Charge Inhomogeneity Determines Oxidative Reactivity of Graphene on Substrates

Mahito Yamamoto, Theodore L. Einstein, Michael S. Fuhrer,* and William G. Cullen

Materials Research Science and Engineering Center and Center for Nanophysics and Advanced Materials, Department of Physics, University of Maryland, College Park, Maryland 20742-4111, United States

Chemical functionalization and doping of graphene have been of great interest as an approach to tailoring its electronic structure.1–3 Covalent functionalization changes the hybridization of carbon bonds from sp2 to sp3, leading to significant alteration of electronic properties of graphene. For example, graphene can be covalently functionalized with atomic hydrogen4,5 and the hydrogenation of graphene results in “graphane” which exhibits insulating behavior in contrast to semimetallic graphene.5 Additionally, fluorination has been observed to lead to a wide band gap6,7 and paramagnetism8 in graphene. Chemical doping offers a route to larger carrier concentrations in graphene than can be achieved by electrical gating.9 Understanding graphene’s chemical reactivity is a crucial step toward chemically engineering graphene’s electronic properties.

Pristine graphene is relatively inert chemically because of the absence of dangling bonds; in contrast, graphene nanoribbons10 and graphene with defects11 are reactive. Nonetheless, single-layer graphene (SLG) supported on SiO2 shows anomalously large reactivity compared to thicker graphene.12–14 One possible explanation for this enhanced reactivity is Fermi energy fluctuations in space, that is, “electron-hole puddles”,15,16 induced in graphene due to ionized impurities trapped on SiO2 which limit the carrier mobility of graphene.17–19 The electron–hole puddles locally increase the electron (hole) density responsible for electron transfer chemistry.13 The magnitude of the potential fluctuations and, hence, the charged impurity-assisted electron transfer decrease with increasing graphene thickness because of (1) higher density of states in multilayer graphene20 and (2) interlayer screening of charged impurities, where the screening length corresponds to the thickness of bilayer to few-layer graphene.13,21,22

Another plausible mechanism for the enhancement of the reactivity is topographic corrugations of graphene induced by coupling to the SiO2 surface.13,23 Due to van der Waals adhesion, graphene deforms significantly on SiO2,24,25 resulting in local curvature and strain. The curvature may lead to the rehybridization of sp2 to sp3 bonds26 and enhanced reactivity. The impact of the structural deformations on the reactivity is also expected to attenuate with increasing graphene thickness because graphene layers become significantly stiffer and flatter over SiO227,28 with curvature and strain.

ABSTRACT

Single-layer graphene (SLG) supported on SiO2 shows anomalously large chemical reactivity compared to thicker graphene, with charge inhomogeneity-induced potential fluctuations or topographic corrugations proposed as the cause. Here we systematically probe the oxidative reactivity of graphene supported on substrates with different surface roughnesses and charged impurity densities: hexagonal boron nitride (hBN), mica, thermally grown SiO2 on Si, and SiO2 nanoparticle thin films. SLG on low charge trap density hBN is not etched and shows little doping after oxygen treatment at temperatures up to 550 °C, in sharp contrast with oxidative etching under similar conditions of graphene on high charge trap density SiO2 and mica. Furthermore, bilayer graphene shows reduced reactivity compared to SLG regardless of its substrate-induced roughness. Together the observations indicate that graphene’s reactivity is predominantly controlled by charge inhomogeneity-induced potential fluctuations rather than surface roughness.

KEYWORDS: graphene · reactivity · oxidation · hexagonal boron nitride · mica · Raman spectroscopy

* Address correspondence to mfuhrer@umd.edu.

Received for review July 10, 2012 and accepted August 23, 2012.

Published online August 23, 2012 10.1021/nn303082a

© 2012 American Chemical Society
decreasing with thickness. Since SiO$_2$ induces both significant charge fluctuations15,16 and structural deformation24,25 in SLG, either could account for the enhancement of reactivity of SLG on SiO$_2$.13,29

Here, we report a systematic study of the oxidative reactivity of graphene supported on various substrates with different surface roughnesses and charged impurity densities: hexagonal boron nitride (hBN), mica, thermally grown SiO$_2$ on Si, and SiO$_2$ nanoparticle thin films. hBN has gained increasing interest as a “clean” substrate for graphene electronic devices. Graphene supported on hBN is atomically flat,30,31 has remarkably high carrier mobility,32 and shows significantly reduced charge inhomogeneity, presumably due to lower concentrations of substrate-trapped charge.30,31 Muscovite mica is expected to possess significant concentrations of K$^+$ ions on its surface,33 and SLG on mica exhibits comparable carrier mobility to that of SiO$_2$-supported SLG,34 implying similar concentrations of substrate-trapped charge. Furthermore, the cleavage of mica exposes a silicate face,33 chemically very similar to amorphous SiO$_2$. Thus, in common with SiO$_2$, graphene is supposedly nonreactive to the mica surface. However, graphene deposited on mica is exceedingly flat.35 SiO$_2$ nanoparticles on a SiO$_2$ substrate produce a graphene support with significantly higher roughness than, but similar chemical properties to, thermally grown SiO$_2$ on Si.

We find that SLG on hBN is remarkably inert in reaction with oxygen, unlike SiO$_2$-supported graphene and atomically flat graphene on mica. Graphene on mica is significantly hole-doped and etched by oxidation, and the reactivity decreases with graphene thickness. These results indicate that differences in substrate charged-impurity concentrations, not roughness, account for the differences in reactivity. Additionally, we find that bilayer graphene (BLG) on a SiO$_2$ nanoparticle thin film shows greater surface roughness yet significantly lower chemical reactivity than SLG on SiO$_2$, providing additional corroboration that roughness is not a major factor determining chemical reactivity.

RESULTS AND DISCUSSION

hBN flakes were exfoliated onto Si substrates with a 300 nm oxide layer from commercially available BN powder (Momentive, Polartherm grade PT 110).36 Muscovite mica was cleaved in a N$_2$ atmosphere to minimize the chance of a water layer on the mica surface.35,37 SiO$_2$ nanoparticle thin films were prepared by spin-coating SiO$_2$ nanoparticle dispersions (diameter 10–20 nm; Nissan Chemical America Corp., SNOWTEX-O) onto SiO$_2$ substrates. Graphene was mechanically exfoliated onto these substrates from Kish graphite (see Methods for details). The samples were then annealed in an Ar/O$_2$ flow at 400–^{176}C for 6 h to remove any adhesive residue and achieve equilibrium structures but not exposed to oxidative treatment. Figure 1f shows the height histograms of the images in Figure 1a–e; mica-supported graphene is the flattest, followed by graphene on hBN, SiO$_2$, and SiO$_2$ nanoparticles. Table 1 summarizes the root-mean-square (rms) roughness σ and the characteristic length l of

![Figure 1](image_url)
graphene surfaces (see Supporting Information for the formal definitions of σ and l). Since graphene on mica is exceedingly flat, we expect that the rms roughness and the characteristic length reflect the AFM height resolution limit and AFM noise, respectively, as previously noted. To quantitatively assess the deformations present in graphene, we roughly estimate curvature and strain by σ/l^2 and $(\sigma/l)^2$ as shown in Table 1. By relative comparison, we find much larger deformations in SLG and BLG on SiO$_2$ nanoparticles than SLG on SiO$_2$. We cannot exclude, however, that nanometer-scale substrate roughness produces sharp mechanical deformations (conical singularities) in graphene, which would be unresolved by our tapping-mode AFM. These localized deformations are expected to significantly perturb the local density of states of graphene near the apex and consequently may contribute to reactivity of graphene.

Figure 2a shows typical Raman spectra of graphene supported on SiO$_2$, hBN, and mica before (black solid line) and after (red solid line) oxidation at 500 °C for 2 h. Previous studies of graphene oxidation have reported hole-doping and disorder in reactions with oxygen. On SiO$_2$, we find that the Raman G band upshifts from \sim1582 to 1603 cm$^{-1}$, which roughly corresponds to a dopant concentration of $\sim 2 \times 10^{13}$ cm$^{-2}$. Additionally, the Raman D peak at \sim1350 cm$^{-1}$ is activated after oxidation because of formation of etch pits (see inset), as previously reported. On hBN the upshift of the G band energy is minor (from 1580 cm$^{-1}$ to 1585 cm$^{-1}$); furthermore, the Raman D peak is absent, indicating that doping in graphene is significantly suppressed and graphene is not etched, as can be seen in the middle inset (hBN shows the E$_{2g}$ Raman mode at \sim1360 cm$^{-1}$ but this nondispersive mode can be distinguished from the dispersive graphene D mode by using longer-wavelength excitation; see below and Supporting Information). The suppression of the reactivity of graphene was consistently observed on hBN for all samples at oxidative temperatures below 550 °C (we obtained no samples of hBN thickness less than 9 nm). Etching of graphene on hBN requires a higher oxidative temperature. At 600 °C, oxidative etching proceeds very rapidly at the edges or pits, and graphene is almost completely etched after 2 h oxidation. In contrast to hBN-supported SLG, SLG on mica is partly etched by oxidation as shown in the bottom inset (see also Supporting Information for height profiles of the AFM images), which is also evidenced by the Raman D peak.

| TABLE 1. The RMS Roughness σ, Characteristic Length l, Estimated Curvature σ/l^2, and Strain $(\sigma/l)^2$ of SLG on hBN, Mica, SiO$_2$, and SiO$_2$ Nanoparticles (NPs) and BLG on NPs |
SLG/hBN	SLG/mica	SLG/SiO$_2$	SLG/NPs	BLG/NPs	
σ (nm)	0.14 ± 0.04	0.05 ± 0.02	0.23 ± 0.01	1.29 ± 0.12	1.30 ± 0.11
l (nm)	24 ± 11	1.7 ± 0.6	13 ± 2	21 ± 5	22 ± 4
σ/l^2 ($\times 10^{-4}$ nm$^{-1}$)	2.4 ± 2.2	N/A	14 ± 5	30 ± 15	27 ± 10
$(\sigma/l)^2$ ($\times 10^{-5}$)	3.2 ± 3.5	N/A	31 ± 11	389 ± 208	352 ± 145
In Figure 2b, we plot the Raman G band energies of SiO\textsubscript{2}-, hBN-, and mica-supported SLG as functions of temperature. The relatively large G band energy of pristine SLG on mica results from hole doping by preexisting surface charges on the substrate.44 The G band energies of SLG on SiO\textsubscript{2} and on mica increase with increasing temperature, indicating doping due to reactivity to oxygen molecules, while hBN-supported graphene shows a nearly constant G band energy of ~1585 cm-1 at 350–550 °C, indicating little doping. We also examine the G band energy as a function of graphene thickness in Figure 2c. On SiO\textsubscript{2} and on mica, SLG shows the largest G-band shift (largest doping) and the G-band energies diminish with thickness, indicating larger reactivity of SLG compared to thicker graphenes, while the G-band shift for graphene on hBN does not depend on thickness. These observations suggest SLG on hBN is comparable to thick graphene in terms of oxidative doping.

In Figure 3 we further investigate the reactivity of graphene on hBN in terms of oxidative etching. As oxidation progresses, graphene on SiO\textsubscript{2} is significantly etched as evidenced by the appearance of a D-band in the Raman spectrum (see Figure 3g). After oxidation at 450 °C for 5 h, graphene strongly couples to SiO\textsubscript{2}, making it difficult to distinguish graphene and uncovered SiO\textsubscript{2} from an AFM height image (Figure 3a). We therefore use AFM phase imaging (Figure 3b) to distinguish SLG from etched regions. The phase image clearly shows variations, indicating that the scanned region is compositionally inhomogeneous. In Figure 3c, we show the phase histogram of the image shown in Figure 3b. The multipeak Gaussian fit of the histogram consists of two components: the smaller peak corresponds to graphene, while the larger peak corresponds to uncovered SiO\textsubscript{2} where SLG has been etched (see Supporting Information for a phase image at edges of pristine graphene on SiO\textsubscript{2}). Figure 3 panels d and e show AFM height and phase images of SLG on hBN shown in the inset of Figure 3g after oxidation at 450 °C for 5 h. In contrast to SiO\textsubscript{2}-supported graphene (Figure 3a,b), the phase image is homogeneous (see also phase histogram in Figure 3f), which indicates the absence of any etch pits in graphene and the significantly reduced reactivity of hBN-supported graphene.

Figure 3g shows the Raman spectra of SLG oxidized at 450 °C for 5 h at different positions between points A and B indicated in the inset. The spacing between neighboring points is 0.3 μm. Since the D band energy is dispersive with respect to the excitation energy of the laser and increases with the energy, we here used a laser wavelength of 633 nm to clearly distinguish the D peak of SLG and the peak derived from the hBN E\textsubscript{2g} mode. On SiO\textsubscript{2} at point A we see the graphene D peak, while on hBN at point B the graphene D peak is absent and the hBN E\textsubscript{2g} mode is present, suggesting the absence of defects in SLG on hBN. The region of coexistence of the D peak and the hBN E\textsubscript{2g} peak in the Raman spectra is of order 1 μm wide, comparable to the laser spot size, indicating that both SiO\textsubscript{2}- and hBN-supported graphene are illuminated in this region. We also observe a splitting of the graphene G band into two peaks G- (1583 cm-1) and G+ (1610 cm-1) in the same intermediate region, resulting from undoped graphene on hBN and highly doped graphene on SiO\textsubscript{2}, respectively. Splitting rather than shifting of the G peak again indicates an abrupt transition in doping from SiO\textsubscript{2}-supported to hBN-supported graphene.

The observed reduced reactivity of SLG on hBN relative to SiO\textsubscript{2} can be explained by either hBN’s flateness or its reduced charged inhomogeneity. To resolve this dilemma, we oxidize graphene on mica, which is atomically flat (as shown in Figure 1b) but...
presumably exhibits comparable charge inhomogeneity to SiO2-supported graphene.

As shown in Figure 2a, in contrast to hBN-supported SLG, SLG on mica is partly etched by oxidation. Thus, the flatness of graphene alone does not suppress its reactivity. We further examine the doping of graphene on mica before and after oxidation. It has been empirically demonstrated that the Raman 2D band energy increases with increasing concentration of hole carriers, showing a nearly linear relationship with the G band energy.42 Additionally, the relative intensity of the 2D band to the G band characteristically decreases with carrier concentration.42 Figure 4a displays the 2D band energy of SLG on SiO2, hBN, and mica as a function of the G band energy before and after oxidation at 500 °C for 2 h. Each data point corresponds to a different graphene sample. The significant decrease of I2D/I_G of graphene on mica and SiO2 after oxidation also strongly supports oxidative doping of these samples. In contrast, I2D/I_G for graphene on hBN shows no clear trend upon oxidation, and the higher values of I2D/I_G for graphene on hBN compared to mica or SiO2 are consistent with low oxidative reactivity.

The large reactivity of SLG on mica and its diminution with thickness as shown in Figure 2c indicates that flatness is not the reason for reduced reactivity of SLG on hBN, and we conclude that substrate charged impurities play a dominant role in controlling the reactivity of SLG on a substrate. Even though graphene is deposited onto freshly cleaved mica in a N2 atmosphere, water layers are often trapped on mica. The water layers act to block charge transfer between charged impurities on mica and graphene.44 The distinct morphology of mica-supported SLG after oxygen treatment in Figure 2a is presumably because the regions covering water layers on graphene are less reactive to oxygen molecules and not etched.

Finally, we probe the oxidative reactivity of graphene supported on an extremely corrugated substrate of a SiO2 nanoparticle thin film. Figure 5a shows typical Raman spectra of SLG and BLG on SiO2 nanoparticles as functions of oxygen treatment temperature. Each data point corresponds to a different graphene sample.
before and after oxidation at 500 °C for 2 h. After oxidation, the D peak of SLG is activated but is absent for BLG. In Figure 5b, we plot the intensity ratio of the D peak (I_D) to the G peak (I_G) of graphene on SiO_2 nanoparticles and, for comparison, on bare SiO_2 as a function of oxygen treatment temperature. On both thermally grown SiO_2 and SiO_2 nanoparticle thin films, the D peaks of SLG are activated above 400 °C. In contrast, the D peaks of BLG are not activated below 500 °C regardless of substrate. Thus, the increased reactivity of SLG relative to BLG on SiO_2 is not caused by increased corrugation on the few-nanometer length scale (see Table 1: BLG on SiO_2 nanoparticles is rougher than SLG on SiO_2 in terms of curvature and strain). We cannot completely rule out the possibility that sharp conical singularities\(^{38}\) undetected by AFM are playing a role in the reactivity; however, that scenario would not explain the similar reactivity of flat graphene on mica, which should not exhibit conical singularities. The results indicate that the differences in reactivity are due to the difference in electronic structure. The increased reactivity of SLG relative to BLG is consistent with charge disorder as the cause: SLG has significantly lower density of electronic states and therefore larger fluctuations in chemical potential for a given charged impurity concentration.\(^{20}\)

CONCLUSIONS

We have measured the oxidative reactivity of SLG supported on substrates with different surface roughnesses and charged impurities. SLG on flat hBN with low charged impurities shows reduced oxygen reactivity comparable to multilayer graphene, while SLG on flat mica shows reactivity similar to SLG on SiO_2, pinpointing charge disorder as the source of the increased reactivity of SLG. This is strongly supported by the observation that reactivity of graphene on SiO_2 depends on layer number (SLG vs BLG) but not on graphene roughness (SiO_2 nanoparticle substrates vs thermally grown SiO_2). Our observations may point to new strategies for using substrates to control the chemical functionalization and doping of graphene, and therefore graphene’s electronic properties.\(^{45}\)

METHODS

hBN flakes with a typical thickness of 9–45 nm were exfoliated onto Si substrates with an oxide layer of a thickness 300 nm from hBN powder (Momentive, PolarTherm grade PT110) using water-soluble tape (3M, water-soluble wave solder tape). Muscovite mica (Ted Pella, Inc. Highest grade V1Mica) was cleaved immediately before depositing graphene in a glovebag filled with N\(_2\) to minimize adsorption of water onto the mica surface. The SiO\(_2\) nanoparticle thin films were prepared by spin-coating the nanoparticle dispersions (Nissan Chemical America Corp., SNOWTEX-O) on SiO\(_2\), with a thickness of 300 nm. Before spin-coating, SiO\(_2\) substrates were sufficiently wetted by isopropyl alcohol (Sigma-Aldrich, 2-propanol anhydrous 99.5%). The SiO\(_2\) nanoparticle suspension was diluted with isopropyl alcohol to ~5 wt%. The spin-coating was performed at 4000 rpm for 30 s. Graphene was mechanically exfoliated from Kish graphite using water-soluble tape. The samples were then annealed in an Ar/O\(_2\) mixture at temperatures ranging from 350 to 600 °C for 2–5 h in a quartz furnace. The flow rates of Ar and O\(_2\) were 1.0 L/min and 0.7 L/min, respectively. Raman spectroscopy was carried out with a wavelength of excitation laser 532 nm. The laser spot size was ~1 μm. AFM measurements were performed in tapping mode in ambient using silicon cantilevers with a nominal tip radius of <10 nm (Nanoworld, NCH-20).

Conflict of Interest: The authors declare no competing financial interest.

Acknowledgment. This work was supported by the University of Maryland NSF-MRSEC under Grant No. DMR 05-20471, NSF under Grant No. DMR 08-04976, and the U.S. ONR MURI. Additional infrastructure support provided by the UMD NanoCenter and CNAM. We thank Memantine Performance Materials, Inc. for providing samples of boron nitride powder, and Nissan Chemical America Corporation for providing silica nanoparticles dispersions.

Supporting Information Available: Height profile analysis of AFM images, definitions of the rms roughness and the characteristic length of graphene surfaces, the dispersive behavior of the Raman D mode of graphene and the nondispersive behavior of E\(_{22}\) Raman mode of hBN, and AFM height, and phase images of pristine graphene on SiO\(_2\). This material is available free of charge via the Internet at http://pubs.acs.org.

REFERENCES AND NOTES
