Comment on "Capture-Zone Scaling in Island Nucleation: Universal Fluctuation Behavior"

The Letter [1] proposes a GWS form $g(\alpha) \propto \alpha^{\beta} e^{-b \alpha^{2}}$ for distribution of capture-zone (CZ) areas, A, for compact islands formed by homogeneous nucleation during surface deposition. Here, $\alpha=A / A_{\text {av }}$ where A_{av} is the mean CZ area. Significantly, [1] relates β to the critical size i for stable islands in 2 D via $\beta_{\mathrm{GWS}}=i+1$. However, our theoretical and simulation analyses indicate a more complex form for g and a different larger β versus i.

A fundamental theory for CZ areas can be based on the evolution equation for the joint probability $[2,3], N_{s, A}$, for islands of size s with capture zones of area A. A moment analysis summing over s [4] yields an exact evolution equation for the CZ area distribution, $N_{A}=\sum_{s} N_{s, A}$, of the form $d N_{A} / d t=\left(P_{A}^{+}-P_{A}+P_{A}^{*}\right) d N_{\text {isl }} / d t$. Here, $N_{\text {isl }}=\sum_{A} N_{A}$ is the island density, P_{A} is the probability that the (new) CZ of a just-nucleated island overlaps a preexisting CZ of area A, P_{A}^{+}that formation of a new CZ reduces to A the area of a larger preexisting CZ , and P_{A}^{*} that a new $C Z$ has area A. Also, $\sum_{A} P_{A}=\sum_{A} P_{A}^{+}=M \approx 4.6$ is the average number of existing CZ's overlapped by the new CZ [3], and $\sum_{A} P_{A}^{*}=1$. These P 's depend on the spatial aspects of island nucleation which occurs predominantly near CZ boundaries $[3,5]$.

We focus on the scaling regime of large $A_{\mathrm{av}}=1 / N_{\mathrm{isl}}$, where $N_{A} \approx\left(N_{\text {isl }} / A_{\mathrm{av}}\right) g\left(A / A_{\mathrm{av}}\right)$ with $\int g(\alpha) d \alpha=1$ [3]. We write $P_{A} \approx M\left(A_{\mathrm{av}}\right)^{-1} p\left(A / A_{\mathrm{av}}\right)$ and $P_{A}^{*} \approx$ $\left(A_{\mathrm{av}}\right)^{-1} p^{*}\left(A / A_{\mathrm{av}}\right) \quad$ with $\quad \int p(\alpha) d \alpha=\int p^{*}(\alpha) d \alpha=1$. Since one expects that $P_{A} \propto N_{A}$, we set $p(\alpha)=$ $g(\alpha) q(\alpha)$ where $q(\alpha) \sim \alpha^{n \approx 1.5}$ measures the intrinsic probability that a new CZ overlaps an existing CZ of scaled area α [3]. This yields the exact equation [4]

$$
\begin{aligned}
2 g(\alpha)+\alpha d g(\alpha) / d \alpha= & M\left\langle\left(1+\alpha^{\prime} / \alpha\right) g\left(\alpha+\alpha^{\prime}\right) q\left(\alpha+\alpha^{\prime}\right)\right\rangle^{\prime} \\
& -M g(\alpha) q(\alpha)+p^{*}(\alpha)
\end{aligned}
$$

Here, $\langle\cdots\rangle^{\prime}$ denotes an average over the fractional overlap $\mu=\alpha^{\prime} /\left(\alpha+\alpha^{\prime}\right)$ of a new CZ with an existing CZ of scaled area $\alpha+\alpha^{\prime}$ (thereby creating a CZ of area α), and $\mu_{\mathrm{av}}=0.10$ at 0.1 ML . The complex form of the g-equation precludes simple forms for $g(\alpha)$ (but see [6]), just as the exact equation for the island size distribution precludes popular simple forms for this quantity [3].

For small- α behavior, the key is that existing islands with small CZ's are not required to create small CZ's, contrasting [1]. A new small CZ may come from island nucleation along a line joining $m=2$ nearby islands or within a triangle of $m=3$ nearby islands (Fig. 1), none of which have a small CZ. The relative probability for two islands to have small separation \mathbf{r} scales like $\left(r / r_{\text {isl }}\right)^{i+1}$ where $r_{\text {isl }} \sim \sqrt{A_{\text {av }}}$ is the mean island separation, and for a small pair or triangle with any orientation scales like $P_{m} \sim$ $\left(r / r_{\text {isl }}\right)\left(r / r_{\text {isl }}\right)^{(m-1)(i+1)}$. The relative probability to nucleate in the target region is $P_{\text {nuc }} \sim\left(r / r_{\text {isl }}\right)^{2 i+4}$ (cf. [5]), and

FIG. 1 (color online). Simulation data for $g(\alpha)$ and $p^{*}(\alpha)$ for $i=1$ at 0.1 ML . Fits: $\beta=2, n=2(\mathrm{GWS})$ and $\beta=4, n=1.5$ (GG) [6]. Inset: smallest new CZ from $\sim 10^{5}$ cases.
$p^{*}(\alpha) \sim P_{m} P_{\text {nuc }}$. In this picture, p^{*} dominates the righthand side (RHS) of the g equation so $g(\alpha) \approx(2+$ $\beta)^{-1} p^{*}(\alpha)$ for small α, and $\beta_{m} \approx(m+1) \times$ $(i+1) / 2+3 / 2$, well above $\beta_{\mathrm{GWS}}=i+1$. The contribution from $m=2$ likely dominates, but this depends on coverage and island structure. Also, small CZ's can be created differently, e.g., if island C nucleates near a close pair $A B$ and subsequently island D nucleates to enclose C in a small $A B D$ triangle. This corresponds to the P_{A}^{+}term in $d N_{A} / d t$. Analysis [4] also indicates large β values for such mechanisms.

Extensive simulation data for $i=1\left(3 \times 10^{5} \mathrm{CZ}\right.$'s $)$ for compact islands at 0.1 ML supports the above type of relation between g and p^{*}. An excellent fit for small α (but also for the entire g) is $\beta \approx 4$ with $n=1.5$ [6] cf. $\beta_{\mathrm{GWS}}=2$. See Fig. 1. For $i=0\left(3 \times 10^{5} \mathrm{CZ}\right.$'s $)$ at 0.1 ML, we find $\beta \approx 3$ with $n=1.3 \mathrm{cf}$. $\beta_{\mathrm{GWS}}=1$.

Work supported by NSF Grant No. CHE-0809472 (Y. H., J. W. E.) and by NSF China Grant 10704088 (M. L.).

Maozhi Li, ${ }^{1}$ Yong Han, ${ }^{2}$ and J. W. Evans ${ }^{2}$
${ }^{1}$ Department of Physics,
Renmin University,
Beijing 100872, People's Republic of China
${ }^{2}$ IPRT and Department of Physics and Astronomy, Iowa State University,
Ames, Iowa 50011, USA
Received 8 January 2010; published 9 April 2010
DOI: 10.1103/PhysRevLett.104.149601
PACS numbers: 68.35.-p, 05.10.Gg, 68.55.A-, 81.15.Aa
[1] A. Pimpinelli and T.L. Einstein, Phys. Rev. Lett. 99, 226102 (2007).
[2] P. A. Mulheran et al., Europhys. Lett. 49, 617 (2000).
[3] J. W. Evans et al., Phys. Rev. B 66, 235410 (2002).
[4] M. Li, Y. Han, and J. W. Evans (to be published).
[5] M. Li et al., Phys. Rev. B 68, 121401 (2003).
[6] Integration for large α gives $g \sim e^{-M \int q(\alpha) / \alpha d \alpha} \sim e^{-b \alpha^{n}}$, suggesting a generalized gamma (GG) fit $g \sim \alpha^{\beta} e^{-b \alpha^{n}}$.

Pimpinelli and Einstein Reply: In [1], we proposed analyzing the capture-zone (CZ) distribution of islands in submonolayer epitaxial growth by fitting with the generalized Wigner surmise (GWS) [2]: $P_{\beta}(s)=$ $a_{\beta} s^{\beta} \exp \left(-b_{\beta} s^{2}\right) ; s$ is the CZ area A over its mean $\langle A\rangle$, and β is the sole adjustable parameter. Our mean-field (MF) argument for $P_{\beta}(s)$ also suggested that β was the size of the smallest stable nucleus of an island, $i+1$ (i.e., i is the critical nucleus), in dimensions $d \geq 2$, and $2(i+1)$ in $1 d . P_{\beta}(s)$ fits experimental data at least as well as the alternatives. Furthermore, much (but not all) Monte Carlo data supported the deduced value of β in terms of i for $1 d$ and $2 d$. However, more thorough analysis and numerical testing was clearly warranted.

Recently, Amar's [3] and Evans's groups [4] [SSA and LHE, respectively] have taken up this challenge and produced extensive numerical data, SSA for two models of point islands in $d=1,2,3,4$ [5], and LHE for compact islands in $2 d$, the case more appropriate for comparison with experiment. Space limits our focus here to $2 d$. Both groups' results differ notably from our MF description, arguably reminiscent of using mean field for critical phenomena. Specifically, with $i=1$ and fractional coverage $\theta=0.1$, SSA found for both point-island models that β was closer to 3 than our MF-predicted $\beta=2$. Up to $\theta \geq$ $0.4, \beta$ did not change with θ, but β decreased modestly as D / F, the ratio of the rates for atom hopping and for deposition, ramped up over $10^{5}-10^{10}$, reaching $\beta \approx 2.8$ as $D / F \rightarrow \infty$ [6].

For compact islands with $i=1$, LHE's data is likewise better described by $\beta \approx 3$ than $2-\mathrm{cf}$. Fig. 1. Also, the variance is that of a GWS with $\beta=2.97$. LHE's data for $i=0$ is even closer to $\beta=2$, and the variance yields $\beta=$ 1.90. Both SSA and LHE find $\beta \approx i+2$ accounts for the data better than $i+1$. However, the distribution is more skewed than $P_{\beta}(s)$. LHE find the optimal fit occurs with a distribution between GWS and the oft-used gamma distribution $G_{\alpha}(s)$ [7]. The log-log plot in their Fig. 1 suppresses this exponential factor for small s; their plot supports $\beta \approx$ 4. We advocate emphasizing data near the peak, where the count rate is highest and the fractional error is smallest. This procedure is especially warranted when dealing with

FIG. 1 (color online). Plots of LHE's numerical data [red dots] for the CZD [" $g(\alpha)$ "] for $i=1$ (their Fig. 1) and $P_{n}(s), n=2$ [dotted, blue line], 3 [solid, green line], and 4 [dash-dotted, blue line], along with $G_{7}(s) \propto s^{6} e^{-7 s}$ [dashed, purple line].
experimental data, in which the number of CZs is $2-3$ orders of magnitude smaller than in these simulations. Figure 1 shows that $\beta=3$ describes the overall data better than $\beta=4$, especially regarding width and peak height [6]. Fits with $P_{3}(s)$ and $G_{7}(s)$ are comparable [as are fits of LHE's unpublished data for $i=0$ by $P_{2}(s)$ and $G_{5}(s)$].

In [1], we assumed that the nucleation probability $\propto n^{i+1}$, where n is the adatom density. We then wrote $n \propto$ $\bar{n} A /\langle A\rangle \equiv \bar{n} s$. Thus, the nucleation rate NR $\propto \bar{n}^{i+1} s^{i+1}$. But NR is also $\propto \bar{n}^{i+1} P(s)$. Thus, $P(s) \propto s^{i+1}$. SSA's and LHE's simulations imply that this argument is insufficient. We go beyond MF for small adatom coverage, thereby showing that larger exponents of s can arise.

In $2 d$, the adatom density $n(r) \propto R^{2}-r^{2}$, with $R_{i}<r<$ R, where R and R_{i} are the radii of the CZ and island, respectively. Then, we find the total NR by integrating between these two radii, but $R_{i} \rightarrow 0$ for point islands, as well as for compact islands at small coverage; hence,

$$
\int_{R_{i} \rightarrow 0}^{R} d r r[n(r)]^{i+1} \propto R^{2 i+4} \propto A^{i+2} \Rightarrow P(s) \propto s^{i+2}
$$

consistent with $\beta \approx 3$ (2) for $i=1$ (0) in $2 d$ [8].
The main points are that $P_{\beta}(s)$ accounts well for CZD, with physical information in β. The addend to i turns out to be larger than the MF prediction of 1 , closer to 2 , in this fascinating problem. In many experimental instances, the question is whether β changes, e.g., when impurities are added to the system [9].

Work at UMD supported by the NSF-MRSEC, Grant No. DMR 05-20471. We thank J. W.Evans for sharing LHE's data, and him and J. G. Amar for fruitful discussions.

Alberto Pimpinelli ${ }^{1,2, *}$ and T. L. Einstein ${ }^{2, \dagger}$
${ }^{1}$ French Embassy, Consulate General of France,
Houston, Texas 77056, USA*
${ }^{2}$ Department of Physics, University of Maryland,
College Park, Maryland 20742-4111, USA
Received 18 February 2010; published 9 April 2010
DOI: 10.1103/PhysRevLett.104.149602
PACS numbers: 68.35.-p, 05.10.Gg, 05.40.-a, 81.15.Aa
*On leave from: LASMEA, U. Clermont 2, Aubière, France; alpimpin@univ-bpclermont.fr
†einstein@umd.edu
[1] A. Pimpinelli and T.L. Einstein, Phys. Rev. Lett. 99, 226102 (2007).
[2] T. L. Einstein, Appl. Phys. A 87, 375 (2007).
[3] F. Shi, Y. Shim, and J. G. Amar, Phys. Rev. E 79, 011602 (2009).
[4] M. Li, Y. Han, and J. W. Evans, preceding Comment, Phys. Rev. Lett. 104, 149601 (2010).
[5] SSA found β was similar in $2 d$ and $3 d$, but for $d=4$, $3<\beta<4$, i.e., β inexplicably larger than for $2 d$ and $3 d$.
[6] SSA focus on the peak height $P_{\beta}\left(\left\{\beta /\left[2 b_{\beta}\right]\right\}^{1 / 2}\right)$.
[7] M. Fanfoni et al., Phys. Rev. B 75, 245312 (2007).
[8] This argument works for $d \geq 2$; cf. [5].
[9] B. R. Conrad et al., Phys. Rev. B 77, 205328 (2008).

