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We propose a novel island nucleation and growth model explicitly including transient (ballistic)
mobility of the monomers deposited at rate F , assumed to be in a hot precursor state before ther-
malizing. In limiting regimes, corresponding to fast (diffusive) and slow (ballistic) thermalization,
the island density N obeys scaling N ∝ Fα. In between is found a rich, complex behavior, with
various distinctive scaling regimes, characterized by effective exponents αeff and activation energies
that we compute exactly. Application to N (F, T ) of recent organic-molecule deposition experiments
yields an excellent fit.

The transport of atoms or molecules at solid surfaces
plays a crucial role in a huge variety of physical and
chemical processes. In heterogenous catalysis reactants
usually adsorb and diffuse at the surface before form-
ing products. The growth of regular films implies lateral
motion of the adsorbed species. The formation of nanos-
tructures at surfaces via self-assembly or diffusion-limited
aggregation (DLA) requires the interplay of the mobil-
ity and of the corresponding lateral interactions between
constituents. Also, the adsorption process of adspecies
may itself involve transient motions.

Curiously, all of the above but the last have been ex-
tensively studied [1–8]; in particular, the effect of “hot
precursors” (transient mobility) on the formation of films
and nanostructures has been largely overlooked. The
participation of hot precursors to chemical pathways in
the formation of molecular hydrogen on interstellar dust
grains, or on ice, is considered possible but it is usually
neglected [9]. In descriptions of adsorption, nucleation
and growth of thin films and nanostructures, the kinetic
energy of the deposited atoms or molecules is commonly
assumed to dissipate instantaneously by collisions with
surface phonons. Numerical studies [10] have shown that
this need not be so. The term “hot” precursor has been
used in surface science for over 3 decades [11, 12] to de-
scribe transient lateral mobility of adatoms before they
chemisorb on the substrate. The concept itself is much
older [13]. Widely invoked [14–16], Ertl’s group used
hot adatom adsorption over 2 decades ago to account for
island nucleation [17], followed quickly by Monte Carlo
simulations [18] and one-dimensional analytics [19]) but
not until recently [20] treated semiquantitatively in the
context of island growth.

In fact, even though the idea that transient, nonther-
mal motions could be possible after adsorption, when the
substrate temperature is low enough, nobody has ever
addressed rigorously the modeling of such phenomena.
In the present work, we translate that idea into the for-
malism of rate equations. We describe the deposition
of atoms or molecules on a substrate in which the im-
pinging species (“monomers” henceforth) spends some
time in a “precursor” high-energy, superthermal state in

which its motion is ballistic rather than diffusive. The
typical lifetime of the precursor state is assumed to be
determined by energy exchange between the monomer
and the surface phonons. Consequently, nucleation is
diffusion limited at high temperature T and low depo-
sition rate F–when energy exchange is favored by abun-
dant phonons, and monomers clusters are far apart—and
turns into a novel scaling regime at low T and large F .
We show that this novel scenario explains in a natural
way recent observations of the puzzling behavior of cer-
tain organic molecular adsorbate systems [20]. On more
general grounds, we stress that the model proposed in
this Letter is sufficiently simple to be amenable to de-
tailed treatment, while exhibiting an unsuspected wealth
of different regimes, characterized by a non-monotonic
behavior of the activation energies and of the scaling ex-
ponents.

We assume that monomers are deposited in a high
kinetic energy or hot state and propagate ballistically
with speed v for a time τh, after which they thermalize
and diffuse (in random-walk fashion) with diffusion coef-
ficient D. We separate the total monomer density n into
the densities of hot nh and thermalized nth monomers:
n = nh +nth. Denoting by N the density of stable (non-
decaying) islands, we write the monomer survival times
before capture by islands as τh→N and τth→N , respec-
tively. We then argue for the following rate equations:

ṅh = F − nh
τh
− nh
τh→N

; ṅth =
nh
τh
− nth
τth→N

(1)

Ṅ = σi (T, v)K (T, v)ni+1 (2)

where K (T, v) is a kinetic coefficient [see Eq. (5) below],
σs (T, v) is the capture coefficient for a cluster of size
s, and i is the critical nucleus size, i.e., the size of the
largest unstable (decaying) island. Thus, deposition in-
creases the density of hot monomers while thermalization
and island capture decrease it; thermalization is the only
source for nth. If we seek only the steady-state scaling be-
havior, we retain only the dominant terms like monomer
capture by stable nuclei (s ≥ i+1); we notably neglect
monomer capture by other monomers or by unstable clus-
ters, even including those of size i (cf. Ref.[2]).
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We take the associated mean travel distance for both
kinds of monomer species to be the mean distance be-
tween islands ¯̀= N−1/2:

τh→N =
¯̀

v
=

1

vN1/2
; τth→N =

¯̀2

D
=

1

DN
, (3)

Our rate equation for the density of clusters of size s is

Ṅs = σs−1nNs−1 − σsnNs +
1

τs+1
Ns+1 −

1

τs
Ns (4)

where τs is cluster survival time before monomer detach-
ment. In the stationary regime (Ṅs=0), (4) has a unique
solution, given the initial condition N1 = n, the so-called
Walton relation [21], anticipated by (2):

Ns =

(
s∏

k=2

σk−1τk

)
ns ≡ Ksn

s (5)

where Ks is the kinetic coefficient for subcritical clusters
of size s. This necessitates K1 = 1, which is trivially sat-
isfied under this definition. Comparing the stable island
density N in (2) with its formulation in terms of super-
critical clusters, N ≡

∑
s≥i+1Ns, we extract the kinetic

coefficient in terms of capture and survival times:

Ṅ =
∑
s≥i+1

n (σs−1Ns−1 − σsNs) = σinNi

= σi

(
i∏

k=2

σk−1τk

)
ni+1 ≡ σiK (T, v)ni+1 (6)

where (by definition of i) τs → ∞ for s > i. Note that
the kinetic coefficient necessarily depends on the criti-
cal cluster size, K (T, v) = Ki. We can obtain explicit
expressions for σs (T, v) and K (T, v) for fast and slow
thermalization, viz. τh � τh→N and τh � τh→N , respec-
tively. Equivalently, if we define

z ≡ τh/τh→N = vτhN
1/2, (7)

these limits become z�1 and z�1, respectively.
For fast thermalization, τh � τh→N , there are negligi-

bly few hot monomers: n ≈ nth. Thermal effects over-
whelm ballistic contributions, so σs (T, v)→ σths (T ) and
K (T, v) → Kth (T ), where th refers to exclusively ther-
mal contributions. Since the BCF formalism [22] applies,

σths (T ) = D = D0e
−βED ; Kth(T ) = κ0e

βEi (8)

where ED is the diffusion energy, Ei is the cohesion en-
ergy of a cluster of size i, β ≡ (kBT )−1 is the inverse ther-
mal energy, and D0 and κ0 are constants. It is simpler to
work in terms of the coverage θ ≡ Ft, so Ṅ = FdN/dθ.
In the stationary regime, ṅh = ṅth = 0, (1) simplifies:

nh = Fτh; nth =
F

DN
;

dN

dθ
= κ0

(
F

D

)i
eβEi

N i+1
. (9)

In the z � 1 regime we find the familiar case of DLA:
integrating dN/dθ yields the DLA hallmarks [1–3, 23]:

N ∝
(
F

D0

)α
exp

[
β
iED + Ei
i+ 2

]
; α = i/(i+ 2) (10)

For slow thermalization, z � 1, we find a novel hot
monomer aggregation (HMA) regime: Since our goal is
to understand the scaling behavior of Ns rather than its
distribution, we neglect the much-studied (and reviewed
[2, 8, 24]) dependence of σs on s. We focus on the ef-
fect on scaling of the domination by hot monomers mov-
ing ballistically at some hyperthermal speed v, taking
for dimensional reasons σBs = `v, where the coefficient
` is a characteristic microscopic length and B refers to
this ballistic regime. A hot monomer colliding with a
small cluster is likely to transfer energy to the latter and
cause (thermally improbable) detachment of a previously
attached monomer. Adopting the simplest assumption
that this athermal detachment rate is proportional to the
monomer speed, we get the cluster lifetime τBs = `′/v,
where `′ is another microscopic length.

KB
s =

(
s∏

k=2

σBk−1τ
B
k

)
= (``′)

s−1
(11)

The noteworthy independence of KB
s on v is robust, re-

quiring only that σBs and (τBs )−1 have the same speed de-
pendence; if not linear, some of the dimensionless quan-
tities defined below are trivially rescaled. Even if σBs and
(τBs )−1 had different speed dependences, both would still
be independent of T and F , so that the effective expo-
nents and energies in Table I would not change [25].

Since n ≈ nh, in the steady state:

nh=
F

vN1/2
; nth=

Fτ−1
h

DvN3/2
;

dN

dθ
=
`KB

i

N
i+1
2

(
F

v

)i
,(12)

which remarkably leads to the scaling form N ∝ Fα with

α = 2i/(i+ 3) (13)

the same scaling exponent as attachment-limited aggre-
gation (ALA) [26–28]. Contrary to ALA, which depends
on thermally activated processes, the novel HMA nucle-
ation regime is essentially athermal, evident from the
temperature independence of the coefficients of Eq. (12).

To solve the model, redefine the capture coefficients
and monomer survival times as σ̃s (T, v) and τ̃s (T, v):

nσ̃s (T, v) = nthσ
th
s (T ) + nhσ

B
s (v) , (14)

1

τ̃s (T, v)
=

1

τ ths (T )
+

1

τBs (v)
, (15)

where thermal and ballistic contributions contribute lin-
early for the capture coefficients and additively for the
survival rates. This recasts (4) as:

Ṅs = σ̃s−1nNs−1 − σ̃snNs +
1

τ̃s+1
Ns+1 −

1

τ̃s
Ns (16)
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At stationarity we recoup (1) and, with σs → σ̃s and
τs → τ̃s we recover (6). Unsurprisingly, from our as-
sumptions for the slow thermalization, the s dependence
of σ̃s and τ̃s can be neglected. Two undetermined sur-
vival times remain: τh for molecules before thermaliza-
tion and τ th for thermalized monomers before adsorption
into an island. In accordance with the BCF model [22],
both are assumed of the form

τ ths ≡ τ0eβEb , τh ≡ τ0eβEph , (17)

where τ0 is a characteristic inverse phonon frequency, Eb
is the barrier to detachment of a monomer from a cluster
(Eb > ED), and Eph is a typical phonon energy.

Using the algebraic forms for nh and nth in (1) and the
survival time considerations in (3), we solve (14) for the
capture coefficient in steady state:

nh =
Fτh

1 + vτhN1/2
= NDτhnth (18)

σ̃ =
nh

nτhN
(1 + `vτhN) = D

(
1 + `vτhN

1 +NDτh

)
, (19)

Substituting into the recast form for (6) we obtain

dN

dθ
=

(τF )
i

Dτ

(1 +NDτh) (1 + `vτhN)
i

N i+1
(

1 + vτhN
1/2
)i+1

(20)

using the approximation `= `′. In the limits z � 1 and
z � 1, we recover, to leading order, the key characteris-
tics of dN/dθ shown in (10) and (13), respectively: the
dependence on F , N and the DLA and HMA/ALA scal-
ing exponents. Note that (20) is a rational function of
N1/2 (evident after a change of variables from N), so
that it is analytically solvable using partial-fraction de-
composition for arbitrary values of i; however, the result
is both unwieldy and unenlightening. Instead, we adopt
a scaling approach to study N vs. six dimensionless pa-
rameters that can be formed from the physical quantities
θ, F , D, τh, v, and τ̃ :

N̂ ≡ N(vτh)2 = z2; F̂ ≡ F`vτ2
h ; θ̂ ≡ θv

D`
(vτh)4 (21)

RC ≡
`

vτ0
e−βEb ; Rn ≡ NDτh; RB ≡ `vτhN

We can then solve (20) implicitly:

θ̂ F̂ i

(1 +RC)
i−1

=

∫ N̂

0

f(ε) dε, f(ε)≡
εi+1

(
1+ε1/2

)i+1

(1+Rnε)(1+RBε)
i

(22)

where we introduce Rn ≡ Rn/N̂ and RB ≡ RB/N̂ to
easily identify prefactors of N̂ within numerical compu-
tations, and ε is an integration variable.

For both the fast and slow thermalization limits, N ∝
Fα has a well-defined power-law exponent α. We define

i=4, Rn=10-2.11 , RB=105.38

i=7, Rn=100 , RB=100

i=7, Rn=10-10 , RB=100

4 8 12 16-4-8-12 0

αD01

αD00

αH11

4 8-4 log10z = 0

αD00

αH11

αH01

log10N

α
ef

f(
i=

4)

α
ef

f(
i=

7)

FIG. 1. The effective exponent αeff vs. N̂(F ) for i = 4 (dash-
dotted line) and 7 (dashed and continuous lines). Note the
different scales for αeff depending on i. The crossover region
between the limiting DLA (D00) and HMA (H11) scaling is
explored by varying Rn and RB . All eight possible curves are
plotted, at fixed i, in [25].

an effective exponent αeff(F ) ≡ d lnN/d lnF between the
scaling limits. From (22) follows the explicit form of αeff :

αeff (F ) =
i
∫ N̂

0
f(ε) dε

N̂f(N̂)
= i 〈1〉

∣∣
N̂ (23)

where αeff depends implicitly on F via N̂ . We also em-
ployed the notational shorthand, 〈· · ·〉:

〈g〉
∣∣
N̂ ≡

[
N̂f(N̂)

]−1
∫ N̂

0

f(ε)g(ε) dε. (24)

For present purposes we can unambiguously omit the N̂
indexation from the notation. By varyingRn andRB , we
can explore the various regimes, as exemplified in Fig. 1.
We see that αeff always converges to its limiting DLA
(HMA) values for small (large) N̂—or, equivalently, for
small(large) F or z. However, the crossover behavior
exhibits nontrivial features: αeff may lock into plateaus
of rational values, over which the island density exhibits
well-defined power-law behavior (cf. continuous line in
Fig. 1). With Taylor expansions of (23) in N̂ or N̂−1,
such values are found analytically and given in Table I.
Especially interesting, and relevant to experiments as dis-
cussed below, is the behavior for i = 4 in Fig. 1. Here
αeff has a large maximum nearly equal to αD01 = 2, be-
tween αD00 = 2/3 and αH11 = 8/7. Measuring the island
density between, for instance, z ≈ 10−4 and z ≈ 10−2

could be interpreted as a transition between αD00 = 7/9
and αH11 = 7/6 with i = 7.

Since we also expect N ∝ exp(βEA) in simple lim-
iting cases where there is a well-defined activation en-
ergy EA, we can seek an effective activation energy
Eeff
A = d lnN/dβ for intermediate situations. After long

algebraic manipulations, we find a compact form for the
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Label Rn RB RC αeff = i〈1〉 Eeff
A /〈1〉 = Eeff

A i/αeff

D000 �1 �1 �1 i/(i+2) ED

D001 �1 �1 �1 " ED+(i−1)Eb

D010 �1 �1 �1 i/2 ED+iEph

D011 �1 �1 �1 " ED+iEph+(i−1)Eb

D100 �1 �1 �1 i/(i+1) Eph

D101 �1 �1 �1 " Eph+(i−1)Eb

D110 �1 �1 �1 i (1+i)Eph

D111 �1 �1 �1 " (1+i)Eph+(i−1)Eb

H000 �1 �1 �1 2i/ (3i+5) ED−(i+1)Eph

H001 �1 �1 �1 " ED−(i+1)Eph+(i−1)Eb

H010 �1 �1 �1 2i/ (i+5) ED−Eph
H011 �1 �1 �1 " ED−Eph+(i−1)Eb

H100 �1 �1 �1 2i/ (3i+3) −iEph
H101 �1 �1 �1 " −iEph+(i−1)Eb

H110 �1 �1 �1 2i/ (i+3) 0

H111 �1 �1 �1 " (i−1)Eb

TABLE I. The 16 regimes for extremal values of z, Rn, RB
and RC , along with the associated rescaled effective expo-
nents (cf. Fig. 1) and effective activation energies. D (H)
indicates DLA (HMA): z � (�)1. The subscripts give the
limiting value of theR ’s, with 1 denotingR=∞, i.e. index =
exp(−1/R). For αeff , RC is inconsequential, so that only the
first 2 subscripts are needed, yielding just 8 regimes. Note
that the reduced values of Eeff

A in the last column must be
multiplied by the corresponding αeff/i to get the actual Eeff

A .

activation energy:

Eeff
A = Eb(i−1)

RC
1 +RC

〈1〉 − Eph (i+ 1)

〈
z

1 + z

〉
+ iEph

〈
RB

1 +RB

〉
+

〈
ED

1 +Rn
+
EphRn
1 +Rn

〉
,(25)

which uses the bracket notation from (24), while z, RC ,
RB , and Rn remain functions of N̂ [29]. (See [25] for a
full derivation.) There are 24 = 16 regimes realizable by
varying z, Rn, RB and RC : their effective energies Eeff

A

are in Table I, with selected plots in Fig. 2.
In the regime z � 1 the values of Eeff

A can be negative
[30]. The observation of Eeff

A <0 in similar surface experi-
ments [31–33] was attributed to a Langmuir-Hinshelwood
mechanism [34, 35]. Here the key phenomenon is the on-
set of long-distance (� `′) ballistic motion with decreas-
ing T that competes with diffusive aggregation to reduce
N over a range of T [25]. Further insight into Eeff

A is
gained by interpreting the limiting values of the R’s [25],
e.g., for Rn = nh/nth � 1 (hot-precursor domination),
the last term of (25) tends to Eph, while for Rn � 1
it goes to ED, consistent with domination by diffusing
thermal adatoms.

To test our model, we fit the experimental island den-
sity of hexaphenyl (6P) deposited on sputter-modified
mica at T = 150, 200, 300, and 400K [37]. The fit, shown

ED=1, Eph =2, Eb=6, βc=20

Rn
0=105 , RB

0=1027

Rn
0=1030, RB

0=10-5

Rn
0=1020, RB

0=1015

0 5 10 15 20 25 30 35 40

ED000
ED100

ED010

ED001

log10z = 0

EH010

EH000

β

E
Aef

f

FIG. 2. Eeff
A vs. β for i=4 and some values of R0

n and R0
B , R0

x

meaning Rx(β = 0). The fast (slow) thermalization regimes
are left (right) of the crossover value z= 1: to satisfy z(βc =

20) = 1 each curve needs a different value of θ̂0 = F̂ 0. The
nonmonotonic crossover and associated well-defined plateaus
are sensitive to ED, Eph, Eb, βc, R

0
n, and R0

B , leading to a
rich variety of behaviors, presented more fully in [25].

in Fig. 3, yields i= 4 ± 1 and strongly suggests that the
system explores the crossover region between D000 and
D010, i.e. −3.3 ≤ log10 z ≤ −2.0 [36]. The caption of Fig.
3 lists the parameters. The bottom right inset, showing
the numerical derivative of the experimental data along
with αeff via (23), confirms that αeff varies from αD00 to
αD01 and shows the insensitivity of αeff to T . Previous
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E
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FIG. 3. Island density vs. deposition rate in the aggre-
gation regime for 6P on sputter-modified mica (001) [37] at
T = 150K (black, square dots), 200K (red, round dots), 300K
(blue, star dots), and 400K (green, triangular dots), with best-
fit parameters: i = 4, log10R0

n = −2.11, log10R0
B = 5.38,

log10 vτ0 [µm]=−2.66, and, in eV, ED=0.0174, Eph=0.0174,
and Eb = 0.349. The final effective coverage θeff [36] is given

by log10

(
θeffτ

i
0

[
µm−2si

])
= −12.4 . Inset, bottom right,

αeff (curves) and values of d lnN/d lnF from the experimen-
tal data (dots); Inset, top left, Eeff

A (curve) vs. 1/T [K] for
F = 0.55ML/min.
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estimates of i [37], which did not envision nonmonotonic
crossover, assumed DLA scaling at low F and ALA scal-
ing at high F and so found a varying critical-nucleus
size, viz. i = 5± 2 and i=7±2, respectively [37]; mistak-
ing the novel D000 → D010 transition for D000 → H110

(where αH110 = αALA). The top left inset shows that the
computed Eeff

A varies in this T range between 0.26 eV
(high-T ) and 0.04 eV (low-T ), corresponding remark-
ably well to the experimental values of 0.3 eV and 0.04
eV, respectively [20]. This highlights the success of our
hot-precursor model to account for crossover behavior
in nucleation. The model can be extended to consider
chemical reactions in the context of deposition of differ-
ent chemical species. A similar model was proposed by
one of the authors, several years ago, to describe precur-
sors in chemical vapor deposition [38].

Our ground-breaking work shows systematically that
nonthermal (high-energy) adsorption states have dra-
matic effects on monomer aggregation and island nucle-
ation: while known scaling relations in limiting situa-
tions are recovered, a novel scaling regime is discovered,
as well as intermediate regimes in which different scaling
behaviors occur for well-defined ranges of the controlling
parameters. Far from being a tweak, “hot” monomers
profoundly modify island nucleation, begging further the-
oretical and experimental investigation. Our work con-
stitutes the first, crucial step in that direction. While
a detailed confrontation of a specific system, scrutiniz-
ing the many input parameters of our model, will require
more extensive experimental data, the preliminary test
of our model is encouragingly consistent with the best
available data [37] and captures the main physical as-
pects of the nucleation of molecular thin films, presaging
enormous technological potential [39].
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