
Effects of next-nearest-neighbor interactions on the orientation dependence of step
stiffness: Reconciling theory with experiment for Cu(001)

T. J. Stasevich* and T. L. Einstein†

Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA

R. K. P. Zia
Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24601, USA

M. Giesen and H. Ibach
Institut für Schichten und Grenzflächen, ISG, Forschungszentrum Jülich, D 52425 Jülich, Germany

F. Szalma
Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA

(Received 4 August 2004; published 3 December 2004)

Within the solid-on-solid(SOS) approximation, we carry out a calculation of the orientational dependence of
the step stiffness on a square lattice with nearest- and next-nearest-neighbor interactions. At low temperature
our result reduces to a simple, transparent expression. The effect of the strongest trio(three-site, nonpairwise)
interaction can easily be incorporated by modifying the interpretation of the two pairwise energies. The work
is motivated by a calculation based on nearest neighbors that underestimates the stiffness by a factor of 4 in
directions away from close-packed directions, and a subsequent estimate of the stiffness in the two high-
symmetry directions alone that suggested that inclusion of next-nearest-neighbor attractions could fully explain
the discrepancy. As in these earlier papers, the discussion focuses on Cu(001).
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I. INTRODUCTION

At the nanoscale, steps play a crucial role in the dynamics
of surfaces. Understanding step behavior is therefore essen-
tial before nanostructures can be self-assembled and con-
trolled. In turn, step stiffness plays a central role in our un-
derstanding of how steps respond to fluctuations and driving
forces. It is one of the three parameters of the step-
continuum model,1 which has proved a powerful way to de-
scribe step behavior on a coarse-grained level, without re-
course to a myriad of microscopic energies and rates. As the
inertial term, stiffness determines how a step responds to
interactions with other steps, to atomistic mass-transport pro-
cesses, and to external driving forces. Accordingly, a thor-
ough understanding of stiffness and its consequences is cru-
cial.

The step stiffnessb̃ weights deviations from straightness
in the step Hamiltonian. Thus, it varies inversely with the
step diffusivity, which measures the degree of wandering of a
step perpendicular to its mean direction. This diffusivity can
be readily written down in terms of the energies«k of kinks
along steps with a mean orientation along close-packed di-
rections [k110l for an fcc (001) surface]: in this case, all
kinks are thermally excited. Conversely, experimental mea-
surements of the low-temperature diffusivity(via the scale
factor of the spatial correlation function) can be used to de-
duce the kink energy. A more subtle question is how this
stiffness depends on the azimuthal misorientation angle, con-
ventionally calledu and measured from the close-packed di-
rection. In contrast tou=0 steps, even for temperatures much
below«k, there are always a non-vanishing number of kinks,

the density of which are fixed by geometry(and so are pro-
portional to tanu). In a bond-counting model, the energetic
portion of the step free energy per length[or, equivalently,
the line tension, since the surface is maintained at constant
(zero) charge2] bsud is canceled by its second derivative with
respect tou, so that the stiffness is due to the entropy con-
tribution alone. Away from close-packed directions, this en-
tropy can be determined by simple combinatoric factors at
low temperatureT.3–5

Interest in this whole issue has been piqued by the recent
finding by Dieluweitet al.6 that the stiffness as predicted in
the above fashion, assuming that only nearest-neighbor(NN)
interactionse1 are important, underestimates the values for
Cu(001) derived from two independent types of experiments:
direct measurement of the diffusivity on vicinal Cu surfaces
with various tilts and examination of the shape of(single-
layer) islands. The agreement of the two types of measure-
ments assures that the underestimate is not an anomaly due
to step-step interactions. In that work, the effect of next-
nearest-neighbor(NNN) interactionse2 was crudely esti-
mated by examining a general formula obtained by Akutsu
and Akutsu,7 showing a correction of order exps−e2/kBTd,
which was glibly deemed to be insignificant. In subsequent
work the Twente group9 considered steps in just the two
principal directions and showed that if one included an at-
tractive NNN interaction, one could evaluate the step free
energies and obtain a ratio consistent with the experimental
results in Ref. 6. This group later extended their cal-
culations10 to examine the stiffness.

To make contact with experiment, one typically first
gauges the diffusivity along a close-packed direction and
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from it extracts the ratio of the elementary kink energy«k to
T. Arguably the least ambiguous way to relate«k to bonds in
a lattice gas model is to extract an atom from the edge and
place it alongside the step well away from the new unit in-
dentation, thereby creating four kinks.11 The removal of the
step atom costs energy 3e1+2e2 while its replacement next to
the step recoupse1+2e2. Thus, whether or not there are NNN
interactions, we identify«k=−1

2e1= 1
2ue1u (since the formation

of Cu islands impliese1,0); thus, as necessary,«k.0. Note
that for clarity we reserve the charactere for lattice-gas
energies,12 which are deduced by fitting this model to ener-
gies which can be measured, such as«k.

The goal of this paper is to compute the step line tension

b and the stiffnessb̃ as functions of azimuthal misorientation
u, when NNN (in addition to NN) interactions contribute.
Since it is difficult to generalize the low-temperature expan-
sion of the Ising model,3,4 we instead study the solid-on-solid
(SOS) model, which behaves very similarly at low tempera-
tures and at azimuthal misorientations that are not too large,
but can be analyzed exactly even with NNN interactions.
This derivation is described in Sec. II, with most of the cal-
culational details placed in the Appendix. In Sec. III we de-
rive a simple expression for the stiffness in the low-
temperature limit, presented in Eq.(14). We also make
contact with parameters relevant to Cu(001), for which this
limit is appropriate. In Sec. IV we extend the formalism to
encompass the presumably strongest trio(three-atom, non-
pairwise) interaction, showing that its effect can be taken
into account by shifting the pair energies in the preceding
work. The final section offers discussion and conclusions.

II. NNN SOS MODEL ON A SQUARE LATTICE

Including NNN interactions in the low-temperature ex-
pansion of the square-lattice Ising model lifts the remarkable
degeneracy of the model with just NN bonds. In that simple
case, the energy of a path depends solely on the number of
NN links, independent of the arrangement of kinks along it;
thus, the energy of the ground state is proportional to the
number of NN links of the shortest path between two points,
and the entropy is related to the number of combinations of
horizontal and vertical links that can connect the points.3,5

Including NNN interactions causes the step energy to be-
come a function of both the length of the step and the num-
ber of its kinks, eliminating the simple path-counting result.5

It can then become energetically favorable for the step to
lengthen rather than add another kink. This causes the NN
energy levels to split in a nontrivial way, making it possible
for a longer step to have a lower energy than a shorter step.
A related complication is that the expansion itself depends on
the relative strength of the NNN interaction: Instead of an
expansion just in terms of exps−ue1u /kBTd, the expansion also
is in terms of expse2/2kBTd. Hence, to take the NNN expan-
sion to the same order of magnitude as the NN expansion, an
unspecified number of terms is required, depending on the
size of the ratioe2/e1.

Since the NNN Ising model cannot be solved exactly and
we cannot generalize the low-T expansion, we turn to an
SOS model, which was used in earlier examinations of step

problems, most notably in the seminal work of Burton, Ca-
brera, and Frank,13 and later used for steps of arbitrary ori-
entation by Leamy, Gilmer, and Jackson.14 It was also ap-
plied to an interface of arbitrary orientation in a square-
lattice Ising model.15

Although the SOS model can be treated exactly, the result
is somewhat unwieldy. Fortunately, at low temperature—the
appropriate regime for the experiments under
consideration—the solution reduces to a simple expression.

A. Description of the model

Consider a step edge of projected lengthL separating an
upper adatom-free region from a lower adatom-filled region
(see Fig. 1). The step edge is completely described by speci-
fying its heightyi at positioni s0ø i øLd. The energy of the
step edge depends on the number of broken bonds required
to form it. Let V andH represent the vertical and horizontal
NN bond strengths divided bykBT, and letU andD represent
up-diagonal and down-diagonal NNN bond strengths over
kBT. Then the step-edge energyE;EshDijd depends only on
Di ;yi −yi−1.

For clarity, we consider two examples. First, ifDi =3 (as
is the case between columnsa andb in Fig. 1), then between
positionsi and i +1 there are 3 brokenH links, 2 brokenU
links, and 4 brokenD links. There are also 2 brokenV links,
but this number is independent ofDi, since every step-edge
configuration of projected lengthL requires exactlyL broken
V links. Similarly, if Di =−3 (as is the case between columns
c andd in Fig. 1), then there would be the same number of
brokenH links, but there would now be 4 brokenU links and
2 brokenD links (that is, the number of brokenU and D
links switch from the previous case). From these examples
we see that, in general, there areuDiu broken H links, uDi
−1u brokenU links, anduDi +1u brokenD links. It therefore
follows that the step-edge energy is

EshDijd
kBT

= o
i=1

L

sV + HuDiu + UuDi − 1u + DuDi + 1ud ; o
i=1

L

KsDid.

s1d

Because we seek the orientation dependence ofb and b̃,
we constrain the step to have an overall offsetY;yL−y0

FIG. 1. A finite-sized step edge whose projected length isL. The
step has heightyi at position i s0ø i øLd. The height difference
yL−y0 is fixed; thus, the step edge makes an angleu with the hori-
zontal axis, and has an overall slopem (shown as the top of the gray
region). The energy of the step edge is found by counting the num-
ber of broken links required to form it. Here all NN and NNN
broken links are shown.
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;L tanu=oi=1
L Di. (This constraint is represented in Fig. 1 by

the shaded gray area. Equivalently, we specify that the over-
all slope of the step ism; tanu.) The constrained partition
function is therefore

ZsYd ; o
hDj

dSY − o
i=1

L

DiDe−EshDijd/kBT, s2d

wherehDj is the set of allDi each of which ranges over all
integers. FromZsYd we can find the orientation dependence
of the free energyFsYd=−kBT ln ZsYd, theprojectedfree en-
ergy per lengthfsmd=FsYd /L, and the line tension(or free
energy per length) bsud= fsmdcosu (since the step length is

L /cosu); thence, we can find the stiffnessb̃sud=bsud
+]2bsud /]u2.

For future reference, note that the process of extracting an
atom from the step edge and replacing it alongside the edge,
discussed in the penultimate paragraph of the Introduction,
creates two pairs ofD= +1 andD=−1, costing 4H according
to Eq. (1) and removing a net of 2 NN bonds, so thatH=
−e1/2kBT=«k/kBT. Similarly, we compare the energies of
two NN atoms, abutting(the lower side of) a step edge
shDij=0d at i0 and either parallel or perpendicular to the
edge. In the first case,Di0

= +1 andDi0+2=−1, with an added
energy of 2H+2sU+Dd according to Eq.(1). In the perpen-
dicular caseDi0

= +2 andDi0+1=−2, implying an added en-
ergy of 4H+4sU+Dd. Counting bonds we see that the paral-
lel configuration has one moree1 bond and two moree2
bonds than the perpendicular configuration. InvokingH=
−e1/2kBT, we see thatU+D=−e2/kBT; if U=D, then D=
−e2/2kBT. The factor-of-2 difference between broken links
in Eq. (1) and broken bonds was noted(for H links) already
in the classic exposition by Leamyet al.14 An alternate argu-
ment, presented over a decade ago,16 for this factor of 2 is
that the ragged edge is created by severing bonds along the
selected path through an infinite square. This leads to the
formation of two complementary irregular boundary layers
(with reverse values ofhDij, so that the associated energy of
each is half that of the broken bonds).

B. Evaluation of the free energy

As detailed in the first part of the Appendix, the sum in
the Fourier transform ofZsYd, which we denote byWsmd,
factorizes. Thus, it can be written as

Wsmd = expf− Lgsimd/kBTg,

wheregsimd is the reduced Gibbs free energy per column. To
evaluate the inverse transform, we exploit the saddle point
method and obtain(see the Appendix for details)

ZsYd < expF− LSr0 tanu +
gsr0d
kBT

DG , s3d

where the saddle pointsm0=−ir0d is defined implicitly by the
stationarity condition

−
g8sr0d
kBT

= m; tanu. s4d

Here, the prime(as ing8) denotes a derivative with respect to
r. This result can be regarded as applying a “torque” to the
step to produce a rotationu=tan−1 m from the minimum-
energy, close-packed orientation.14

Taking the logarithm of Eq.(3), we find the projected free
energy per columnfsmd as a Legendre transform of the re-
duced Gibbs free energy per columngsr0d:

fsmd
kBT

< r0m+
gsr0d
kBT

. s5d

Note that this expression is valid only forL@1; for finite-
sized systems, corrections are required. As standard for Leg-
endre transforms,17 we have

f̈smd
kBT

= −
kBT

g9sr0d
, s6d

where f̈ ;]2f /]m2. Using bsuda= fsmdcosu and m=tanu,
with a the lattice constant of the square(i.e., the column
spacing, which is 1/Î2 the conventional fcc lattice constant),
we can rewrite the stiffness as

b̃suda = f̈smd/cos3 u, s7d

or, similar to results by Barteltet al.,8

kBT

b̃suda
= −

g9sr0d
kBT

cos3 u. s8d

Thus, we only needg9srd to find the stiffness as a function of
m or u.

Of course,r0 in g9 must be eliminated in favor ofm via
Eq. (4). The details for the general case are somewhat in-
volved. Here, we simplify to the physically relevant case of
U=D and, definingS;H+U+D=H+2D, just quote the re-
sults:

g9sr0d
kBT

= − mF2 sinhr0

CsS,r0d
+ cothr0G + m2, s9d

whereCsS,r0d;coshS−coshr0 and r0smd is found by in-
verting

m=
sinhr0 sinhS

CsS,r0dfsinhS− CsS,r0ds1 − e−2Ddg
. s10d

Some details can be found in the Appendix. Since Eq.(10) is
a quartic equation for coshr0 or er0, the explicit expression
for r0smd is rather opaque. However, at low-temperatures, a
simpler formula emerges, as shown in the next section.

III. LOW- T SOLUTION: SIMPLE EXPRESSION

At low temperatures, we find that the appropriate root for
r0 diverges. Then we can write coshr0<sinhr0<er0/2. Of
course,H~1/T so that coshS<eS/2. With these approxima-
tions, Eq.(10) becomes quadratic iner0:
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m=
er0+S

seS− er0dfeS− seS− er0ds1 − e−2Ddg
. s11d

Likewise, the expression forg9sr0d, Eq. (9), becomes

g9sr0d
kBT

= − mF 2er0

seS− er0d
+ 1G + m2. s12d

Solving forer0 in Eq. (11) and inserting the solution into Eq.
(12) gives

g9sr0d
kBT

= − mÎs1 − md2 + 4me−2D. s13d

so that, from Eq.(8), and recallingD=−e2/2kBT, we arrive

at ourmain result, a simple, algebraic expression forb̃ as a
function of m:

kBT

b̃a
=

mÎs1 − md2 + 4mee2/kBT

s1 + m2d3/2 . s14d

We examine Eq.(14) in several different limiting cases.
Whene2=0, this reduces to

kBT

b̃a
=

m+ m2

s1 + m2d3/2, s15d

as found in a previous study involving only NN interactions.6

Interestingly, atu=45°, Eq.(14) shows a simple dependence
on e2, namely,

kBT

b̃a
=

ee2/2kBT

Î2
. s16d

Of course, this reduces to the venerable Ising result of 1/Î2
in the absence of NNN interactionsse2=0d.3,18,19

By considering just the lowest and second lowest energy
configurations,9,10 Zandvliet et al. obtained the result10 (ex-
pressed with our sign convention fore2) for the maximally
misoriented casem=1,

kBT

b̃a
=

Î2

1 + e−e2/2kBT , s17d

which has, for the attractivee2 of primary concern here,
some qualitative similarities to Eq.(16) (including the value
1/Î2 for e2=0) but is too small by a factor of 2 for
e2/2kBT!0; even the coefficient of the first-order term in an
expansion ine2/2kBT is half the correct value. For the oppo-
site limit of repulsivee2, Eq. (17) levels off (at Î2), in quali-
tative disagreement with the actual exponential increase seen
in Eq. (16).

Figure 2 compares Eq.(14) to corresponding exact solu-
tions [found by numerically solving Eqs.(8)–(10)] at several
temperatures whene2=e1/10. We see that Eq.(14) overlaps
the exact solution at temperatures as high asTc/6. As the
temperature increases, the stiffness becomes more isotropic,
and Eq.(14) begins to overestimate the stiffness nearu=0°.
Of course, Eqs.(8)–(10) can be used to find the exact SOS
stiffness atT=0. In agreement with previous calculations,7,13

we find

kBT

b̃s0da
=

sinhS

CsS,0dfsinhS− CsS,0ds1 − e−2Ddg
.

Finally, in Fig. 3 (using the experimental value20 «k
=128 meV⇒e1=−256 meV), we compare Eq.(14) to the
NN Ising model atT=320 K, as well as to the experimental
results of Ref. 6. For strongly attractive(negative) e2,

kBT/ b̃a decreases significantly. In fact, whene2/e1 is 1/6, so
that −e2/2kBT=se2/e1ds«k/kBTd<s1/6d4.64, the model-

predicted value ofkBT/ b̃a has decreased to less than half its
e2=0 value[viz., by a factor of 0.46, versus 0.63 if Eq.(17)
is used], so about 3/2 the experimental ratio. Ife2/e1 in-

creases even further,kBT/ b̃a further decreases and develops
positive curvature, causing an end-point local minimum to
appear atu=45°. We can determine when this occurs by
expanding Eq.(14) aboutm=1:

kBT

b̃a
=

e−D

Î2
+ S eD

8Î2
−

3e−D

4Î2
Dsm− 1d2 + ¯ . s18d

Setting the coefficient ofsm−1d2 to zero gives −2D
=e2/kBT=−lns6d<−1.8, which corresponds to a value of

FIG. 2. The range of validity of Eq.(14) is examined by com-
paring it to exact numerical solutions of the SOS model at several
temperatures. In the legendTc refers to the NN lattice-gas(Ising)
model; for ue1u =256 meV,Tc=1685 K.

FIG. 3. Equation(14) is plotted for a variety of different values
of D=−e2/2kBT, where e1 and e2 are NN- and NNN-interaction
energies, respectively, in a lattice-gas picture. The solid curve de-
noted “Ising NN” corresponds toe2=0. The dots labeled “Exp’t”
are taken from Fig. 2 of Ref. 6 and were derived from the equilib-
rium shape of islands on Cu(001) at 302 K, with the line segments
serving as guides for the eye. To minimize clutter, we omit similar
data derived from correlation functions of vicinal surfaces at vari-
ous temperatures. Note that fore2=e1/4 a maximum has developed
near tanu=1/2 that is not evident in the experimental data.
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kBT/ b̃a=Î3/6<0.29, about 2/5 the value ate2=0. For T
=320 K and«k=128 meV, this corresponds toe2/e1<0.2.
However, for the NNN interaction alone to account for the
factor-of-4 discrepancy between model/theory and experi-
ment reported by Dieluweitet al.6, Fig. 3 shows thate2/e1
<0.3 would be required.

IV. EFFECT OF TRIO INTERACTIONS

In addition to the NNN interaction, trio(three-atom, non-
pairwise) interactions may well influence the stiffness. The
strongest such interaction is most likely that associated with
three atoms forming a right isosceles triangle, whose sides
are at NN distance and hypotenuse at NNN separation. In a
lattice-gas model, there is a new term witheRT times the
occupation numbers of the three sites.12 Note that this trio
interaction energyeRT is in addition to the contribution 2e1
+e2 of the constituent pair interactions. If we count broken
trios and weight each byR, we find an additional contribu-
tion to Eq.(1) of R times,

4uDiu + 2dDi,0
+ 2 = 2uDiu + uDi + 1u + uDi − 1u + 2, s19d

where we have converted the Kronecker delta ati =0 to make
better contact with Eq.(1). Thus, without further calculation
we can include the effect of this trio by replacingH by H
+2R, U by U+R, D by D+R, and(trivially ) V by V+2R.

By arguments used at the end of Sec. II A, we recognize
R=−1

2eRT. Consequently, the effective NN lattice-gas energy
is e1+2eRT and, more significantly the effective NNN inter-
action energy ise2+eRT. Thus,eRT must be attractive(nega-
tive) if it is to help account for the discrepancy in Fig. 2 of
Ref. 6 between model and experiment. Furthermore, by re-
visiting the configurations discussed in the penultimate para-
graph of the Introduction, we find that the kink energy«k

becomes −12e1−eRT. Thus, for a repulsiveeRT, ue1u will be
larger than predicted by an analysis of, e.g., step-edge diffu-
sivity that neglectseRT. Lastly, the close-packed edge energy,
i.e. theT=0 line tensionbs0d=−1

2e1−e2, becomes −12e1−e2

−2eRT.

V. DISCUSSION AND CONCLUSIONS

We now turn to experimental information about the inter-
actions, followed by comments on the limited available cal-
culations of them, often recapitulating the discussion in Ref.
9. All the experiments are predicated on the belief that at
320 K there is sufficient mobility to allow equilibrium to be
achieved. If the NNN interactions are to explain at least par-
tially the high stiffness of experiment compared to Ising
theory, the NNN interaction must be attractive and a substan-
tial fraction of e1. Since compact islands do form on the
Cu(001) surface, it is obvious thate1 is attractive. Ife2 is also
attractive, as required for reduction of the overestimate of

kBT/ b̃, then the low-temperature equilibrium shape has
clipped corners(octagonal-like, with sides of alternating
lengths), as noted in Ref. 9; no evidence of such behavior has
been seen. The lack of evidence of a decreasing stiffness near
u<45° suggests thate2/e1 is at most 1/5.

There is implicit experimental information fore2: from
island shapes18 and fluctuations21 bs0d=220±11 meV. Since
related measurements showed1

2e1=−128 meV, we deduce
e2=−92 meV if eRT is insignificant. These values imply that
e2/e1 is somewhat larger than 1/3, which seems unlikely in
light of the unobserved predictions about the shape of islands
in that case(cf. the end of Sec. III).

To corroborate this picture, one should estimate the values
of e1 ande2, as well aseRT, from first-principles total-energy
calculations. In contrast to Cu(111),22,23 however, no such
information even fore1 has been published for Cu(001);
there are, however, several semiempirical calculations which
found «k<0.14 eV.24 In such calculations based on the em-
bedded atom method(EAM), which work best for late tran-
sition andnoble fcc metals, the indirect(“through-substrate”)
interactions are expected to be strong only when the adatoms
share common substrate nearest neighbors; then the interac-
tion should be repulsive and proportional to the number of
shared substrate atoms.25 (Longer range pair interactions and
multisite nonpairwise interactions are generally very-to-
negligibly small in such calculations; they probably underes-
timate the actual values of these interactions since there is no
Fermi surface in this picture, and it is the Fermi wavevector
that dominates long-range interactions.) If the NN and NNN
interactions on Cu(001) were purely indirect, we would then
predict e2= 1

2e1.0. However, whenever direct interactions
(due to covalent effects between the nearby adatoms) are
important, they overwhelm the indirect interaction. At NN
separation, which is the bulk NN spacing, direct interactions
must be significant, explaining whye1 can be attractive. It is
not obvious from such general arguments whether there are
significant direct interactions between Cu adatoms at NNN
separations.[For Pt atoms on Pt(100), the only homoepi-
taxial case in whiche2 was computed semiempirically, EAM
calculations26 gavee2/ ue1u=0.2, less than half the ratio pre-
dicted by counting substrate neighbors, but with the pre-
dicted repulsivee2.] It is also not obviousa priori whether
multi-atom interactions also contribute significantly.[For ho-
moepitaxy, the only semiempirical result is that they are in-
significant for Ag on Ag(001);27 however, it is likely that
semiempirical calculations will underestimate multiatom in-
teractions.]

To address these questions, we are currently carrying out
calculations28 using theVASP package.29 Preliminary results
for Cu(001) suggest thate2 is indeed attractive, and that
e2/e1 is about 1/8; there are also indications of an attractive
right-triangle trio interactioneRT with sizable magnitude
(perhaps comparable toue2u, consistent with a priori
expectations25,30), but there is also a sizeable colinear trio
interaction which is repulsive.

In summary, NNN interactions may well account for a
significant fraction, perhaps even a majority, of the discrep-
ancy between NN Ising model calculations and experimental
measurements of the orientation dependence of the reduced
stiffness;6 the effect is even somewhat greater than estimated
by the Twente group.9,10 However, inclusion ofe2 is not the
whole answer, nor, seemingly, is consideration ofeRT. One
possible missing ingredient is other multisite interactions,
most notably the linear trioeLT consisting of three colinear
atoms(a pair of NN legs and an apex angle of 180°). In a
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model calculation their energy was comparable toeRT,
25,30

albeit with half as many occurrences per atom in the mono-
layer phase. The corrections due toeLT would be more com-
plicated than simple shifts in the effective values ofe1 and
e2. Since direct interactions are probably important, there is
no way to escape doing a first-principles computation; we
continue to use theVASP package to extend our preliminary
calculations.28 A more daunting(at least for lattice-gas afi-
cionados) possibility is that long-range intrastep elastic ef-
fects may be important. Shenoy and Ciobanu have made
noteworthy progress in understanding how this interaction
contributes to the orientation dependence of noble-metal
steps.31
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APPENDIX: CALCULATIONAL DETAILS

1. Partition function

To carry out the sum in Eq.(2), we consider the Fourier
transform ofZsYd:

Wsmd ; E
−`

`

dYeimYZsYd = o
hDj

expo
j=1

L

fimD j − KsD jdg

= F o
D=−`

`

expfimD − KsDdgGL

, sA1d

whereKsDd;sV+HuDu+UuD−1u+DuD+1ud is the energy in
Eq. (1), associated with adjacent columns with height differ-
enceD. Carrying out the summation in Eq.(A1) gives

gsimd
kBT

; −
1

L
ln Wsimd = V + U + D − ln Bsimd, sA2d

where

Bsimd ; 1 +
e2D

eH+U+D+im − 1
+

e2U

eH+U+D−im − 1
. sA3d

Thus, the original partition functionZsYd is

ZsYd =
1

2p
E

−`

`

dme−imYWsmd

=
1

2p
E

−`

`

dm expFLS− im tanu −
gsimd
kBT

DG sA4d

For L@1, we can evaluate this inverse transform by steepest
decent approximation. The saddle point occurs on the imagi-

nary axissm=−ird, at the valuer0 given by the stationary-
phase condition:

−
g8sr0d
kBT

= m; tanu. sA5d

Calculating the derivative from Eqs.(A2) and(A3), we find

m= B8sr0d/Bsr0d, sA6d

where prime stands for]r. The leading contribution to this
integral (A4) is just the integrand evaluated at this point:

ZsYd < expF− LSmr0 +
gsr0d
kBT

DG . sA7d

2. Analysis ofg9„r… and specialization toU=D

From Eqs.(A2), we find

g8srd
kBT

= − B8srd/Bsrd sA8d

and

g9srd
kBT

= − B9srd/Bsrd + fB8srd/Bsrdg2. sA9d

This can be simplified, by Eq.(A6), to

g9sr0d
kBT

= − mB9sr0d/B8sr0d + m2, sA10d

the quantity needed for computing the stiffness as a function
of m. While straightforward, computing the derivatives with
the general form forB [Eq. (A3) with r= im] is quite tedious.
A slight simplification emerges if we specialize to the physi-
cally relevant caseU=D. Then, withS;H+2D, we have

Bsrd = 1 +
e2D

eS+r − 1
+

e2D

eS−r − 1
= 1 −e2D +

e2D sinhS

coshS− coshr

; 1 − e2D +
e2D sinhS

CsS,rd
, sA11d

so that

B8srd = e2D sinhS
sinhr

C2sS,rd
, sA12d

and

B9srd = e2D sinhSF coshr

C2sS,rd
+

2 sinh2 r

C3sS,rd G . sA13d

Inserting these expressions into Eq.(A6), we have

m=
sinhr0 sinhS

CsS,r0dfsinhS− CsS,r0ds1 − e−2Ddg
. sA14d

Similarly, with Eq. (A10), we find

g9sr0d
kBT

= − mF2 sinhr0

CsS,r0d
+ cothr0G + m2. sA15d

STASEVICH et al. PHYSICAL REVIEW B 70, 245404(2004)

245404-6



*Electronic address: tjs@glue.umd.edu
†Corresponding author. Electronic address: einstein@umd.edu
1H.-C. Jeong and E. D. Williams, Surf. Sci. Rep.34, 171 (1999).
2This simple equivalency does not hold for stepped surfaces in an

electrochemical system, where the electrode potentialf is fixed
rather than the surface charge density conjugate tof. H. Ibach
and W. Schmickler, Phys. Rev. Lett.91, 016106(2003).

3C. Rottman and M. Wortis, Phys. Rev. B24, 6274(1981).
4J.E. Avron, H. van Beijeren, L. S. Schulman, and R. K. P. Zia, J.

Phys. A 15, L81 (1982); R.K.P. Zia and J.E. Avron, Phys. Rev.
B 25, 2042(1982).

5J.W. Cahn and R. Kikuchi, J. Phys. Chem. Solids20, 94 (1961).
6S. Dieluweit, H. Ibach, M. Giesen, and T. L. Einstein, Phys. Rev.

B 67, 121410(2003).
7N. Akutsu and Y. Akutsu, Surf. Sci.376, 92 (1997).
8N. C. Bartelt, T. L. Einstein, and E. D. Williams, Surf. Sci.276,

308 (1992).
9R. Van Moere, H. J. W. Zandvliet, and B. Poelsema, Phys. Rev. B

67, 193407(2003).
10H. J. W. Zandvliet, R. Van Moere, and B. Poelsema, Phys. Rev. B

68, 073404(2003).
11R. C. Nelson, T. L. Einstein, S. V. Khare, and P. J. Rous, Surf. Sci.

295, 462 (1993).
12Explicitly, the contribution to the lattice-gas Hamiltonian of all

NN bonds ise1Ski,jlninj, where the site-occupation variableni

=0, 1, and the summation is over all NN pairs of sites. It is well
known thate1→−4J1 in the corresponding Ising model, so that
Tc is determined by sinhsue1u /2kBTd=1. Unfortunately, the vari-
ety of notations in papers on this subject can lead to confusion.
In Refs. 9 and 10,«1,2 have the opposite sign of oure1,2. In Ref.
17 and somewhat implicitly in Ref. 6, the so-called the Ising
parameter,«, is «k=2J=−1

2e1.
13W. K. Burton, N. Cabrera, and F. C. Frank, Philos. Trans. R. Soc.

London, Ser. A243, 299 (1951).
14H. J. Leamy, G. H. Gilmer, and K. A. Jackson, inSurface Physics

of Materials, edited by J. M. Blakely(Academic, New York,
1975), Vol. 1, p. 121.

15T. W. Burkhardt, Z. Phys. B29, 129 (1978).

16H. J. W. Zandvliet, H. B. Elswijk, E. J. van Loenen, and D.
Dijkkamp, Phys. Rev. B45, 5965(1992).

17While this issue is treated in textbooks, a more readily accessible
exposition of the negative reciprocal relationship between the
field and conjugate density susceptibilities is given(in an intro-
ductory review couched in magnetic language) by M. Kollar, I.
Spremo, and P. Kopietz, Phys. Rev. B67, 104427(2003).

18M. Giesen, C. Steimer, and H. Ibach, Surf. Sci.471, 80 (2001).
19H. J. W. Zandvliet, Phys. Rev. B61, 9972(2000).
20M. Giesen-Seibert and H. Ibach, Surf. Sci.316, 205 (1994); M.

Giesen-Seibert, F. Schmitz, R. Jentjens, and H. Ibach,ibid. 329,
47 (1995).

21C. Steimer, M. Giesen, L. Verheij, and H. Ibach, Phys. Rev. B64,
085416(2001).

22A. Bogicevic, S. Ovesson, P. Hyldgaard, B. I. Lundqvist, H.
Brune, and D. R. Jennison, Phys. Rev. Lett.85, 1910(2000).

23P. J. Feibelman, Phys. Rev. B60, 11118(1999).
24Using EAM, C. S. Liu and J. B. Adams, Surf. Sci.294, 211

(1993) found «k=139 meV. Using a pair-potential expansion
from a first-principles database of surface energies, L. Vitos, H.
L. Skriver, and J. Kollár,ibid. 425, 212 (1999) obtained«k

=163 meV. With anspd tight-binding model, F. Raouafi, C.
Barreteau, M. C. Desjonquères, and D. Spanjaard,ibid. 505,
183 (2002) calculated«k=146 meV.

25T. L. Einstein, inHandbook of Surface Science, edited by W. N.
Unertl (Elsevier Science, Amsterdam, 1996), Vol. 1, Chap. 11.

26A. F. Wright, M. S. Daw, and C. Y. Fong, Phys. Rev. B42, 9409
(1990).

27I. Vattulainen(unpublished); in conjunction with J. Merikoski, I.
Vattulainen, J. Heinonen, and T. Ala-Nissila, Surf. Sci.387, 167
(1997).

28T. J. Stasevich, T. L. Einstein, and S. Stolbov(unpublished).
29G. Kresse and J. Hafner, Phys. Rev. B47, 558(1993); 49, 14 251

(1994); G. Kresse and J. Furthmüller, Comput. Mater. Sci.6, 15
(1996); Phys. Rev. B54, 11169(1996).

30T. L. Einstein, Langmuir 7, 2520 (1991); Surf. Sci. 84, 497
(1979).

31V.B. Shenoy and C.V. Ciobanu, Surf. Sci.554, 222 (2004).

EFFECTS OF NEXT-NEAREST-NEIGHBOR… PHYSICAL REVIEW B 70, 245404(2004)

245404-7


