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Abstract

For the typical elastic interactions between steps, the generalized Wigner distribution (GWD) has been shown to be
in excellent quantitative agreement with terrace width distributions (TWDs) calculated from numerical simulations.
Here we show that the TWDs of vicinal surfaces with steps of alternating stiffness (but the same sort of step–step repul-
sions) are also given by the GWD. In the key parameter, the dimensionless repulsion strength, the step stiffness is gen-
eralized to twice the ‘‘reduced stiffness’’ of the two kinds of steps, as befits the inertial nature of stiffness. These results
should also be applicable to more general surfaces with steps of different stiffness.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

When a crystal is cleaved at a small angle to a
high-symmetry direction (corresponding to small
Miller indices), the newly exposed surface is often
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composed of terraces of the high-symmetry surface
separated by steps of one or a few atoms in height
[1]. The lower coordination number of surface
atoms can lead to relaxations [1–9], in atomic posi-
tion, reconstruction [1,2,7,10–13] of the surface
into a different order, and the creation of new elec-
tronic states not present in the bulk material
[14,15]. Such a vicinal, or stepped, surface can be
exploited for use in catalysts [10,11,16], or for
growing structures such as quantum wires and
other electronic components [17], as well as for
basic scientific research.
ed.
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Fig. 2. TSK model of an AB-type vicinal crystal surface. The
stiffness of steps with light terraces to the left is greater than the
stiffness of the steps with dark terraces to the left. In this
illustration, there is no interaction between the steps (~A ¼ 0),
and the stiffness ratio is R = 8.
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The relaxations, reconstructions, and surface
electronic states give rise to effective interactions
between steps, which obviously can be quite com-
plicated in general. In most cases, though, the
interactions between two neighboring steps are
believed to be approximately described by the
potential [1,13,18].

V ðLÞ ¼ A

L2
; ð1Þ

where A is an interaction constant and L is the
width of the terrace (see Fig. 1). This potential is
the dominant term in an expansion of the elastic
interactions, and Eq. (1) is considered by most
researchers in the field to sufficiently describe all
step–step interactions.

Although the interaction between steps has been
calculated for a few model surfaces, the elastic
interactions require large numbers of atoms to be
included in the calculations, which makes them
computationally demanding. (See, e.g, Refs. [8,9].)
Furthermore, the results are somewhat depen-
dent on approximations used to simplify the quan-
tum-mechanical treatment of electrons. A more
practical method for determining fundamental
parameters, such as the interaction constant A

and the kink energy e, is to infer them from experi-
mental measurements of statistical properties, such
as the terrace width distribution [19,20] (TWD) and
Fig. 1. Steps can be mapped onto the world-lines of spinless
fermions. The average direction of the steps (y in ‘‘Maryland
notation’’) maps onto (imaginary) time. L is the width of the
terrace between the steps at x1 and x2.
wandering function [19,21], h[xi(y + Dy) � xi(y)]
2i,

which is related to spatial autocorrelations.
The organization of this paper is as follows [22].

In Section 2 we review some approximations for
TWDs for vicinal surfaces with steps all of the
same stiffness. In Section 3, we extend the discus-
sion of Section 2 to cover the case in which the
steps do not all have the same stiffness, with partic-
ular attention to the case in which two types of
steps alternate (Fig. 2). Silicon surfaces vicinal to
the (100) plane are perhaps the most important
example of such surfaces. (For a review of stepped
Si surfaces, see Ref. [23].) Another realization is a
surface vicinal to the basal plane of an hcp crystal
in a principal direction such that the step edges are
close-packed. A vicinal surface with metallic deco-
ration on the lower side of each step, as for [wide]
quantum wires, could also exhibit such properties,
In this first attack on the problem, we neglect the
possibility that the alternating stiffnesses may well
be associated with alternating stress domains that
can lead to more complicated interactions between
steps [24]. Section 4 shows that TWDs derived
from Monte-Carlos simulations of the Terrace-
Step-Kink (TSK) model are in agreement with
the predictions of Section 3. We summarize and
conclude with a discussion of the relevance of this
work to more complicated systems, such as vicinal
surfaces of superlattices, in Section 5.
2. Approximate hamiltonians and terrace width

distributions

When the step–step interactions are described
by Eq. (1), the static properties of a system of
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two steps with identical stiffness rely only on a sin-
gle dimensionless parameter ~A, called the dimen-
sionless interaction strength, which is defined as

~A �
~bA

ðkBT Þ2
; ð2Þ

where ~b is the step stiffness, kB is Boltzmann�s con-
stant, and T is the temperature.

Following the lead of Feynman [25], we can
express the expectation values of the step position
by mapping the statistical mechanical problem in
two dimensions into a quantum mechanical prob-
lem in one dimension, with kBT taking the place of
h, ~b taking the place of mass, and the average
direction of the steps (the y-direction) being inter-
preted as imaginary time [26–28].

The TWD can then be found by making a Gru-
ber–Mullins [19,29] approximation, in which one
step fluctuates freely but its neighbors are held
straight and fixed. The probability of the fluctuat-
ing step being at position x is given in the usual
fashion from the ground state,

P ðxÞ ¼ jw0ðxÞj
2
; ð3Þ

of the Schrödinger equation

HGM � En

a

� �
wnðxÞ

� � ðkBT Þ2

2~b

d2

dx2
þ UGMðxÞ �

En

a

( )
wnðxÞ ¼ 0;

ð4Þ

where UGM(x) is a ‘‘confining potential’’ due to the
fixed neighboring steps. (The factors a�1 is due to
the fact that energies have to measured per unit
length along the y-direction.) This approximation
is useful only for strong repulsions between steps,
in which case

UGMðxÞ � V ðxÞ þ V ð2hLi � xÞ � 2V ðhLiÞ

� 6A

hLi4
x� hLið Þ2; ð5Þ

where hLi is the average distance between steps.
The resulting TWD is a Gaussian, which is in qual-
itative agreement with experimental observations.
However, even in the limit of strong repulsions,
the variance of this Gaussian approximation does
not match the variance of TWDs obtained from
simulations as well as might be desired [30,31].
At weak or moderate repulsions, TWDs from sim-
ulations and experiments show noticeable asym-
metry, and the Gaussian approximation clearly
fails.

This approximation can be greatly improved by
(1) explicitly considering the fluctuations and
interactions of two adjacent steps and by (2) relax-
ing the condition that the steps neighboring them
on either side be fixed in position. This approxima-
tion yields a Schrödinger equation of the form [32].

H � En

a

� �
Wn;mðx1; x2Þ

�
(
�ðkBT Þ2

2~b

o2

ox21
þ o2

ox22

� �
þ V ðx2 � x1Þ

þ Uðx1; x2Þ �
En;m

a

)
Wn;mðx1; x2Þ ¼ 0. ð6Þ

The confining potential can be related to the pres-
sure and compressibility of the steps through a
phenomenological argument, but in the case of
repulsive interactions following Eq. (1), it can be
taken to be of the form:

Uðx1; x2Þ ¼
U 2

2
ðx21 þ x22Þ; ð7Þ

where U2 is chosen to produce the correct average
terrace width, hLi � hx2 � x1i. Eq. (6) is then sep-
arable, so that Wn,m(x1,x2) = wn(x2 � x1)/m(x1 +
x2), and Eq. (3) can again be used to determine
the TWD. The resulting terrace width distribution
is the ‘‘generalized Wigner distribution’’.

In terms of the normalized terrace width [33],

s � L
hLi ; ð8Þ

the generalized Wigner distribution (GWD) is gi-
ven by [34–36]

P qðsÞ ¼ aqsq exp �bqs2
� �

. ð9Þ

Here

q � 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4~A

p
. ð10Þ
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The requirement hsi � hL/hLii = 1 yields

bq �
C qþ2

2

� �
C qþ1

2

� �
" #2

ð11Þ

and normalization yields

aq �
2bðqþ1Þ=2

q

C qþ1
2

� � . ð12Þ

The generalized Wigner distribution has been
shown to be in excellent quantitative agreement
with TWDs derived from Monte-Carlo simula-
tions of the TSK model and in qualitative agree-
ment with many experimentally measured TWDs
[20,30,36–38]. In particular, over the most physi-
cally relevant range of ~A (from 0 to about 12),
the GWD is in better agreement with TWDs from
simulations than even improved versions [31,39–
43] of the Gaussian approximation [30].

The small discrepancies between the GWD and
simulation results can be best understood when
one realizes that the GWD is the exact solution
of an eigenproblem (Eq. (6)) which is itself the
result of three approximations, which are practi-
cally unavoidable.

1. The atomically discrete steps are coarse-grained
into gently varying continuous curves [44] in
order to apply results from capillary wave the-
ory. Obviously, this approximation becomes
problematic when hLi is small, e.g. hLi < 5a
[20]. Eq. (6) assumes that terms of order Oðh3Þ
and higher, where h is the angle of the step with
the y-direction, can safely be ignored in the
Taylor series expansion of the free energy of
the step (per unit length). At high temperatures,
the steps are not ‘‘gently varying’’, so this
assumption fails, and the GWD describes the
TWD less well [19,30].

2. The TWD is determined from a pure quantum
state involving only two steps explicitly. Due
to interactions with the other steps, a density
matrix should be used rather than a pure quan-
tum state [45].

3. The confining potential defined by Eq. (7) has
only one adjustable parameter, U2, which is

entirely determined by the mean step separation,

hLi. As a result, if the interaction between steps
is of the form A/(xi � xj)
2, the GWD can have

no dependence on whether j is restricted to
i ± 1 (neighboring steps) or to all j 5 i. This is
the origin of the ‘‘remarkable and curious’’
insensitivity of the GWD to the range of step–
step interactions mentioned in Ref. [30]. It
should be possible to account for the small
dependence on the range of interaction that is
observed in Monte-Carlo TWDs by giving
U(x1,x2) a more general form than Eq. (7);
the most justifiable extensions, however, would
spoil the separability of the Hamiltonian and
prevent simple, analytic solutions.

In spite of the intimidating presence of gamma
functions in Eqs. (11) and (12), the GWD is just
as easy to apply to experimental data as the Gauss-
ian approximation. From the experimental TWD,
Pexp(L), can be calculated both the mean terrace
width,

hLiexp �
X
L

P expðLÞL ð13Þ

and the variance,

r2
exp �

X
L

P expðLÞðL� hLiexpÞ
2. ð14Þ

These in turn can be used to estimate the dimen-
sionless interaction constant ~A from the
approximation

~A� 1

16

r2
exp

hLi2exp

 !�2

�7
r2
exp

hLi2exp

 !�1

þ27

4
þ35

6

r2
exp

hLi2exp

 !2
4

3
5.

ð15Þ

Note that other estimates of hLi not calculated
directly from Pexp(L), e.g. calculated from the
nominal angle of miscut, often differ from hLiexp
by 5–10%, which can cause significant errors in
the extracted value of ~A.
3. Theoretical derivation of the generalized Wigner

distribution

In this section we consider a vicinal surface in
which the odd-numbered steps have stiffness ~b1

and the even-numbered steps have stiffness ~b2. If
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V(L) is given by Eq. (1), we will show that the
TWD is given by a generalized Wigner distribu-
tion. In consequence, the results discussed at the
end of the previous section apply, in particular
the use of Eq. (15) to extract the dimensionless
interaction constant ~A. This section generalizes
parallel arguments in Section IIB of Ref. [32],
where all steps had the same stiffness.

Generalizing from Eq. (6), the Hamiltonian of
two neighboring steps with positions x1 and x2 is

H
a
� �ðkBT Þ2

2

1
~b1

o2

ox21
þ 1

~b2

o2

ox22

 !

þ V ðx2 � x1Þ þ Uðx1; x2Þ; ð16Þ

where V the step–step interaction potential and U

is the confining potential for a pair of steps.
As in Ref. [32], the form of U(x1,x2) is justified

by a phenomenological argument, which begins
with an analogy. The motion of a polymer in a
polymer melt is constrained by a reptation tube
[46,47]. The constraint is not truly fixed, but on
the time scale of the mean collision time it is practi-
cally fixed. On longer time scales, the polymer may
nevertheless diffuse over any distance.

Likewise, the neighborhood of a pair of adja-
cent steps constrains the wanderings of those steps.
Over a distance in the y-direction on the scale of
the ‘‘step collision distance’’ or correlation length,
the pair are not sensitive to the size of the system
in the x-direction beyond some limit, so we may
consider the pair to be confined in a ‘‘box’’ of that
size. U(x1,x2) can then be calculated from thermo-
dynamic considerations. This approach works well
for TWDs, since they involve differences in x-coor-
dinates at the same y-coordinate, but caution is
required when applying it to functions like the step
wandering function that involve differences in x-
coordinates at different y-coordinates. As with
the polymer above, the step pair may eventually
diffuse over any distance.

The above approach is implemented as follows.
The step at x1 is taken to be the right wall of a box
containing V=hLi steps with a fixed left wall at
x ¼ �V, so the volume (length) of this box is
V1 ¼ Vþ x1. A Taylor expansion of the pressure
term for this step yields
P1ðx1Þ ¼ Pþ x1
oP1

ox1

� 	




x1¼0

þ Oðx21Þ

¼ Pþ x1
oP1

oV1

� 	




V1¼V

þ Oðx21Þ

¼ P� x1ðVjÞ�1 þ Oðx21Þ; ð17Þ

where P � P1ð0Þ, and the isothermal compress-
ibility j is given by [48]

j � � 1

V

oP1

oV1

� 	�1






V1¼V

. ð18Þ

Likewise, the step at x2 is the left wall of a box
containing V=hLi steps with a fixed right wall at
x ¼ þV, the volume (length) of this box is
V2 ¼ V� x2 and the expansion of the pressure
term for this step is

P2ðx2Þ ¼ Pþ x2ðVjÞ�1 þ Oðx22Þ ð19Þ

Using the Taylor expansions from Eqs. (17) and
(19) for the pressure exerted on the steps at x1
and x2, the confining potential can be written in
the following way:

Uðx1; x2Þ ¼ �x1P1ðx1Þ þ x2P2ðx2Þ

¼ ðx2 � x1ÞPþ x21 þ x22
� �

ðVjÞ�1

þ O x32 � x31
� �

. ð20Þ

Mindful of the transformation [49] between the
coordinates of two interacting particles and the
coordinates of their center of mass and relative
separation, we introduce the linear canonical
transformation given by

L ¼ x2 � x1 P 0;

z ¼ c1x1 þ c2x2;
ð21Þ

where c1 and c2 are arbitrary constants to be deter-
mined later and L is the terrace width between the
two steps. With this transformation, the Hamilto-
nian in Eq. (16) becomes

H

a
¼ � kBTð Þ2

2

1
~br

o
2

oL2
þ 2

c2
~b2

� c1
~b1

 !
o
2

oLoz

(

þ c21
~b1

þ c22
~b2

 !
o2

oz2

)
þ V ðLÞ þ UðL; zÞ; ð22Þ
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where

~br �
~b1
~b2

~b1 þ ~b2

ð23Þ

is the ‘‘reduced stiffness’’ of the two steps, analo-
gous to their reduced mass (consistent with the
analogy of stiffness to mass in our model).

Since the constants c1 and c2 are arbitrary, we
can choose them so that the cross-differentiation
term vanishes; that is,

c1 ¼
~br

~b2

¼
~b1

~b1 þ ~b2

ð24Þ

and

c2 ¼
~br

~b1

¼
~b2

~b1 þ ~b2

; ð25Þ

which, in turn, make z analogous to the center of
mass of the two steps:

z ¼
~b1x1 þ ~b2x2
~b1 þ ~b2

. ð26Þ

Using this specification of z, the Hamiltonian of
Eq. (16) has a ‘‘nearly’’ separable form:

H ¼ HL þHz �
a

Vj

~b1 � ~b2

~bavg

 !
zLþ Oðz3Þ

þ Oðz2LÞ þ OðzL2Þ þ OðL3Þ; ð27Þ

where

HL

a
�� kBTð Þ2

2~br

o2

oL2
þV ðLÞþPLþ 1

Vj
1�

~br

~bavg

 !
L2;

Hz

a
��ðkBT Þ2

4~bavg

o2

oz2
þ 2

Vj
z2;

ð28Þ

give the primary L and z-dependent portions of the
Hamiltonian, and

~bavg �
~b1 þ ~b2

2
ð29Þ

is the average stiffness of the step pair. Notice that
when the steps have the same stiffness, the zL

cross-term in Eq. (27) vanishes, leaving the separa-
ble Hamiltonian considered in Ref. [32] when
higher-order terms are neglected.
In order to use separation of variables to solve
the Schrödinger equation, we neglect the zL

cross-term. The assumption that the zL term can
be eliminated from the Hamiltonian along with
the other higher order terms is vindicated in the
next section, in the sense that the square of the
resulting ground state solution gives remarkably
good agreement with TWDs from numerical simu-
lations, even when the ratio of stiffnesses is
unphysically large.

Due to separation of variables, the two-step
Hamiltonian reduces to an ordinary differential
equation in z and an ordinary differential equation
in L. The latter is given by

HL �EL

a

� �
wðLÞ ¼ �ðkBT Þ2

2~br

d2

dL2
þ V ðLÞ þPL

"

þ 1

Vj
1�

~br

~bavg

 !
L2 �EL

a

#
wðLÞ

¼ 0; ð30Þ
where the L subscript on the energy EL is intended
only to remind the reader that this is the portion of
the total energy associated with the variable L and
not with z. (To avoid confusion, we suppress the
index n indicating the eigenfunction/eigenvalue
pair.) For simplicity, we rewrite Eq. (30), solving
for the doubly differentiated term:

d2wðLÞ
dL2

¼ 2~br

ðkBT Þ2
V ðLÞ þPL½

þ 1

Vj
1�

~br

~bavg

 !
L2 � EL

a

#
wðLÞ.

The substitutions,

~UðLÞ � 2~br

ðkBT Þ2
UðLÞhLi2

¼ 2~br

ðkBT Þ2
PLþ 1

Vj
1�

~br

~bavg

 !
L2

" #
hLi2;

~EL �
2~br

ðkBT Þ2
EL

a
hLi2;

and use of Eq. (8) lead to the dimensionless form
of the Schrödinger equation:

d2wðsÞ
ds2

¼ ½~V ðsÞ þ ~UðsÞ � ~EL�wðsÞ. ð31Þ
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So far, only one assumption has been made as to
the nature of the step–step interaction—that it is
a function of the step separation. If, however,
the interaction is of the form given in Eq. (1), it
is given in dimensionless form by

~V ðsÞ ¼
~A
s2
. ð32Þ

The dimensionless interaction ~A is dependent on
an effective step stiffness, ~beff , equal to twice the re-
duced stiffness:

~A �
~beffA

ðkBT Þ2
; ð33Þ

~beff ¼ 2~br ¼
2~b1

~b2

~b1 þ ~b2

; ð34Þ

instead of the definition used for steps of the same
stiffness (Eq. (2)). Note that, if ~b1 ¼ ~b2 ¼ ~b, then
~beff ¼ 2~br ¼ ~b, and Eq. (33) reverts to Eq. (2), giv-
ing the familiar dimensionless step–step interac-
tion and its corresponding step–step interaction
potential (Eq. (1)).

To make further progress, we assume that
(VjÞ�1 � P in Eq. (31), so that we can neglect
the linear term in the confining potential as was
done in Ref. [32]. With this assumption, the Schrö-
dinger equation simplifies to the analytically solv-
able form:

d2wðsÞ
ds2

¼
~A
s2
þ X2s2 � ~EL

� �
wðsÞ; ð35Þ

where

X2 �
~A
A

1�
~br

~bavg

 !
hLi4

Vj

is some dimensionless constant. The ground state
eigenfunction for the case of alternating stiffness
is thus

w0ðsÞ ¼ c0s
q
2 exp � 1

2
bqs2

� 	
; ð36Þ

where the requirement hsi � hL/hLii = 1 yields

X2 ¼ bq; ð37Þ
and normalization yields

c20 ¼ aq. ð38Þ
Squaring the modulus of this state to find the
TWD, we obtain the generalized Wigner distribu-
tion as given in Eq. (9).
4. Comparison with simulations of the TSK model

In this section we use Monte-Carlo simulations
of the TSK model to test the prediction, made in
the previous section, that the GWD is also a good
approximation for the TWDs of surfaces with
steps of alternating stiffness.

The system of alternating steps was modeled
using the TSK Hamiltonian, with kink energies
given by

e2nþ1 ¼ e1 � 2kBT sinh
�1

ffiffiffiffiffiffiffiffiffiffiffiffi
Rþ 1

2R

r
sinh

e0
2kBT

� 	 !
;

e2n ¼ e2 � 2kBT sinh
�1

ffiffiffiffiffiffiffiffiffiffiffiffi
Rþ 1

2

r
sinh

e0
2kBT

� 	 !
;

ð39Þ

where n is an integer and

R ¼
~b2n

~b2nþ1

¼
~b2

~b1

ð40Þ

is the stiffness ratio of the even to the odd num-
bered steps. The rather arcane formula for kink
energies given by Eq. (39) is chosen so that, when
these kink energies are used to calculate the stiff-
ness of each step [21], the values of ~bi are conve-
niently related:

~b2nþ1 ¼ ~b1 ¼
2kBT
a

sinh2 e1
2kBT

� 	

¼ Rþ 1

R

� 	
kBT
a

sinh2 e0
2kBT

� 	
;

~b2n ¼ ~b2 ¼
2kBT
a

sinh2 e2
2kBT

� 	

¼ Rþ 1ð Þ kBT
a

sinh2 e0
2kBT

� 	
.

ð41Þ

Thus, the choice of the kink energies in Eq. (39) in-
sures that the effective stiffness of Eq. (33) remains
constant when the stiffness ratio is varied:



Fig. 3. Comparison of the generalized Wigner distribution
(GWD) with Monte-Carlo simulation data for various step
stiffness ratios (R). Plot (a) shows the TWDs for dimensionless
step–step interactions of ~A ¼ 0; (b) is for ~A ¼ 10. Comparisons
for ~A ¼ 2; 4; 6; and 8 (not shown) show similar agreement.
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~beff ¼
2~b1

~b2

~b1 þ ~b2

¼ 2

Rþ 1

~b2 ¼
2kBT
a

sinh2 e0
2kBT

� 	
. ð42Þ

The temperature of each simulated system was re-
lated to the kink energies of the steps using the
relation kBT = 0.45e0. The resulting effective step
stiffness is about 1.65e0/a. Each simulated system
had 30 steps, 15 of which had kink energy e1 and
15 of which had e2. Each step was 1000a in length
with a mean step separation of 10a, and periodic
boundary conditions were applied in both the x-
and y-directions; the lattice spacing a is the unit
of length.

A single-site Metropolis algorithm [50] was used
for the simulations. Each simulation was equili-
brated for at least 106 Monte-Carlo steps per site
(MCSS). ‘‘Snapshots’’ (complete records of step
positions) were recorded at intervals of 103 MCSS,
for a total of 103 snapshots. A TWD was calcu-
lated for each snapshot; these were averaged
together, and error bars were calculated using the
bootstrap method [51,52].

Simulations were run with ~A ¼ 0; 2; 4; 6;
8; and 10; for each value of ~A, simulations were
run R = 1, 2, 4, and 8. The plots shown in
Fig. 3 demonstrate the agreement between the ter-
race width distributions generated from Monte-
Carlo TSK simulations and the generalized Wig-
ner distribution. Fig. 3(a), for example, shows
the TSK simulation data for the four ~A ¼ 0. Sim-
ulation results are plotted as symbols, whereas the
GWD is shown by the solid curve. Error bars are
much smaller than the symbol size. Very good
agreement is observed between the simulation
data and the GWD. Some tendency for larger val-
ues of R to produce slightly sharper TWDs is
observed.

It is important to understand that the simula-
tions presented in this section are only intended
as illustrations of a generic surface with steps of
alternating stiffness; they are not meant as detailed
models of any particular experimental system. The
simulation temperature kBT = 0.45e0 was chosen
as a compromise: if the temperature is too low,
the Monte-Carlo algorithm becomes inefficient,
but if the temperature is too high, the steps are
not ‘‘gently varying’’, so the GWD describes the
TWD less well, as was mentioned earlier. This
same consideration discourages the simulation of
large stiffness ratios, since as R becomes large,
kBT/e1 becomes larger and kBT/e2 becomes
smaller.

It is likewise worth emphasizing that even when
good experimental estimates exist for the kink
energies, as is the case for Si(001) [53–55], they
should not be naively substituted into Eq. (41).
Only if there are no interactions or correlations

between kinks will Eq. (41) be valid. However, it
has been shown that correlations between kinks
cannot be ignored for Ge(001) vicinal surfaces
[56].
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5. Discussion

We have shown that the terrace width distribu-
tions depend only weakly on the stiffness ratio, so
long as the dimensionless interaction constant ~A is
correctly calculated using the effective step stiffness
given in Eq. (34). The neglected terms of Eq. (27)
are not numerically significant for physically rea-
sonable interaction strengths and step stiffness
ratios. This result extends the utility of the general-
ized Wigner distribution to a greater variety of vic-
inal surfaces.

The most serious simplification we have made
is, without doubt, the assumption that the interac-
tion is the same between both species of steps. To
facilitate discussion, let us say that a step of type
Sa
b separates a terrace of type Ta (above) and a ter-

race of type Tb (below), etc. A silicon surface vic-
inal to the (001) plane would thus consist of
terrace of types Ta and Tb (representing different
orientations of the dimers with respect to the step
direction) in strict alternation, separated alter-
nately by steps of types Sa

b and Sb
a .

There is no reason to expect that in real materials
the step–step interaction potential will be indepen-
dent of the type of terrace separating the steps. In
the case of Si(100), it may be anticipated that there
will be some difference depending on whether the
dimers are oriented parallel or perpendicular to
the steps, even though both terraces have (in the
limit of wide terraces) the same surface free energy
density. For other surfaces the effects may be more
dramatic. Because the interaction Va(La) across a
Ta terrace is different from the interaction Vb(Lb)
across a Tb terrace, the corresponding average
terrace widths, hLai and hLbi, are different, as are
the corresponding TWDs. Nevertheless, as long as
hLai and hLbi are both sufficiently large so that
the continuum step approximation can still be used,
the analysis of Section 3 should still apply—at least
up to Eq. (31), if the one or both interactions have
different forms than that given by Eq. (1).

Perhaps a more severe problem is that the form
of the interaction V(L) can change: for Si(100)
Alerhand et al. [24] showed that the leading contri-
bution is a strain-derived repulsion proportional
to L�1 ln(L/p a) in such situations. Such a poten-
tial would clearly complicate the solution from the
simple, elegant GWD. This issue is beyond the
scope of the present work; we defer treatment to
a later publication.

In fact, since the only interactions explicitly
taken into account are between pairs of adjacent
steps, our results clearly would also apply to
TWDs of surfaces consisting of any number of
types of steps, irrespective of the precise order in
which these steps occur. Such a surface can be
manufactured by cleaving a superlattice. Again,
the interactions between neighboring steps would
be the dominant consideration in determining the
TWD for each terrace, although the pressure and
compressibility, which are used to calculate
U(x1,x2), will depend on all of the interactions.

As a particularly instructive example, consider a
cleaved surface in which several layers of material
A alternate with several layers of material B. It
might appear that the theory presented here would
require all of the A-terraces to have the same
TWD (and likewise all of the B-terraces), regard-
less of where they occur within the series. On the
other hand, the elastic forces will clearly be differ-
ent near the A–B transition than in the middle of
the series of A-layers, due to the long-ranged elas-
tic interactions. Clearly, the difference (which
should be small) can only be accounted for by
making U(x1,x2) depend not only on the type of
terrace and the types of neighboring steps, but also
on other nearby terraces.

In conclusion, the approximations developed
here should be broadly applicable to a wide range
of stepped crystal surfaces, so long as the contin-
uum step approximation remains valid.
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