 2D with i¼1. The GWS describes correctly the
behavior of P(s) for intermediate values of s. The maximum entropy method gives
an excellent approximation for P(s) even for large and small values of s, as seen in
the replotting in the inset on a log–log scale. See the text. From Ref. [19].

Table 1
Values for the χ2ðallÞ and χ2ðsigÞ for four different analytical models of data for i¼1.
The values of χ2 are computed for the entire range of s (all) and for just the range
over which the data is significantly large (sig), viz. 0:5oso2. For the first column,
the gamma distribution (ΓD) β is alpha of Eq. (1). GWD-0 has no free parameters,
with β¼ iþ2¼ 3, while GWD-1 lets β vary to improve the fit. In the column GΓE the
values of ν and β are fixed at the values in Ref. [17], while in GΓD (generalized
gamma distribution) they are allowed to vary. MEM uses Eq. (3), with A, B, and C
fitted. Adapted from Ref. [19].

ΓD GWD-0 GWD-1 GΓE GΓD MEM

103χ2 (all) 3.010 1.660 1.726 0.402 0.334 0.518

103χ2 (sig) 1.722 0.826 0.873 0.381 0.287 0.294

ν 1 2 2 1.5 1.585 NA
β 6.277 3 3.065 4 3.860 4
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curves with α¼10 and 11. Mindful of Eq. (6) they measure
χ i ¼ 2:0070:05. Their interpretation is that this implies i¼5, which
is inconsistent with our expectation (at least in 2D). However, we can
argue that the actual scaling regime differs from their assumption,
leading to a compatible value of i.

Self-assembled Ge/Si(001) nanoislands [40]: Displayed CZDs for
0.2, 0.8, and 1.0 ML on the wetting layer were are described by the
GWD. Deduced values of β every 0.2 ML rose slowly from about
2.4 at 0.2 ML to 4.68 at 1.0 ML. The associated value of i was
smaller than anticipated. Island volume distributions fell from
their initial maximum steadily to vanish before rising again to
attain a smaller maximum.

InAs quantum dots on GaAs(001) [34,41]: In this example,
nucleation is much faster than growth. The CZD of the quantum
dots at 1.65 ML are well described by Pð4:1Þ

Γ , and α increases non-
monotonically to 4.6 at 1.85 ML [41]. Fitting the published CZD at
1.65 ML with the GWD with β¼ 2 is comparably good, but Fanfoni
[42] reports that the fits with the ΓD are generally better and
more appropriate because the nucleation sites are nearly random.
However, we achieved an even better fit using the FM with γ ¼ 1 as
for PV, but δ¼ 1 rather than 0. Fanfoni et al.'s analysis of the dot
volume distribution is inconclusive [41]. Subsequently, Fanfoni et al.
[34] analyzed the CZD at 450 1C (1.74 ML, F¼1.92 ML/min) and 528 1C
(1.79ML, F¼1.68 ML/min), for which αvalues of 5.0 and 10.6, respec-
tively, were extracted. In the former case the volume distribution
nearly coincided with the CZD but in the latter case it was much
broader and more skewed. Guided by the above-mentioned KMC
simulations, they conclude that different mass-transport mechanisms
dominate in the two regimes: periphery diffusion (consistent with PV)
and attachment-detachment, respectively.

Metallic Ga droplets on GaAs(001) [43]: Fits of data at 2.9 ML to
the GWD give β¼6.9, 7.7, 8.6 for T¼185, 190, 200 1C, correspond-
ing to i¼571, 671, 771, consistent with values of i for metals on
semiconductors. For smaller coverage 2.7 ML at 185 1C, i¼471,
consistent (within error bars) with coverage-insensitive behavior.
For larger coverage (3.7 ML), ripening thwarts the analysis.

Para-hexaphenyl (6P) films on amorphous mica [44,45]: For
0.19 ML, T¼300 K, and F¼0.04 ML/min on freshly cleaved mica,
the needle-like islands have a CZD that is well (and best) fit with
β¼5; the resulting i¼3 confirmed analysis of N(F) data with Eq.
(6) with χ i ¼ i=ðiþ2Þ, yielding i¼2.570.5. For such small i they
conclude that the 6P molecules must be lying on the surface,
rather than standing up. Different behavior is found at low T,
attributable to different kinetics [44]. Subsequent work on sput-
tered mica [45] showed that the 6P molecules stand up, suggesting
a higher i. While no CZD analysis is given, values of χi in both
the diffusion- and the attachment-limited regime give i¼772.
(i¼6 could correspond to a centered hexagon of standing rods
[cf. Vienna sausage] as the smallest stable cluster.)

6P on Ir(111) [46]: The various analytic expressions do not
describe the CZD data as well as other examples. The best fit by the
GWD is for β¼ 1:6, but the so0:5 data looks more like β¼ 3, and
there are several points with unexpectedly high values for s≲1.

Small admixtures of pentacenequinone (PnQ) with pentacene on
ultrathin SiO2 (UTO) [15]: While the above theoretical analyses
assume deposition of single-species, study of CZD continues to
provide information when there are impurities. As the fraction of
PnQ was increased at constant coverage (0.3 ML), the value of β
dropped from 6.7 below 1% to 5.0 above 1%, indicative of the
poorer packing possible when PnQ was present. For thick 50 ML
films, this sudden change around 1% is reflected in a sudden
decrease grain size and a consequent decrease in linear mobility.

C60 on UTO [25]: The somewhat limited CZD data were fit
comparably well with GWD and ΓD. The deduced values of β had
an inverted semicircular form between 298 K and 483 K, begin-
ning and ending around 2.2 and peaking around 2.9 near 373 K.

Over this range N changed remarkably little, increasing slightly,
then dipping a bit, in sharp contrast to the behavior expected in
the comments after Eq. (6). Up to 3/4 of the atoms are monomers,
but they are mostly immobile. The most likely explanation of this
is that surface defects act like impurities, confounding the simple
scaling behavior.

4. Further applications

In trying to understand unusual features in homoepitaxial growth
on vicinal Cu(001), we concluded that a co-deposited impurity
offered the best explanation [47]. Over a dozen possible elements
were considered in a model involving two characteristic energies
(lateral bond and diffusion barrier). The elements fell into 4 classes,
only one of which corresponded to the data. In the course of these
KMC simulations, we found different island morphologies in the
4 classes. We generated CZDs for the various cases at coverages from
0.1 to 0.7 in steps of 0.1 [47]. The extracted values of β likewise
tended to divide into such classes, and for all but one class, β
increased with coverage, consistent with the experiments on Ge on
Si(001) [40]. The behavior of the exceptional class can be attributed
to its repulsive nearest-neighbor interaction.

Finally, we have applied GZD analysis to various social phe-
nomena. Examining the distribution of metro stations in central
Paris, we find that the Voronoi distribution can be described by
Pðα ¼ 8Þ
Γ , or better with the FM with γ ¼ 2 and δ¼ 1:5, indicative of

an effective repulsion, greater than that between islands, consis-
tent with the undesirability of having stations too close to each
other [18]. Two decades ago it was observed that the secondary
administrative divisions of France, the arrondissements (districts),
had properties of random cellular structures [48]. Each has a chief
town (corresponding to a county seat in the USA). We constructed
the distribution of the areas of these districts and also the areas of
the Voronoi cells based on the chief towns. These two distribu-
tions follow the same curve, which is well described by Pðα � 4:4Þ

Γ , or
the GWD with β� 1:7, or the FM with γ ¼ 1 and δ¼ 0:5 [18,49].
Accounting for the pair correlation function, etc., of the chief
towns requires inclusion of a hard-core circle, which turns out to
optimally be 40% of the mean radius [18]. Furthermore, the
GWD describes the area distributions of most other secondary
administrative units, e.g. counties in the southeast USA (β� 2) and
Polish powiaty (β¼ 1:870:3), as well as third-level rural gminy
(β¼ 2:070:4) [49].

Lastly we note that even the markings of giraffes have recently
been considered from the perspective of random deposition but
finite-thickness walls between Voronoi cells [50].

5. Closing summary comments

We have shown that the GWD provides an excellent accounting
of CZDs in the region where the data in experiments is most
reliable. While the fits with the ΓD (or even a Gaussian, for large
β) may also offer an adequate accounting, only the GWD offers a
fundamental connection to the critical nucleus size: β� iþ2.
Further improvements in the theory, notably the fragmentation
model, allow more detailed examination of tails and of other
statistical functions. The approach applies to a much broader range
of problems than just crystal growth.
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