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In studies of island nucleation and growth, the distribution of capture zones, essentially proximity
cells, can give more insight than island-size distributions. In contrast to the complicated expressions,
ad hoc or derived from rate equations, usually used, we find the capture-zone distribution can be
described by a simple expression generalizing the Wigner surmise from random matrix theory that
accounts for the distribution of spacings in a host of fluctuation phenomena. Furthermore, its
single adjustable parameter can be simply related to the critical nucleus of growth models and
the substrate dimensionality. We compare with extensive published kinetic Monte Carlo data and
limited experimental data. A phenomenological theory sheds light on the result.

PACS numbers: 68.35.-p,81.15.Aa,05.40.-a,05.10.Gg

In the active field of statistical mechanics applied to
materials, an important unsettled problem in morpho-
logical evolution during epitaxial thin film growth [1] is
the characterization of the statistical properties of nucle-
ating islands. In particular, for over a decade the univer-
sal scaling shape of the island-size distribution (ISD) has
been investigated numerically with kinetic Monte Carlo
(kMC) simulations, but analytical evaluation has proved
elusive. Only rate equations [2, 3, 4] or complicated (of-
ten implicit) expressions [5, 6] have been proposed. The
ISD is an important tool for experimentalists, since sim-
ulations have shown it to be a unique function of the
size i of the critical nucleus (see below), a quantity that
describes the largest unstable cluster.

A decade ago Blackman and Mulheran [5, 7] proposed
subordinating the ISD to the distribution of areas of
Voronoi polygons (proximity cells) built around the nu-
cleation centers. Once an island is nucleated, it efficiently
captures most of the adatoms diffusing within the cap-
ture zone (CZ), a region roughly coinciding with the is-
land’s Voronoi polygon. This breakthrough, which in-
vites analogies to distributions of quantum dots [8] and
to foams [9], led to several part-numerical, part-analytic
investigations [1, 2, 3, 4, 5, 6] that allowed prediction
of the ISD for point islands with good accuracy, at the
price of performing extensive kMC simulations or of solv-
ing a system of several coupled, non-linear rate equations,
which is computationally as taxing as kMC. For this rea-
son, an empirical functional form, proposed in Ref. [2],
which fits kMC results well, is still widely used to analyze
data.

In this Letter, we propose a different approach. We
show that the generalized Wigner surmise (GWS) dis-
tribution, a class of probability distribution functions
rooted in random matrix theory (RMT) [10, 11], yields
an excellent quantitative description of the CZ size dis-
tributions for all values of the critical nucleus size i in
published simulations. Thus, this relatively mature sub-

ject is vitalized and broadened by linkage to universal
aspects of fluctuations. RMT experts will find remark-
able that the signature exponent has atomistic meaning
in these non-equilibrium systems. A phenomenological
argument suggests the physical origins of the GWS here.

RMT [10, 11] has been successfully applied as a phe-
nomenological description of statistical fluctuations in
a large variety of physical systems, such as highly ex-
cited energy levels of atomic nuclei, quantum chaos [12],
cross-correlations in financial data [13], stepped crystal
surfaces[14], and even times between buses in Cuernavaca
[15] and distances between parked cars [16]! The last ex-
ample is analogous to our study in that the RMT-derived
formula accounts for the data notably better than the
culmination of years of problem-specific theories.

RMT applies only to matrices with special symme-
tries, which constrains the applications to physical sys-
tems that somehow reflect these symmetry properties.

0 0.5 1 1.5 2 2.5 3
s

0

0.2

0.4

0.6

0.8

1

1.2

P
(s

)

FIG. 1: [Color online] Plots of the GWS of Eq. (1) Pn(s),
n=1,2,3,4, of relevance in this paper, indicated by long dashes
alternating with n short dashes; also P3/2(s), indicated by
long dash, short dash, dot. The thin solid [blue] curve shows
the Gamma distribution Π7(s), discussed later.
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FIG. 2: a) Schematic for 1D (vertical). Black rectangles cor-
respond to 1D islands. Horizontal lines mark the midpoints
between the edges of two neighboring islands, with the capture
zones (CZ) defined as the resulting proximity cells. An alter-
native definition, implicit in the point-island approximation,
uses the midpoint between the centers of islands, indicated
by dashed lines and leading to Voronoi “cells”. For islands
[nearly] the same size, the two [nearly] coincide. b) 2D il-
lustration of the islands (approximated as circular) and the
Voronoi polygons that bound their CZ, from Ref. [7].

The Wigner surmise Pβ(s)

Pβ(s) = aβsβ exp(−bβs2) (1)

(cf. Fig. 1) provides a simple, excellent approximation for
the distribution of spacings for such cases [10, 11]. Here
s is the fluctuating variable divided by its mean, β is the
sole WS parameter [17], and aβ and bβ are fixed by the
normalization and the unit-mean conditions [18].

Standard RMT [10, 11, 12] fixes attention on the values
1, 2 and 4 of β, corresponding to orthogonal, unitary, and
symplectic matrices, respectively. The GWS posits that
Eq. (1) has physical relevance for general non-negative β
[19]. We show here that the CZ distribution is excellently

described by the GWS with (2/d)(i+1), where d=1,2 is the
spatial dimension (see Fig. 2). The GWS also describes
the distribution of terrace widths on stepped surfaces [14,
19], where the step-repulsion strength determines β.

The explicit dependence of β on dimension is a novel
feature of this study. Most other applications of RMT
are either essentially one-dimensional or insensitive to
d. While P1(s) describes well the nearest-neighbor spac-
ings between randomly-distributed points on a plane [12],
GWS fits of Voronoi tessellations of such points are not
particularly good [20, 21]. For island nucleation, subtle
correlations between nucleation centers lead to a distri-
bution of tesselation cells (Fig. 2) described by the GWS.

Island nucleation is pictured as atoms deposited on a
substrate (at rate F ) and then diffusing on the surface
at diffusion rate D (most properties depending only on
D/F [1]). When adatoms meet, they form bonds, whose
lifetime depends on temperature T . At low enough T ,

FIG. 3: [Color online] CZ size distributions for critical nucleus
size i=1 and d=1. Symbols are from Fig. 12 of Ref. [5], for
various pairs of values of (D/F in units of 105, coverage in
monolayers): ⊡ (5, 0.11), ⊙ (5, 1.19), △ (5, 12.65), × (50,
0.11), + (50, 1.19). The thin curve is the theory prediction of
Ref. [5]. The thick [red] curve is the simpler P4(s). The inset
shows similar results for distribution of gaps between point
islands from Fig. 11 of Ref. [5], with the added thick [red]
curve giving P3/2(s); its self-convolution is about P4(s), the
ISD, as discussed near the end.

bonding is virtually irreversible, so that an adatom pair
is a stable—and immobile—island, which grows only by
capturing other adatoms. A single adatom is then called
a critical nucleus; equivalently, the critical nucleus size is
i = 1 at low T . At higher T a single bond will be broken
before other adatoms can be captured, and the critical
nucleus will be a larger cluster, whose size will depend
on the surface lattice symmetry, generally i = 2 or 3 on
a (111) or (100) surface, respectively [2, 22].

We first test our approach on data computed by Black-
man and Mulheran [5] with kMC simulations of the nu-
cleation of point islands along a one-dimensional (1D)
substrate (cf. Fig. 2a). Since i=1 there, we predict that
the CZ size distribution is a GWS function with β=4.
Fig. 3 shows the results of their simulations, along with
fits with the Wigner surmise. Clearly P4(s) yields an ex-
cellent fit to the numerical results, better than the thin
solid line, the result [5] of a statistical numerical calcu-
lation replacing the solution of a complicated integro-
differential equation. Thus, our expression is both more
accurate and simpler than their theoretical result.

Two-dimensional (2D) deposition, diffusion, and ag-
gregation models have been extensively treated by many
authors. Mulheran and Blackman [7] report kMC sim-
ulations of growth of fractal islands (i = 1) and circular
islands (i=1 to 3). For the circular islands we find very
good agreement between the data and the GWS using
β = (2/2)(i+1) [23], with the trend for increasing i well
reproduced. Even better agreement is found between the
GWS Pi+1(s) and Mulheran and Robbie’s [6] more re-
cent kMC simulations of nucleation and growth of circu-
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FIG. 4: [Color online] (a) Symbols are numerical data from
Fig. 2b of Ref. [6], giving the CZ size distribution for nucle-
ation of islands with i = 0 in 2D. The thick (blue) curve is
P1(s). (b) Same as panel (a), but symbols for i = 1 from
Fig. 2d of Ref. [6], and the thick curve is P2(s). In both
panels the thin curve is the theory of Ref. [6].

lar islands for i = 0 and 1, as shown in Fig. 4a and 4b,
again superior to their numerical-analytical theory [6].
Popescu et al. [24] also report extensive kMC simulation
data of irreversible nucleation (i = 1) of point, compact,
and fractal islands, but do not compute CZ size distri-
butions. Their rate-equation approach was designed to
describe island sizes and capture numbers, so should not,
and does not [23], describe the CZ distribution well.

To understand why the CZ distribution is well de-
scribed by Pβ(s) with β = (2/d)(i+1), we offer a phe-
nomenological model. We draw on our recent demonstra-
tion [25] that the GWS appears in the context of RMT
as the mean-field solution of Dyson’s Brownian motion
model [11, 12], based on a Coulomb gas of logarithmically
interacting particles [26] in a 1D quadratic potential well.
We argue that the CZ size distribution can be extracted
from a Langevin equation for a fluctuating CZ size in a
confining potential well created by two competing effects:
1) The effective confining potential well should increase
for small-size CZ: nucleation of a new, small island causes
a CZ of finite (and not greatly different from the mean)
size to appear (cf. Fig. 19 of [27]), so that a large force
must prevent fluctuations of the CZ size towards vanish-
ing small values 2) The neighboring CZ’s also prevent
the one under scrutiny from growing, exerting a sort of
external pressure, which may be assumed to come from
a quadratic potential. A noise term represents atoms in
a CZ attaching to other than the proximate island.

To compute the repulsion, we analyze quantitatively
the nucleation of new islands, following Ref. [28]. If N

is the stable island density, n the adatom density, D the
adatom diffusion constant, σ the capture coefficient of an
island, and Ni the density of critical nuclei (islands with
i atoms), the nucleation rate Ṅ in 2D is [28]

Ṅ = σnNi ≈ Dni+1. (2)

In the rightmost expression we have used σ ≈ D [28] and
the Walton relation Ni ≈ ni [29]. In 2D, n satisfies

ṅ = F − σnN ≈ 0 ⇒ n ≈ F/(σN) ≈ Fℓ2/D (3)

where 1/N ≈ ℓ2 = Dτ is the squared diffusion length
of adatoms before capture by an island in lifetime τ . In
1D, Eq. (2) still holds, but accounting for the properties
of a random walk in 1D makes the capture coefficient σ
dependent on ℓ. Indeed, from [28, 30] we have

Ṅ = σ1DnNi =
n

τ
Ni(Dτ)1/2

≈
D

ℓ
nNi ≈

D

ℓ
ni+1, (4)

whence σ1D = D/ℓ. Since n ∝ ℓ2, regardless of d, and
1/N ≈ ℓ in 1D, Eqs. (2) and (4) can, for d=1,2, be written

Ṅ ≈ σni+1, σ = D/ℓ2−d. (5)

Taking the result for Ṅ/σ in Eq. (5) as a multiplicity,
we find an effective entropy Σ = kB ln(ni+1). Identifying
s ≡ ℓd as the “area” in d=1,2, and recalling n ∝ ℓ2

(ṡ)1 = K
∂ (Σ/kB)

∂s
= K

(2/d)(i + 1)

s
, (6)

where K is a kinetic coefficient. Fluctuating repulsion
(with strength B) from the neighboring CZs yields a sec-
ond contribution (ṡ)2 = −KBs + η, where η arises from
the random component of the external pressure. We ar-
rive at the Langevin equation

ṡ = K [(2/d)(i + 1)/s − Bs] + η. (7)

As we show in Ref. [25], the stationary solution to the
Fokker-Planck equation corresponding to Eq. (7) is just
the GWS Pβ(s), with β =(2/d)(i+1).

Mulheran and Blackman [7, 31] proposed the Gamma
distribution as an empirical description of general
Voronoi tessellations, particularly of the CZ size distri-
bution. With unit mean enforced, it has the form [32]

Πα(x) = [αα/Γ(α)] xα−1 exp(−αx). (8)

No relation was established between the parameter α and
any nucleation property, and in accounting for a range
of i, a single value of α associated with random depo-
sition is used [7]. The GWS and Gamma distributions
are qualitatively similar, and, for 1≤β≤4, α is roughly
2β + α0, where α0 is an offset of order one (cf. P3(s)
and Π7(s) in Fig. (1)); the value of α0 depends on what
property of the two distributions are equated [33]. How-
ever, the slower decay of the Πα(s) leads to considerably
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greater skewness, with a distinctly greater shift of the
peak to smaller s. Like Pβ(s), Πα(x) approaches a Gaus-
sian for large α. Trying to distinguish the two forms in
the large-s tail is problematic since the small values lead
to large fractional uncertainty. Very recently Πα(s) has
been used as a tool for analyzing experimental CZ dis-
tributions [8, 34]. Trial fits of the data with the GWS
form are generally at least as good. Amar et al.’s pop-
ular rate-equation-derived expression for ISD’s, noted at
the outset, is fi(s) ∝ si exp(−iais

1/ai), i≥1, where ai is
a complicated constant [2]. By construction, it peaks at
s=1. While not designed for CZ distributions, fi(s) has
been tried as an alternative to Πα(s) for quantum dots,
with neither being fully satisfactory [8].

Several extensions and challenges present themselves:
1) We hope experimentalists [8, 34] will refit their data
for CZ distributions with the GWS. When Voronoi tessel-
lation is used more generally, e.g. in studying biological
systems [35], the resulting size histograms should be an-
alyzed using the GWS and the alternatives. 2) Fig. 2a
shows that when there is a wide range of island sizes, us-
ing a strict Voronoi construction rather than physically
more appropriate edge cells [1, 27] leads to a narrower
distribution (hence a higher deduced β). E.g., in fitting
numerical data for the irreversible point-island nucleation
(i=1) in Fig. 3b of Ref. [27], we find much better agree-
ment with P4(s) than the expected P2(s). (Other sub-
tleties complicate this case; compact islands occur only
at very low coverage (≤0.01) [27].) 3) Our predictions
should be tested in cases with large i. 4) For d >2,
random walks are not recurrent, with the upshot that
β=i+1 as for d=2. This can be tested with growth simu-
lations in d=3 and d=4 [4]. 5) In d=1 it is straightforward
to find the gap distribution between islands, as done in
Ref. 5. The CZ distribution is a self-convolution of the
gap distribution [5]. In Fig. 3 we saw β=4; the gap dis-
tribution, then, should be well described by P3/2(s) (viz.

P4(s) ≈ 2
∫ 2s

0
P3/2(s

′)P3/2(2s−s′) ds′). The inset of Fig. 3
corroborates this. Generalization to d=2 is unclear.

In summary, as for spacings between parked cars [16],
the Wigner surmise provides a simple, universal expres-
sion that accounts better for data than more complicated
expressions developed over years of investigation. For our
problem of the capture zone distribution in island nucle-
ation, the exponent β of the generalized Wigner surmise
Pβ(s) provides information about the size i of the criti-
cal nucleus and reflects the dimensionality d. Our phe-
nomenological argument provides insight into the physi-
cal origin of this behavior. Both features are significant
advances beyond previous empirical analytic descriptions
of the CZ size distribution (notably Πα(x)). The connec-
tion to universal properties of fluctuations enhances the
interest and importance of studies of CZ distributions
and suggests many avenues for further investigations.
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