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A facet is not an island: step-step interactions and the fluctuations of the boundary of

a crystal facet
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In a recent paper [Ferrari et al., Phys. Rev. E 69, 035102(R) (2004)], the scaling law of the
fluctuations of the step limiting a crystal facet has been computed as a function of the facet size.
Ferrari et al. use rigorous, but physically rather obscure, arguments. Approaching the problem from
a different perspective, we rederive more transparently the scaling behavior of facet edge fluctuations
as a function of time. Such behavior can be scrutinized with STM experiments and with numerical
simulations.
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In recent years it has become possible to probe quanti-
tatively with STM the detailed atomic-scale fluctuations
of steps near facet edges, most notably illustrated in ex-
tensive, painstaking measurements near (111) facets of
Pb microcrystallites on a Ru support [1, 2]. Bonzel’s
review provides a thorough and lucid account of these
investigations [3]. Accordingly, it is an opportune time
for theoretical examination of such systems.

In a very recent intriguing paper [4], Ferrari et al. have
computed the scaling of equilibrium fluctuations of an
atomic ledge bordering a crystalline facet. These authors
find that the step-edge width w scales as w ∼ L1/3 with
the linear size L of the facet. This result differs from what
is expected, and actually found, for the step bordering a
2D island, which performs a random walk so that w ∼
L1/2. Ferrari et al. claim that the origin of the unusual
L1/3 scaling lies in the step-step interactions between the
facet ledge and the neighboring steps.

Ferrari et al.’s calculation is based on the use of free
fermions, transfer matrix, random matrix properties, and
specific models; it does not address the question of the
time behavior of step fluctuations.

In the present Communication, we approach the prob-
lem from the perspective of a continuum-equation de-
scription of a faceted crystal. The most easily accessible
experimental quantity is the step autocorrelation func-
tion G(t) = 〈[x(t) − x(0)]2〉, which is expected to have a
power-law behavior at short times: G(t) ∼ t2β . Hence,
we compute the scaling of the ledge fluctuations with
time, using both the continuum-equation approach and
the simple arguments developed in Pimpinelli et al. [5].

Since the development in Ferrari et al. [4] is rather ob-
scure physically obscure, we readdress the problem from
a different point of view, based on continuum equations
and scaling. Our approach shows that the mean square
width of a fluctuating crystal surface next to a facet scales
as 〈(δz)2〉 ∼ ℓ2/3, ℓ being the length scale in the radial di-
rection. We obtain then the time behavior of the surface

fluctuations, that will then be compared to that obtained
from a different, more qualitative approach (see below).

The projected free energy of a surface near a facet be-
low its roughening temperature is given by [6, 7, 9]

f(φ) = γ0(T ) +
β(θ, T )

h
tanφ + g(θ, T ) tan3 φ, (1)

where h is the step height, γ0(T ) is the terrace contribu-
tion, β(θ, T ) is the step free energy per length, and g the
“step interaction parameter” [7]. The angles φ and θ are
the angle of the surface relative to the facet and of the
steps relative to an arbitrary direction, respectively.

The chemical potential for a crystallite in cylindrical
coordinates (r, θ, z) reads [8]

µ(r) =
νβ(T )

hr
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3νg(T )
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dz(r)
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d

dr

(

dz(r)

dr

)2

,

(2)
where the θ dependence of the step free energy and of
the interactions has been neglected for simplicity. Here ν
is the atomic volume, with ν/h then the atomic surface
area. It is straightforward to verify that the Pokrovsky-
Talapov equilibrium shape [9] is recovered from Eq. (2).
In the present geometry, the equilibrium shape is a stack-
ing of circular layers separated by steps.

Consider the top step of the stack. Locally the ledge
performs a random walk, so that each time that the ledge
moves forward or backward by one unit, r = ρ0 ± δr, the
local surface height increases or decreases by one unit,
respectively, z(r) = z0 ± δz. (Note that the variable δz
is the continuum translation of h.) In Eq. (2) the first
term is the Gibbs-Thomson contribution coming from the
curvature of the layer, the second term represents the
variation in the interaction energy due to the change of
the length of the ledge when a single atom is removed or
added. The last term represents the change of interaction
energy when the step-step distance in the curved part of
the crystal is varied.
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Thus, the contribution which dominates in Eq. (2) for
small fluctuations of the surface is the second one, since
the curvature and the step-step distance are weakly af-
fected by local step motions. Both the first and the last
term in Eq. (2) can then be neglected. After next setting
1/r in the second term in Eq. (2) equal to 1/ρ0 to first
order and letting ∂(δz)/∂t = −K∇2µ + ηc (where K is
a transport coefficient, and ηc is a stochastic term de-
scribing mass-conserving random atomic motions at the
interface), we arrive at the equation

∂(δz)

∂t
= −K∇2

[

3νg(T )

ρ0

(

∂(δz)

∂r

)2
]

+ ηc(r, t). (3)

Eq. (3) looks like the nonlinear part of the so-called
“Montréal” or conserved KPZ model [10]. However, in
the original model the nonlinearity is absent in equilib-
rium, while here it stems from the contribution of step-
step interactions to the equilibrium chemical potential.

Since Eq. (3) is nonlinear, it cannot be solved ana-
lytically. Hence, we limit ourselves to a power-counting
evaluation of the scaling exponents, following Hentschel
and Family [11]. Taking a characteristic length scale ℓ
as the unit, we can estimate the root-mean-square value
of the time derivative of the fluctuations as δzℓ/tℓ, and
of their spatial derivative as δz2

ℓ /ℓ4. The root-mean-
square value of the conserved noise term is estimated as
ηc ∼ 1/(ℓ2Sℓtℓ)

1/2, where Sℓ =
√

ℓ2 + z2

ℓ is the length
of the fluctuating interface. For small-amplitude fluctua-
tions, as is the case here, Sℓ ≈ ℓ, so that ηc ∼ 1/(ℓ3tℓ)

1/2

[11].

Equating the time derivative to the noise term yields

δzℓ ∼ t
1/2

ℓ /ℓ3/2. (4)

Equating the spatial derivative to the noise term yields

δz2

ℓ ∼ ℓ5/2/t
1/2

ℓ . (5)

From Eqs. (4) and (5) we finally get

δz3

ℓ ∼ ℓ, (6)

which has the same form as Ferrari et al.’s result. Note
that the dynamics of step fluctuations is also affected:
From Eqs. (4) and (6), e.g., we obtain

δzℓ ∼ t
1/11

ℓ , (7)

as well as

ℓ ∼ t
3/11

ℓ . (8)

Our argument allows extensions to nonconservative
ledge fluctuations (i.e. fluctuations driven by attachment-
detachment of atoms to and from the ledge). Indeed,

if ledge fluctuations are driven by atom attachement-
detachment, with kinetic coefficient K̃, Eq. (3) has to
be replaced by

∂(δz)

∂t
= K̃

3νg(T )

ρ0

(

∂(δz)

∂r

)2

+ η(r, t). (9)

Proceeding as before, we can estimate the time deriva-
tive of the fluctuations as δzℓ/tℓ, their spatial deriva-
tive as δz2

ℓ /ℓ2, and the (nonconserved) noise term as
1/(ℓtℓ)

1/2 [11]. In the latter relation we assume again
small-amplitude ledge fluctuations, consistently with the
hindering action of neighboring steps.

Equating the time derivative to the noise term yields

δzℓ ∼ t
1/2

ℓ /ℓ1/2. (10)

Equating the spatial derivative to the noise term yields

δz2

ℓ ∼ ℓ3/2/t
1/2

ℓ . (11)

From Eqs. (10) and (11) we obtain

tℓ ∼ ℓ5/3, (12)

as well as

δzℓ ∼ ℓ1/3. (13)

Together Eqs. (12) and (13) yield

δzℓ ∼ t
1/5

ℓ , (14)

as found above.
Note the Eq. (9) looks like the KPZ equation with-

out the linear term. However, the nonlinearity stems
here from equilibrium, small-amplitude fluctuations of
the step edge, and the resulting dynamics is different
from that of the KPZ model. The latter may be recovered
from Eq. (9) by assuming large-amplitude fluctuations, so
that Sℓ ≈ δzℓ, and ηℓ ∼ 1/(δzℓtℓ)

1/2.
Equating the time derivative to the noise term yields

δz
3/2

ℓ ∼ t
1/2

ℓ . (15)

Equating the spatial derivative to the noise term yields

δz
5/2

ℓ ∼ ℓ2/t
1/2

ℓ . (16)

From Eqs. (15) and (16) we obtain

tℓ ∼ ℓ3/2, (17)

as well as

δzℓ ∼ ℓ1/2, (18)

reproducing the power laws characteristic of the KPZ
model. Note that in the limit of unhindered, large am-
plitude fluctuations, the random walk scaling w ∼ ℓ1/2 is
recovered, as expected.
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Let us assume now that the results of Ferrari et al.

hold, and let us use Pimpinelli et al.’s argument [5] for
finding the time scaling. The argument computes the
width δx of a fluctuation of linear size ℓ is found by letting
the area of the fluctuation, ℓδx, equal to the fluctuation
δN of the number N(t) of particles involved in the mass-
transport process responsible for the fluctuation, during
a time t. In turn, N(t) is estimated as

N(t) ≈ ceq

τ∗
ℓLst, (19)

where ceq/τ∗ is the rate of the transport process, ceq be-
ing the equilibrium particle density, and ℓLs the surface
area feeding the fluctuation [5]. The assumption that
mass transport is conservative, which is consistent with
Eq. (3) above, yields ceq/τ∗ ≈ ceqDe/ℓ2, where De is the
edge diffusion coefficient. Also, ℓLs ≈ aℓ, a being of the
order of the lattice spacing. Thus,

N(t) ≈ tceqDea/ℓ. (20)

Letting δN =
√

N , we now find

(δx)2ℓ2 ≈ (δN)2 ≈ tceqDea/ℓ. (21)

Assuming the scaling relation w ∼ ℓ1/3 yields finally

t ∼ ℓ11/3, (22)

or

δx(t) ≈ t1/11, (23)

so that G(t) ∼ t2/11.
As in Ref. [5], we can also compute the time behavior

of a fluctuation with non-conserved kinetics. This can
be done by letting ceq/τ∗ ≈ kceq, with k an appropriate
kinetic coefficient for atom detachment/attachment from
and to the step edge. Then, using Eq. (19) with Ls ≈ a
yields

(δx)2ℓ2 ≈ kceqℓat. (24)

Again letting δx ∼ ℓ1/3 yields ℓ5/3 ∼ t, eventually

δx ∼ t1/5. (25)

Thus, the temporal scaling laws turn out to be identical
to those computed above for the fluctuations of the facet
edge in the continuum equation approach.

In summary we have shown how the powerful general
arguments used a decade ago to launch the systematic ex-
ploration of fluctuations of steps on vicinal surfaces can
be extended to examine the fluctuations of steps near a
crystalline facet. We find rich and varied behavior that
we hope will stimulate closer examination of fluctuation
phenomena near step edges by both experiment and sim-
ulation.
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