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Abstract
In our recently constructed Fokker–Planck formalism for describing the equilibration of the
terrace-width distribution of a vicinal surface from an arbitrary initial configuration, the
meaning of the relaxation time, related to the strength of the random noise in the underlying
Langevin equation, was rather unclear. Using kinetic Monte Carlo simulations we show that the
time constant exhibits activated behavior with a barrier that has a physically plausible
dependence on the energies of the governing atomistic model. Thus, the Fokker–Planck time
has some physical meaning.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Good understanding of equilibrium properties of vicinal
surfaces—especially the form of the terrace-width distribution
(TWD)—has been achieved [1]. Accordingly, attention is
now focusing on non-equilibrium aspects, which have long
been of interest. Some of us previously [2] derived the
following Fokker–Planck (FP) equation (equation (1)) to
describe the distribution of spacings between steps on a vicinal
surface during relaxation to equilibrium. The goal was to
describe how this spacing distribution relaxed rather than
the evolution of the positions of individual steps as in a
previous investigation [3–6]. Starting with the Dyson Coulomb
gas/Brownian motion model [7, 8], we made the mean-field-
like assumption, when computing interactions, that all but
adjacent steps are separated by the appropriate integer multiple
of the mean spacing; and set the width of the confining
(parabolic) potential in the model to produce a self-consistent
solution. We found the following:
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where s is the distance w between adjacent steps divided
by its average spacing 〈w〉, determined by the slope of the
vicinal surface. The steady-state solution of equation (1) is the

generalized Wigner surmise, thus

P(s) = aρsρ exp(−bρs2) (2)

where the constants aρ and bρ assure unit mean and
normalization, respectively:
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The dimensionless variable ρ gauges the strength A of the
A/w2 energetic repulsion between steps: (ρ − 1)2 = 1 +
4Aβ̃/(kBT )2, where β̃ is the step stiffness. The dimensionless
FP time t̃ can be written as t/τ ; here the relaxation time τ is
〈w〉2/�, where

√
� is the strength of the white noise in the

Langevin equation (for the step position) underlying the FP
equation [2].

To make contact with data, both experimental and
simulational, one typically investigates the variance σ 2 of this
distribution. If the initial configuration of the vicinal surface is
‘perfect’ (i.e. has uniformly spaced straight steps), the standard
deviation can be described exactly3 or well approximated by

3 For equation (3) to be exact, the first moment of Pρ(s) must be precisely
one, 2 as for Dyson’s Coulomb gas [7].

0953-8984/08/355001+04$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/20/35/355001
mailto:hammouda@umd.edu
http://stacks.iop.org/JPhysCM/20/355001


J. Phys.: Condens. Matter 20 (2008) 355001 A B H Hamouda et al

the expression [2]:

σ(t) = σsat

√
1 − e−t/τ (3)

where the variance σ 2
sat for an infinite system at long time

(saturation) takes the equilibrium value [(ρ+1)/2bρ]−1. Time
in this formulation is not the natural fermionic time associated
with the direction along the steps (ŷ in ‘Maryland notation’),
the mapping between two spatial dimensions and a spatial and
a time-like dimension. Instead it measures the evolution of
the system toward equilibrium and the thermal fluctuations
underlying dynamics. Since the time constant τ enters rather
obliquely through the noise force of the Langevin equation, a
key investigational objective in the previous letter [2] and in
this paper is whether τ corresponds to a physically significant
rate. Monte Carlo simulations allow the examination of a well-
controlled numerical experiment. In the former we used our
well-tested Metropolis algorithm [9] to study a terrace-step-
kink (TSK) model of the surface. We found a satisfactory
fit to the form of equation (3), from which we obtained τ =
714 MCS (Monte Carlo steps per site) for ρ = 2 (or A = 0,
only entropic repulsions) while τ ≈ 222 MCS for τ = 4.47.
This result is in qualitative agreement with the understanding
that � should increase (and, so, τ should decrease) with
increasing ρ, as discussed in [2].

Here we confront more systematically and thoroughly
the above-noted crucial issue, showing that the time constant
associated with the FP transcription can be related to the
atomistic processes underlying the relaxation to equilibrium
and that the FP time tracks the literal physical time of the
relaxing system. We report more extensive simulations, using
kinetic Monte Carlo (kMC) [10] rather than the Metropolis
algorithm, for a solid-on-solid (SOS) rather than a TSK model,
so that we have real mass transport. We find that the time
constant, extracted from the numerical data by fitting to the
time correlation function in the form predicted by the FP
analysis, has an activated form that can be related to an
atomistic rate-limiting process in the simulations.

2. Computational details

In our SOS model, which has been described elsewhere [12],
we use barriers determined by standard bond-counting: the
barrier energy Eb is a diffusion barrier Ed plus a bond energy
Ea times the number of lateral nearest neighbors in the initial
state.

This number is 1 for an edge atom leaving a straight
segment of step edge for the terrace, 3 for a detaching atom
that originally was part of this edge (leaving a notch or kink–
antikink pair in the step), or 2 for a kink atom detaching, either
to the step edge or the terrace. Sublimation is forbidden, as are
vacancies. No Ehrlich–Schwoebel barrier hinders atoms from
crossing steps. In all simulations reported here, the number
of lattice sites in the ŷ direction L y = 104, with periodic
boundary conditions; 5 steps in the x̂ direction are created
by screw-periodic boundary conditions. We chose values
0.9 eV � Ed � 1.1 eV and 0.3 eV � Ea � 0.4 eV, using
temperatures 520 K � T � 580 K. At these temperatures we

Figure 1. Five examples of fits (solid lines) using equation (3), used
to extract τ . Note that the data (symbols) are well fit in all cases. The
mean step spacing L is in lattice constants, and Ed and Ea are the
energy barriers for diffusion and for breaking a bond, respectively.
Time t is in seconds (see text). For all plots, L = 6, T = 580 K,
Ed = 1.0 eV, 0.3 � Ea � 0.4 eV.

expect no significant finite-size effects in the ŷ direction for
the values of the mean terrace width L (in lattice spacings) that
we use: 4 � L � 15. We saved essentially every hundredth
update; that interval corresponds to our unit of time, which
is about 1 s for the selected temperature and energies4. This
update interval is long enough so that the sum of the kMC
update times varies insignificantly (±0.01%) but short enough
to capture the behavior during the steep initial rise.

3. Results and discussion

As illustrated in figure 1, we extract a time constant (or inverse
rate) τ from numerical data fitting the dimensionless width
using equation (3). The fit is notably better than that found in
the Metropolis/TSK study in [2]. This rate is expected to have
an Arrhenius form, so that τ ∝ exp(Eb/kBT ). We investigate
Eb closely in the two traces of figure 2. We show typical runs
at T = 580 K, corresponding to kBT ≈ 1/20 eV. First, we
ramped Ed, holding Ea fixed at 0.35 eV (open squares). In
the semilog plot we find a reduced slope (slope times kBT )
corresponding to 0.99 ± 0.02, indicating that in the effective
barrier, the multiplier of Ed goes like unity, as expected. In a
second set of runs, we ramped Ea , holding Ed fixed at 1.0 eV
(open circles). The observed reduced slope is 2.95 ± 0.10,
indicating that the effective energy barrier Eb is Ed + 3Ea .
To confirm this idea, we ramped the temperature from 520 to
580 K, fixing Ea = 0.3 eV and Ed = 1.0 eV. We find that
the fitted activation energy is 1.067 ± 0.01 times Ed + 3Ea .
Evidently the rate-determining process is the removal of a 3-
bonded atom from a straight step, creating a pair of kinks (i.e.,
a kink and an antikink [13]) rather than the presumably more

4 The mean of the Poisson-distributed update intervals [11] was about 0.01 s.
We saved when the counter reached 100 times this mean. The mean overshoot
was also about 0.01 s.
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Figure 2. Semilog plots of the relaxation time τ (in seconds) versus
the diffusion barrier Ed (squares) or the bond energy Ea (circles,
red), with the other held fixed, both in eV. The numbers indicate the
reduced slopes (the slopes divided by kBT = 0.05 eV). Note that the
slope of Ea—ramped relaxation times is about thrice that of the
Ed—ramped times.

frequent process, with energy Ed + 2Ea, in which an atom
leaves a kink position of a step [13, 14].

As a consistency check we compare the intercepts of the
linear fits in the two semilog plots, i.e., the prefactors of the
exponential term in which the appropriate energy is ramped. In
addition to the activation components there is the leading factor
τ0 ≡ 〈w〉2/4ν0, where we fix ν0 = 1013 Hz. Since 〈w〉 = 6
in our simulations, τ0 is 9 × 10−13 s. In the ramp of Ed, the
prefactor is τ0 exp(3Ea/kBT ), predicted to be 1.19 × 10−3 s.
The value we find from the simulations is (1.2 ± 0.1)×10−3 s,
in excellent agreement. Similarly in the ramp of Ea, the
prefactor τ0 exp(Ed/kBT ) is predicted to be 4.366 × 10−4 s
and measured from the fit as (4.36 ± 0.15) × 10−4 s.

We also varied the system size in the x̂ direction, holding
the number of steps fixed, and thereby ramping 〈w〉. From the
random-walk analogy, the prediction is that τ ∝ 〈w〉2. We
find tolerable agreement, with a slope 18% below the expected
value.

An independent argument corroborates that the kink
creation rate has an activation energy of Ed + 3Ea: since at
equilibrium the creation and the annihilation rates are equal,
we compute the latter. Annihilation of kinks requires that an
adatom diffuses to a notch in the step edge—a kink–antikink
pair, whose density is nk−ak ≈ exp(−2Ek/kBT ). Here, Ek

is the formation energy of a kink, equal to Ea/2. Since the
equilibrium adatom density is ceq = exp(−2Ea/kBT ), the
annihilation rate of kinks at a step edge is proportional to
Dceqnk−ak ∼ exp[−(Ed +2Ea +2Ea/2)/kBT ] (cf [15]). This
in turn implies that the activation energy for the kink creation
rate is Ed + 3Ea.

It is remarkable that the key energy in the relaxation time
is that for detaching 3-bonded atoms rather than kink atoms:
neither equilibrium nor growth processes involve 3-bonded
atoms. At equilibrium, step fluctuations are controlled by the
so-called step mobility, which is proportional to the emission
rate of adatoms from kinks [16]. The latter process only

Figure 3. Checks of dependencies on initial conditions and update
moves. Standard deviation σ of the TWD versus time for five steps
starting from three initial configurations: straight steps (solid, black),
‘decimated’ edge (dash–dotted, red), and crenelated (dotted, blue)
edge. For equilibrated non-interacting (free-fermion-like, ρ = 2)
steps, σ ≈ 0.42. L = 6, T = 580 K, Ed = 1 eV, and Ea = 0.4 eV.
Inset: surface azimuthally misoriented by 0.0005 rad, forcing 5 kinks
along the 104-site steps. The three filled (red) circles represent runs
with an initial ‘perfect’ configuration of 5 straight 2000-site
segments; the reduced slope, indicated by the solid line, is 3.0 ± 0.3,
in excellent agreement with the steeper line in figure 2, indicated
here with a dashed line, having reduced slope of 2.9 ± 0.1. Thus,
processes in which 3 bonds are broken govern the scaling of the
relaxation time τ (given in seconds as in figure 1). The open circles
are from runs with 3-bonded atoms immobile; the corresponding
reduced slope is 2.0 ± 0.1, so that now 2-bonded atoms control the
(much larger) τ .

involves 2-bonded atoms. Thus, one would expect that the
relaxation towards equilibrium is also controlled by the step
mobility. However, our results clearly show that this is not the
case.

One explanation for the present finding is that kinks have
to be formed first, requiring the extraction of atoms from
straight ledges. In that case, our initial configuration, in which
steps are perfectly parallel and straight may be introducing
a bias in the results. To investigate this possibility, we
considered two other initial states with equal numbers of kinks
and antikinks, i.e. in which one produces kinks by adding
atoms to (or removing atoms from) a straight edge5. In one
case every tenth atom along a straight step is removed; in
the other case every other atom is removed to create a ‘fully
kinked’ step, so that the edge resembles dentil molding or
castle crenelations. In figure 3 we plot the resulting evolution
of the standard deviation σ of the TWD for the three cases.
During the early-time rapid spreading of the initial sharp TWD,
the slope increases with the number of initial kinks, but after
about 4×104 MCS the curves are essentially indistinguishable
within the noise level, so fits of the displayed curves with
equation (3) give comparable values of τ .

5 For initial states with small polar misorientations and so with small densities
of kinks with one orientation, equilibration of the step shape still involves
creation of new kinks, and this in turn implies detachment of 3-bonded atoms,
since detachment of an atom from a kink does not change the number of
kinks. For larger misorientations and kink densities, more subtle effects—with
profound implications—come into play. We defer discussion to a separate
paper [17].
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To check that kink creation is indeed the rate-limiting
process, we computed the relaxation rate of a surface with
steps azimuthally misoriented so as to create kinks via screw
boundary conditions in the ŷ direction. Specifically, in the
initial state the in-plane misorientation slope was set at 0.0005,
so that geometry forces the existence of 5 kinks for L y =
10 000. Keeping the diffusion barrier fixed at 1 eV, we varied
Ea. The results are shown in the inset of figure 3 as filled
circles. We computed just three points, but clearly, essentially
no difference is found with respect to the relaxation rate of
straight [100] steps (the red steeper line in figure 2). The latter
is drawn as a dashed line in the inset. The fitted slope to the
data (times kBT ) is 3.0 ± 0.3, fully consistent with 3-bonded
ledge atoms being responsible for the rate-limiting process.
We also checked that the relaxation rate is enormously slowed
if 3-bonded atoms are kept immobile: fitting the distribution
width with equation (3), we ramped Ea while holding fixed
Ed = 1 eV. The extracted relaxation times are shown in
the inset of figure 3 as open circles. The reduced slope is
2.0 ± 0.1, consistent with 2-bonded kink atoms providing the
rate-limiting process for the step motion in this case. The
characteristic time is at least an order of magnitude larger
than the previous case, which can be interpreted as due to the
inability to create new kink sites, so that the number of sources
for 2-bond escape of atoms to the straight segments of the step
is limited to the initial 5 kinks. Furthermore, the eventual width
of the distribution, σsat, is only about half the size of the 3-bond
case. Thus, at least over the course of our long runs, the surface
is never able to equilibrate.

4. Conclusion

The equilibration of a (100) step and the fluctuations of the
same step at equilibrium are apparently qualitatively different
phenomena. The latter can take place with a constant number
of kinks, while the former requires creation of new kinks.
Thus, this system is a remarkable example of a situation
in which the assumptions of the fluctuation-dissipation
theorem [18] are not satisfied, rendering it inapplicable; the
arbitrary initial configurations are far from equilibrium. In
other words, fluctuations from the equilibrium distribution,
having the form of equation (2), will not lead to arbitrary initial
configurations such as a perfect cleaved crystal with straight,
uniformly spaced steps.

In summary, we have shown that the relaxation time of
Fokker–Planck formalism is related to microscopic processes,
confirming that this approach provides useful physical insight
into the evolution of complex surface structures toward
equilibrium. Furthermore, the FP time tracks actual time in
the evolving physical system.
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