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Abstract

Recently it has been recognized that the so-called generalized Wigner distribution may provide at least as good a
description of terrace width distributions (TWDs) on vicinal surfaces as the standard Gaussian fit and is particularly
applicable for weak repulsions between steps, where the latter fails. Subsequent applications to vicinal copper surfaces
at various temperatures confirmed the serviceability of the new analysis procedure but raised some theoretical
questions. Here we address these issues using analytical, numerical, and statistical methods. We propose an extension
of the generalized Wigner distribution to a two-parameter fit that allows the terrace widths to be scaled by an
optimum effective mean width. We discuss quantitatively the approach of a Wigner distribution to a Gaussian form
for strong repulsions, how errors in normalization or mean affect the deduced interaction, and how optimally to
extract the interaction from the variance and mean of the TWD. We show that correlations reduce by two orders of
magnitude the number of independent measurements in a typical scanning tunneling microscopy image. We also
discuss the effect of the discreteness (‘quantization’) of terrace widths, finding that for high misorientation (small
mean width) the standard continuum analysis gives faulty estimates of step interactions. © 2000 Elsevier Science B.V.
All rights reserved.

Keywords: Copper; Equilibrium thermodynamics and statistical mechanics; Stepped single crystal surfaces; Surface structure,
morphology, roughness, and topography; Vicinal single crystal surfaces

1. Introduction fermion distributions). Recently there has been a
significant improvement in the theoretical under-

During the last decade a number of researchers standing of interacting steps on vicinal surfaces:
have used atomic-scale microscopy to make quan- as an example of a fluctuation phenomenon, they
titative experimental measurements of the terrace should be described by certain universal features
width distribution (TWD) of vicinal surfaces. To related to random-matrix theory. In particular, the
understand the data – and, especially, to extract TWD should be well describable in terms of a
the strength of the interaction between the steps – generalized form of the distribution surmised by
they have fit the TWDs with Gaussians (or in Wigner to describe some special cases of inter-
cases of no apparent energetic repulsion, with free- actions [1].

In a recent paper [2], hereafter GE, TWDs of
various vicinal copper surfaces were analyzed using* Corresponding author. Fax: +1-301-314-9465.

E-mail address: einstein@physics.umd.edu (T.L. Einstein) both the traditional Gaussian approach and the
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generalized Wigner surmise. Many conclusions We also apply the Wigner distribution to recently
published data for vicinal Pt(110). Sections 6 andwere noted in passing about the relative merits

and sensitivities of these two approaches. The goal 7 offer a pair of warnings regarding how the
discreteness of the terrace widths and the limitedof this paper is to provide supporting details

together with new results and approaches that size of the sample, respectively, can confound the
analysis. In the former case, for the range ofshould aid in the interpretation and analysis of

experimental TWDs. We explore the relationship interaction strengths found in physical systems,
discreteness becomes problematic for high misori-between the Wigner form of TWDs and the

Gaussian. We discuss several statistical considera- entations, when the mean terrace width drops to
just a few lattice spacings. In the latter case, wetions that should be taken into account. The many

issues treated by this paper arose during the course observe that statistical fluctuations due to the
typical size might well account for some of theof analyzing experimental data in GE.

This paper is organized as follows. Section 2 data sets labeled as ‘poor’, rather than some system
contaminant or measurement flaw. The Conclusionreviews the TWD derived from the generalized

Wigner surmise and presents some practical new summarizes the current state of our understanding.
approximations derived from series expansions. In
particular, we provide what we believe is the best
simple expression [Eq. (7)] to deduce the step-step

2. Generalized Wigner surmise: recap of keyrepulsion strength from the variance of the TWD.
formulas and new results from series expansionSection 3 deals with the approach of the general-

ized Wigner distribution to the form of the
As has been discussed extensively before [1,2],Gaussian for strong step–step repulsions. While

a new idea from random-matrix theory [3,4] isthis behavior had been recognized earlier, we now
that fluctuations should exhibit certain universalcharacterize it quantitatively. In Section 4, we
behavior. According to the so-called Wigner sur-contend with a recurring theme in GE: the error
mise, the distribution of fluctuations can begenerated by uncertainty in the mean of the distri-
approximated by [1]bution. Experimentalists had the belief that

Gaussian fits of the data are more forgiving of Pr(s)=arsr exp(−brs2) (1)
such errors than are Wigner fits. We study this

where s=l/
l�, l being the terrace width, and thenotion quantitatively by checking, for both distri-
constants br and ar are given by:butions, the effect of perturbations in normaliza-

tion and in mean by fitting deliberately misnormed
or displaced data. The results of arguably greatest br=CC((r+2)/2)

C((r+1)/2)D2interest to experimentalists are in Section 5. We
describe an extension of our proposed analysis
scheme for TWDs for which the first moment of #Ar+1
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distribution as a two-parameter function: in addi-

(2)tion to the exponent r, the value of the effective
mean (which scales the terrace widths; cf. and
Section 2) is adjusted simultaneously in the nonlin-
ear least-squares fit. This procedure makes little

ar=
2b(r+1)/2r

C((r+1)/2)
=

2[C((r+2)/2)]r+1
[C((r+1)/2)]r+2 , (3)difference for the ‘good’ data reported in GE, but

can have significant effect on ‘poorer’ data glossed
over in that paper. We present both graphical respectively. For brevity, we refer hereafter to this

set of formulas as the CGWD (continuum general-illustrations and thorough tabulations for the
extensive data for vicinal copper discussed in GE. ized Wigner distribution). The CGWD can be
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derived in a more transparent fashion from a for large values of r (e.g. s2 is overestimated by
ca. 0.5% at r=4 but just 0.1% at r=10).mean-field approximation [5].

The usual goal in an experiment is to extractThe approximate result in Eq. (2), derived in
the magnitude A of the elastic repulsion betweenAppendix A by asymptotic expansion, is new. It
steps, perpendicular to the step direction, givenis consistent with Eq. (9) of GE in the neighbor-
by A/l2. All standard analysis procedures make ahood of r=4; it is within 0.2% of the exact br as
continuum approximation in the direction alongcalculated using gamma functions at r=2 and is
the steps (perpendicular to the ‘upstairs’ direction);within 0.05% of br by r=4.
thereafter, A appears only in the form of a dimen-Experimentally, a TWD is typically charac-
sionless interaction strength Ã¬Ab̃(kBT )−2 ,terized by its variance s2. In principle s2 might be
where b̃ is the step stiffness. In this conceptualiza-determined directly from the second moment of
tion r is related to Ã by the equation:the TWD, but there is concern that this approach

does not adequately minimize noise in the data,
an issue we shall revisit in Section 7. Thus, in ÃW=

r(r−2)

4
(5)

practice, TWDs are fit to smooth functions;
Gaussians are typically chosen, not just for their
simplicity but because their use can be justified which follows from mapping this problem onto

the Sutherland Hamiltonian [8]. The subscript Wreadily in the limit of strong elastic repulsion
provides a reminder that this estimate of Ã isbetween steps. The variance of the TWD is then
based on the CGWD. Eq. (4b) can be solved forapproximated by the variance s2G of the fitted
r, which in turn can be inserted into Eq. (5) toGaussian. We argue here and in GE that the
provide a good estimate for ÃW. However, a muchCGWD given in Eq. (1) is scarcely more compli-
better estimate of ÃW – visually indistinguishablecated than a Gaussian but provides a better
from the exact value on a standard-resolutionaccounting of the variance. For strong step repul-
graph – comes from performing a reversion ofsions, the variance of the fitted Gaussian is usually
series of a higher-order version of Eq. (4b) to yieldnot very different from the variance s2W of a
r as a function of s2,CGWD, as is discussed more quantitatively in

Section 3. For weak repulsions, however, it is well
known that the TWD becomes too skewed to
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allow a satisfactory fit to a Gaussian.
Experimentalists finding themselves in this predica-

(6)ment have been stymied on how to proceed quanti-
tatively [6,7]. Significantly, a Gaussian fit to a

and then inserting this result into Eq. (5):TWD with non-negligible skewness cannot even
be expected to have the correct mean; the conse-
quences of this fact are dealt with in much of the ÃW#
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16 C(s2)−2−7(s2)−1+ 27
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6
s2D. (7)

reminder of this paper.
For the CGWD, the variance can be expressed

Eq. (7) should prove quite useful in analyzingsimply in terms of br. We can use Eq. (2) to
data, since it provides an excellent value for Ã asobtain
a function of the variance of the TWD, assuming
the validity of the CGWD description. We caution

s2w=
r+1

2br

−1 (4a) that all four terms must be kept in order to obtain
a good estimate of Ã from Eq. (7). We also warn
that, as discussed in Section 6, the effects of
discreteness may lead to inconsistencies with this#

1

2
(r+1)−1+ 1

8
(r+1)−2 (4b)

estimate for highly misoriented vicinal surfaces.
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Table 1
Tabulation of the results of fitting data from various vicinal surfaces of copper to a Gaussian with three parameters ( labeled by
subscript G) and to Wigner distributions with one or with two adjustable parameters ( labeled by subscripts 1 and 2, respectively)a

T Qual sG 100x2G r1 s1 100x2
1

r2 s2 100x2
2

Dm sdir

(1, 1, 7)
298 + 0.21 (1) 0.43 11.0 (6) 0.21 (1) 0.32 11.0 (6) 0.21 (1) 0.35 −0.00 (1) 0.23
(1, 1, 13)
285 + 0.19 (2) 1.31 9.7 (12) 0.22 (1) 2.21 10.0(8) 0.21 (1) 1.16 0.04 (1) 0.25
300 + 0.25 (1) 0.73 6.4 (5) 0.26 (1) 0.78 6.5 (3) 0.26 (1) 0.36 0.04 (1) 0.28
303 0 0.26 (1) 0.58 5.7 (6) 0.28 (1) 1.00 5.9 (3) 0.27 (1) 0.31 0.05 (1) 0.36
320 + 0.27 (2) 0.61 5.2 (4) 0.29 (1) 0.79 5.3 (4) 0.29 (1) 0.39 0.04 (1) 0.33
326 − 0.27 (2) 1.52 2.8 (6) 0.38 (3) 3.34 3.5 (4) 0.34 (1) 1.44 0.13 (3) 0.45
330 −/0 0.28 (2) 1.86 3.9 (6) 0.33 (1) 1.80 4.2 (4) 0.32 (2) 1.16 0.06 (2) 0.35
338 + 0.25 (1) 0.52 5.3 (6) 0.29 (1) 1.13 5.6 (3) 0.28 (1) 0.31 0.06 (1) 0.34
348 + 0.27 (1) 0.88 4.4 (5) 0.31 (1) 1.59 4.8 (4) 0.30 (1) 0.57 0.07 (1) 0.36
350 0/+ 0.27 (1) 0.16 5.0 (4) 0.29 (2) 0.89 5.1 (3) 0.29 (1) 0.23 0.06 (1) 0.40
358 0 0.21 (2) 0.79 5.6 (10) 0.28 (3) 2.71 6.8 (6) 0.26 (1) 0.87 0.09 (1) 0.38
368 − 0.25 (2) 1.77 3.1 (5) 0.36 (3) 2.89 3.9 (4) 0.33 (1) 1.57 0.12 (2) 0.45
378 − 0.30 (4) 3.52 2.5 (7) 0.39 (3) 4.20 3.0 (5) 0.36 (3) 2.48 0.14 (3) 0.46

(1, 1, 19)
290 − 0.40 (4) 3.74 2.7 (4) 0.38 (2) 2.33 2.7 (5) 0.38 (2) 2.49 −0.01 (3) 0.34
300 −/0 0.24 (2) 2.94 3.1 (6) 0.36 (4) 5.09 4.1 (6) 0.32 (2) 2.69 0.12 (3) 0.39
308 0 0.31 (1) 0.71 4.4 (3) 0.31 (1) 0.32 4.3 (2) 0.31 (1) 0.30 0.01 (1) 0.30
320 + 0.25 (1) 0.54 6.7 (3) 0.26 (1) 0.36 6.7 (2) 0.26 (1) 0.23 0.02 (1) 0.27
360 + 0.27 (2) 1.74 5.7 (5) 0.28 (1) 0.84 5.8 (3) 0.28 (1) 0.64 0.03 (1) 0.29
370 − 0.30 (3) 4.20 4.0 (7) 0.32 (3) 3.30 4.3 (6) 0.31 (1) 2.71 0.06 (2) 0.31

(11, 7, 7)
296 + 0.26 (2) 0.55 5.7 (4) 0.28 (1) 0.58 5.8 (3) 0.28 (1) 0.27 0.04 (1) 0.30
301 + 0.27 (2) 0.80 6.0 (4) 0.27 (1) 0.47 6.0 (5) 0.27 (1) 0.46 0.01 (2) 0.28
306 + 0.28 (2) 0.36 4.8 (3) 0.30 (2) 0.48 4.9 (2) 0.30 (1) 0.25 0.04 (1) 0.36
323 + 0.29 (1) 0.20 5.0 (1) 0.29 (1) 0.10 5.0 (2) 0.29 (1) 0.10 0.00 (1) 0.31

(19, 17, 17)
305 − 0.23 (2) 2.77 5.3 (7) 0.29 (2) 3.62 6.3 (7) 0.27 (2) 2.32 0.08 (1) 0.33
313 − 0.25 (2) 2.29 4.3 (5) 0.32 (1) 3.15 5.0 (4) 0.29 (2) 1.90 0.09 (1) 0.38
333 −/0 0.34 (2) 1.19 3.3 (3) 0.35 (1) 0.90 3.3 (3) 0.35 (1) 0.82 0.03 (2) 0.37
353 −/0 0.31 (2) 1.11 4.0 (3) 0.32 (1) 0.79 4.1 (2) 0.32 (1) 0.71 0.03 (2) 0.33

(23, 21, 21)
318 −/0 0.24 (1) 0.92 7.1 (4) 0.25 (2) 1.10 7.2 (4) 0.25 (1) 0.74 0.04 (1) 0.33
328 0 0.29 (1) 1.06 5.3 (3) 0.29 (1) 1.05 5.4 (3) 0.29 (1) 1.01 −0.01 (1) 0.31

a The temperature in Kelvin is given in the first column and the qualitative characterization (+ for good, 0 for fair, − for poor)
in the second. The final column, labeled Dm, indicates how much the mean (or first moment) computed directly from the data exceeds
the optimal mean obtained via the second parameter in the two-parameter Wigner fit; using the notation of Eq. (13), we have
Dm=a−1−1=1−a. Motivated by the discussion of Section 7, we include in the final column the standard deviation sdir evaluated
directly from the normalized (and adjusted to unit mean) histogram data

3. Gaussian fits of the generalized Wigner approximated by a Gaussian. This feature should
be expected, since it is accepted that TWDs fordistribution
strong repulsions are well described by Gaussians.
We quantitatively assessed the degree ofA characteristic feature of the CGWD is that

as r becomes larger, the curve can be better agreement. One measure is the x2 of a fit of the
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CGWD to a Gaussian form (with the three param- value, and the distribution normalized. In the
course of analyzing TWDs, it became obvious thateters – peak position, prefactor, and standard
the normalization of the data sets by total areadeviation – as adjustable parameters). We find that
(that is, the zeroth moment) and first momentthis measure of the fit improves exponentially with
provides qualitative agreement with the CGWD –increasing r. (Specifically, 0.012144 exp(−0.5249r)
that is, the ‘best fit’ CGWD produces a skewprovides a close upper bound of x2 for r>1.) A
distribution that roughly matches the TWD – butsecond and more useful measure is the relative
it does not match closely enough to reproduce thedifference of the standard deviation sG of the fitted
correct peak position. In order to motivate theGaussian from the actual standard deviation sW more satisfactory treatment of experimental TWDsof the CGWD, given by the square root of the
in Section 4, in this section we discuss the effectssecond moment of the CGWD about its mean of
of perturbations of the mean step separation andunity. Using Eq. (2) we find that this relative
of the normalization on the variables importantdifference is well described by the formula:
for extracting interaction strengths (s for a
Gaussian fit and r for a Wigner fit). Such perturb-sG

sW
−1¬

sG
Em∞

2
−1

−1#
0.0568

r
−

0.0138

r2
, (8)

ations might arise in experimental data either due
to statistical fluctuations or due to physical causes,

where the expression for the second moment of such as perturbations of the step-step interaction
the TWD with respect to the origin, m∞2, is given potential A/l2 or an incomplete equilibration of
explicitly as Eq. (11) of GE or Eq. (8) of EP. the vicinal surface.
Thus, at the calibration point for repulsive inter- To this end, we created an ideal data set by
actions (r=4, for which an exact solution exists) sampling the appropriate distributions at regular
the agreement is ca. 1%, and improves monotoni- intervals. This ideal set was then perturbed by
cally with increasing r. For this range (r�4) various factors not exceeding 15%, either by shift-
differences between estimates of Ã obtained from ing the mean or by scaling each point to increase
CGWD and the various Gaussian fit methods are the area under the curve. These perturbed sets
predominantly due to different philosophies of were then fit as in GE, by normalized fitting
extracting Ã from s rather than from differences functions with unit mean. Since the true value of
in the fitting methods. r or s for our ideal data set is known, it is easy

As discussed at length in EP and GE, there are to determine the error due to the perturbations.
several distinct theories for extracting the dimen- In some cases, the errors behave in complicated
sionless interaction strength Ã from sG. Monte ways.
Carlo calculations [9] indicate that the CGWD In the equations, Ds is the fitted value of s
provides an excellent estimate of Ã over the range minus the known value of s (and similarly for
of physical values of this repulsion, as well as for Dr); Dm0 (or Dm1) indicates how much the area
stronger values. Thus, as remarked at the end of under (or the first moment of ) the constructed
the previous section, it is the wisest strategy to use curve exceeds the ‘proper value’. [Moments about
Eq. (7) to estimate Ã from s deduced from the the origin are defined in Eq. (10) of GE. Here for
TWD rather than to use the predictions of one of convenience –since we are interested only in differ-
the Gaussian approximations discussed in Table 1 ences – we neglect the primes.] The effect of errors
of GE. in normalization can be described rather simply.

The fitted (normalized) curve becomes narrower
as the area under the raw curve increases. For a

4. Effects of perturbed normalization or mean Gaussian, the fractional change in s is approxi-
mately linear in the fractional error of the integ-

The CGWD is a normalized TWD with unit rated TWD, with a prefactor ca. 2/3:
mean. In GE, the mean was determined straight-

Ds/s|
s=0.30=−0.68Dm

0
+0.81(Dm

0
)2 (9)

forwardly from the first moment. The independent
variable (the terrace width) was then scaled by this The coefficients in Eq. (9) are insensitive to the
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value of s: if the standard deviation of the raw that an excellent approximation is:
curve is reduced from 0.30 to 0.20, the linear
coefficient is unchanged, while the quadratic Dr

r
=(0.3r−3.0)Dm

1
+(−2.0r+0.4)(Dm

1
)2.

coefficient is reduced slightly to 0.80. For the
CGWD, the fit is even more nearly linear: (12)
Dr/r|r=4.0=1.38Dm

0
. (10) Analogous to the previous result for s, the

fractional error of r has strong quadratic tenden-Again increased area leads to an effectively
cies, with the magnitude of the curvature increasingsharper distribution. The linear coefficient is nearly
with increasing r. The linear term complicatesdouble that in Eq. (10), as one might expect from
behavior, causing r to increase for small shifts ofEq. (13) of GE. This coefficient again is insensitive
the curve to the right. Evidently for some r-to the value of r of the raw distribution: for r=
dependent offset, the best fit will coincidentally7.0 it dips slightly to 1.37.
give the true value of r.Errors in the mean of the distribution create

errors in the fit that are not so easy to describe.
The changes in the fitted parameters are quadratic
rather than linear in Dm1, and the coefficients 5. Wigner distribution as a two-parameter fit
depend strongly on the value of s or r of the raw
distribution. In fitting experimental TWDs, it becomes

apparent that in many cases – particularly whenFor Gaussians, we find that the following
expression provides a good approximation for the data are relatively poor – the CGWDs giving

the best fits have first moments different from thestandard deviations between 0.2 and 0.4 (corre-
sponding to 1.5<r<9): first moments of the data. GE noted that the peak

of TWDs can be well fitted by treating a Gaussian
as a three-parameter fitting function, with the peak

Ds

s
#

1

2 ADm
1

s B2 . (11)
position and the prefactor allowed to vary along
with the standard deviation. [Presumably the pre-Appendix B provides an analytic derivation of this
factor differs from its expected value, set by nor-approximation as the leading-order term in an
malizing the Gaussian, because of the existence ofexpansion of the appropriate Gaussian integral.
a small ‘hump’ sometimes observed at large valuesEq. (11) can also be generated from straightfor-
of s (see below).] In contrast, it is not clear howward fitting of numerical data.1
such arbitrary modifications could be made to theThus, as might be expected since the Gaussian
CGWD, nor is it clear what physical informationis symmetric about its peak, the error is insensitive
could be extracted from a CGWD with arbitraryto the sign of the error in the mean of the raw
modifications.distribution. The fitted distribution is broader than

From a basic perspective, though, it might bethe raw one, with the fractional error of the fitted
desirable to determine the scaling length (thes dependent roughly on the ‘fractional error’ (with
‘effective mean’, which equals the first moment forrespect to s) of the first moment, that is, increasing
ideal CGWDs) and the variance in a single fittingas the distribution becomes sharper.
procedure rather than to find this length first fromSince the Wigner distribution is not symmetric
the first moment or otherwise. For the followingabout its peak, the corresponding error in fitting
discussion, we denote by l: the effective meanan off-center CGWD by a properly centered
determined as one parameter of a two-parameterCGWD should not depend purely quadratically
least-squares fit of the data to a CGWD, the otheron Dm1. Indeed, we find over the range 1<r<8
parameter being the exponent r. This refined scal-
ing implies that the argument of Pr should be l/l:.1 In this process, one can generate the result Ds/s=
It is convenient to introduce a new adjustable0.486s−2.05(Dm1)2, which is numerically superior to Eq. (11)

but does not satisfy proper dimensional behavior. parameter a which gives the ratio of l: to the actual
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mean step separation 
l�. Since s – still defined as is based both on the intuition of the experi-
menter and on the following argument: a secondl/
l� – is the natural variable to use in describing

data, our refined scaling translates into replacing peak at large s would be characteristic of the
onset of faceting; however, ‘poor’ data tends tos by s/a in the argument of the distribution. If the

integration variable s were also replaced by s/a, occur at high temperatures, whereas faceting
should be more important at low temperatures.then the refined scaling would amount to a redefi-

nition of a dummy variable, and normalization ‘Poor’ data are indicated by a ‘−’ in Table 1.
As expected, the Gaussian distribution yields awould still be realized. Since the independent vari-

able is kept as s, the extra factor is associated with reasonable, but not exceptional, fit to the data; it
worked especially well on surfaces with low tem-P(s) instead:
peratures, so relatively large Ã. As an example of
good data – exemplified by the vicinal (1 1 13)P̆r,a(s)¬

Pr(s/a)

a
(13)

surface at 300 K, depicted in Fig. 1 – the (three-
parameter) Gaussian yields a x2 value of about

In other words, the first moment of the distribu- 0.0072. The single-parameter CGWD fit gives a
tion, m1¬
l� occurs at 1/a times the optimal slightly worse fit to the data, having a x2 of 0.0078.
characteristic terrace width l:. For the two-parameter Wigner fit [Eq. (13)], the

We used MA regression routines to x2 value improves by better than a factor of two,
fit the experimental data by minimizing the value to 0.0037, with a value of r increased slightly
of x2 as a function of the adjustable parameters. (from 6.4 and 6.5), leading to a value of s closer
Since the values of s are quantized (cf. Section 6), to that from the Gaussian fit. In this case, the
there was assumed to be no error in these values. optimal fit using Eq. (13) is obtained by scaling
For simplicity, all data points were weighted the terrace widths with a value that is 96.5% of
equally. that given by the first moment of the distribution.

In other words, the first moment of the TWD is
3.6% greater than the value of the mean spacing5.1. Copper: moderately strong repulsion
associated with the best fit of the distribution.

In Fig. 2, we display results for this same vicinalOur findings for vicinal Cu surfaces are pre-
sented in Table 1, which is similar to Table 2 of Cu surface at 378 K as an example of poor data,

with a large shift in the effective mean. In thisGE, but contains many cases of ‘poor’ data omit-
ted in GE. In order to facilitate discussion, TWDs case, having extra degrees of freedom in the fit

makes a sizable difference. For the three-parameterwere divided by GE into three groups based on a
visual assessment of their quality: Gaussian fit, the x2 is 0.035; x2 increases to 0.042

for the single-parameter Wigner fit and to about$ A ‘good’ TWD changes height essentially mono-
tonically below the peak and again above it; half that value, 0.025, for the two-parameter fit,

all these values being half an order of magnitudethere are no dips, humps, or double peaks, and
there is minimal scatter in the data points. larger than in the previous, good case. The value

of r increases noticeably – from 2.5 to 3.0 – when‘Good’ data are indicated by a ‘+’ in Table 1.
$ An ‘OK’ TWD has more scatter, with small the refined scaling is allowed (and rises to 4.3 for

the shifted-mean method). The refined scalingdips and peaks introduced by variations (within
the limits of the general margin of error) of factor for terrace widths is 0.867, meaning that the

explicit average 
l� of the TWD is 15.3% greatersingle data points. ‘OK’ data are indicated by
a ‘0’ in Table 1. than the value of the mean spacing associated with

the best fit of the distribution. Characteristic of$ A ‘poor’ TWD had a double-peak or hump at
large s; correspondingly, the position of the this sort of data is the hump on the high-s side of

the peak, which distorts the single-parameter(main) peak occurs noticeably below s=1, even
when the peak is fairly narrow and the skewness CGWD fit so that it poorly reproduces the peak

region.minimal. The judgment that this data is ‘poor’
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Fig. 1. The vicinal surface Cu(1 1 13) at 300 K is an example of good data. The points show the normalized data from the STM
image. The conventional (three-parameter) Gaussian fit to the data is - - -; the fitted standard deviation is sG=0.25±0.01. The fit to
a generalized Wigner distribution with the exponent r as the single adjustable parameter is — —. The best-fit result is r=6.4±0.5,
leading via Eq. (4a) to the estimate sW=0.26±0.01. The terrace widths are scaled by the mean spacing determined from the average
of the data. The Wigner distribution is treated as a two-parameter function is ——. We now find r=6.4±0.3, leading again to
sW=0.26±0.01.

Fig. 2. The vicinal surface Cu(1 1 13) at the higher temperature 378 K is an example of poor data. As in Fig. 1, $, the data; - - -, a
conventional Gaussian fit; — —, a single-parameter Wigner fit; ——, a two-parameter Wigner fit. For the Gaussian fit, we get
sG=0.30±0.04, a broader distribution than in Fig. 1, as expected for the higher temperatures. In contrast to Fig. 1, there is a
considerable difference between the two Wigner fits, with the two-parameter version providing a much better accounting due to its
ability to adjust to accommodate the points near the peak. For the one-parameter fit, we find r=2.5±0.7, leading to
sW=0.39±0.03, while for the two-parameter fit, we get r=3.0±0.5, leading to sW=0.36±0.03. The small undulations in the data
on the high-s side of the peak, in this example near s=1.5 and again for larger s, are characteristic of poor data.
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We emphasize the following general trends in 6. Effects of discreteness on continuum models of a
TWDTable 1: In almost all instances, the value of l:

derived from the two-parameter fit to a CGWD is
smaller than m1=
l� given by the first moment Due to the crystalline nature of the surface, the

TWD is a discrete rather than a continuous func-(the average) of the TWD; likewise, the directly
measured values of s are almost always larger tion: the TWD should have a sizable number of

counts only at values of that are a
)

times the sumthan the values obtained by any of the three fitted
curves (cf. Section 7). The value of r is higher for of an integer and a constant fractional offset

determined by the terrace and the orientation ofthe scaled fit than for the single-parameter CGWD
fit, and the associated value of s typically closer the steps (e.g., this offset is 1/2 for close-packed

steps on {1 0 0} surfaces of fcc crystals). Forto that deduced from the Gaussian fit. For ‘good’
data, the change of value of m is of the order of a simplicity we neglect this offset in this paper,

setting it to zero (as on {1 0 0} surfaces of scfew percent, and the change in r and s is negligible.
For ‘poor’ data, the refined scaling factor is at crystals). Thus, s can only take on the values

s
L
¬La

)
/
l�¬L/
L�, L being a positive integer.least twice as large, and the two-parameter-fit

curve is narrower than the single-parameter-fit It is very tempting simply to apply formulae
derived for the continuous TWD given by Eq. (1).curve. The tails or humps in the experimental

TWDs seem to be responsible for the systematic In this section we discuss the potential difficulties
posed by the discrete nature of the TWD. Inspireddiscrepancies in the fits, especially the smaller mean

and smaller variance of the fits relative to the by the sealing of discrete TWDs [10], we construct
a discrete generalized Wigner distributiondirect measurements.
(DGWD) TWD given by

P̆r(s)=ărsr exp(−brs2)∑
L

d(s−s
L

), (14)
5.2. Platinum: weak repulsions

where ăr=ar/
L� is determined by the requirement
of normalization.We have also considered recently reported data

for vicinal Pt(110) at room temperature [6 ]. In Although br was defined so as to make the
mean of the CGWD unity, there is no guaranteethis system the terraces are (1×2) reconstructed,

and the steps correspond to three-unit segments that the same parameter will make the mean of
the DGWD unity; likewise, the two functions may[as would be found in a (1×3) reconstruction].

The authors in that paper conclude that the inter- have different variances. We chose values of 
L�
and r to specify a DGWD and then numericallyaction between their steps is small, but are unable

to proceed to a quantitative assessment using pre- performed two-parameter fits using CGWD for-
mulae [Eq. (1)–(3), (13)] to produce estimates ofexisting methods: Gaussian methods are utterly

inappropriate for this regime of small interactions. rc. Anticipating greater interest in behavior as a
function of Ã than of r, we converted our resultsIn Fig. 3, we show single- and two-parameter

Wigner fits of the data. For the former, r=2.06 for rc to Ã using Eq. (3).
Fig. 4 shows the difference of the fitted value(Ã=0.0309), with a x2 of 0.008. With the latter,

the optimal l: for determining s is 91% of 
l� Ãc and the ‘parent’ value Ã as a function of this
Ã for several mean widths 
L�. As may bepredicted by the average of the data (viz. a=0.91);

r rises to 2.24 (Ã=0.134) and the quality of the expected, as the TWD becomes narrower (i.e. for
sufficiently large Ã or r), Ãc becomes a decidedlyfit improves to x2=0.003.

Thus, the high-s bulge does not seem to be unreliable estimate for Ã; based on examination
of the cases 
l�/a

)
=2–6, this breakdown appearspeculiar to the vicinal Cu systems of GE. We do

not understand the physical origin of the system- to occur for r near 
L�2. This threshold corres-
ponds to s

L+1−s
L
¬a

)
/
l�¬
L�−1=s. Thus, foratic need for refined scaling of experimental data.

We see no comparable effect in our companion 
L�<4, this breakdown occurs to the region of
physical interest (cf. dashed curves in Fig. 4). OnMonte Carlo simulations, reported elsewhere [9].
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Fig. 3. Analysis of TWDs of Pt(110) using Wigner distributions. $, Experimental points of Ref. [6 ]. As in Figs. 1 and 2, - - -,
conventional Gaussian fit; — —, single-parameter Wigner fit; ——, a two-parameter Wigner fit.

the other hand, for 
L�≥4, Ãc provides a reason- small values of 
L� of Ã. Note also that in each
case there is a substantial peak in |Ãc−Ã| for smallable estimate of Ã over the range of physically

reasonable dimensionless repulsions, where the Ã. Fig. 5 shows the reduction in the error in Ãc as

L� increases, at fixed values of Ã.effects of discreteness are most pronounced for

In summary, we have raised a flag of caution
when analyzing the fluctuations of highly misori-
ented vicinal surfaces in a conventional framework.
The case of 
L�=3 corresponds to (1, 1, 7) for

Fig. 4. The error in estimates Ã
c

of Ã derived by using formulae
for the mean and variance of the continuous generalized Wigner
surmise TWD on discrete TWDs, for the physical range of Ã.

L� indicates the mean terrace width in units of a

)
. For 
L�=

2 and 3, the ordinate values have been divided by 1000 and by
Fig. 5. The error in estimates Ã

c
of Ã derived by using formulae50, respectively, to appear on the same vertical scale; evidently

discreteness for these narrow terraces introduces unacceptably for the mean and variance of the continuous generalized Wigner
surmise TWD on discrete TWD. The estimates evidentlylarge errors, particularly as Ã increases. The smooth curves

through these points, to guide the eye, are dashed to distinguish improve considerably with increasing 
L� (broader terraces,
with higher Miller indices).them from the cases with broader terraces.
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close-packed steps on surfaces vicinal to {1 0 0} increasing values of r:
planes of fcc crystals. Thus, one should view with
some suspicion the unusual large values of r and

Evar(r̂)=S 2

Nsamp −1Ar+ 3

4B. (17)Ã reported for the single temperature at which this
vicinal Cu surface was measured. For {1 1 1} sur-

In this section we explore the effects of statisticalfaces, the corresponding Miller indices are (5 3 3)
fluctuations on the estimated value of r by per-for A steps ({1 0 0} microfacets) and (2 2 1) for B
forming some well-defined numerical experiments.steps ({1 1 1} microfacets) [11].
The results are thus applicable to ‘ideal’ data. InWe also emphasize that this behavior is not a
fact there apparently are systematic effects, notedvagary of Wigner distributions. Misorientation
earlier, in real data that limit the applicability ofcauses similar problems when the mean and vari-
some deductions.ance of discretized Gaussian TWDs are analyzed

Specifically, we begin with the following simpleas though they were continuous Gaussian func-
procedure: First, we independently choose Nsamptions. For more convenient comparison with the
values of s using the same known DGWD as theabove Wigner distribution, we used Eq. (4b) to
probability density function for each selection.relate the variances and values of r. We found
Second, we fit this artificial TWD using the two-that estimates of r based on the variance of the
parameter Wigner distribution P̌r,a(s) to determinediscretized Gaussians approached the undiscret-
r, taking each point to be weighted equally inized value monotonically, rather than oscillating
accordance with standard practice [2]. Third, weas in the case of the Wigner distribution, and that
repeat this process a large number of times andthe approach to the undiscretized value of r is
measure the standard deviation of the fitted valuesactually somewhat slower in the Gaussian case
of r as well as any systematic bias in the fittedthan in the Wigner case. The Gaussian case also
estimates.showed a breakdown at large values of r (small

Fig. 6 shows the result of this procedure, withs2) similar to the Wigner case.
one million independent TWDs produced for each
value of r, and each TWD consisting of 801
independent values of s drawn according to a

7. Statistical uncertainties due to finite sampling DGWD. Clearly the linear relationship between
size the Evar(r̂) is maintained, but the slope is some-

what larger than predicted by Eq. (17).
By truncating Eq. (6) at the second term, we Another way of estimating r is to measure

can create an estimator r̂ for r: directly the mean and variance of the TWD and
to insert them into Eq. (6). Repeating our pro-

r̂=
1

2
(s32)−1− 3

4
, (15) cedure of creating artificial TWDs, we accordingly

estimate r using Eq. (6), again analyzing the
variance of the estimates as above. As seen inwhere s32 is a random variable that is an estimator
Fig. 6, the resulting estimates of r have variancesof s2. For small s2, though, the Wigner distribution
given almost exactly by Eq. (17) and noticeablyapproaches a more familiar Gaussian distribution,
smaller (though not by a large factor) than theas discussed in Section 4. For a Gaussian distribu-
variances given by the traditional, uniformly-tion, the sampling errors from a sample of size
weighted nonlinear least-squares fits. This findingNsamp for s32 are given by [12]:
means that not only is it possible to use simple
analytic functions to find r and Ã instead of using

var(s32)=
2s4

(Nsamp−1)
. (16) two-parameter nonlinear least-squares fits, but also

that doing so is statistically better!
This result appears to be contrary to the beliefAccordingly, the standard deviation of the esti-

mated values of r can be seen to increase with that performing a least-squares fit to an appro-
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points on the TWD with P(s)#0. However, devis-
ing a naı̈ve weighting by the reciprocal of the
variance of each point on the TWD is problematic
when points for which the measured value of P(x)
is equal to zero; these points would receive infinite
weight, yielding nonsensical results. Even if one
circumvents this problem, there is still the problem
that the points are not uncorrelated, which is a
requirement of the least-squares procedure [14];
the normalization condition imposes a (weak) cor-
relation between points. We can avoid these prob-
lems by simply using the mean and variance of the
TWD in Eq. (6) to find r or Eq. (7) to find Ã.

Motivated by these numerical experiments, we
computed directly (from the histogram data, after

Fig. 6. Standard deviations in fitted values of r due to statistical normalization and adjustment to unit mean) the
fluctuations. In each case, fits were made to TWDs consisting standard deviation sdir (cf. Table 1). This result is
of Nsamp=801 values of s independently distributed according systematically higher than the s’s obtained fromto a DGWD function. Each circle represent a sampling over

the various fitting techniques. The difference isone million uniformly-weighted two-parameter fits. Each square
modest for good data but pronounced for poorrepresents a sampling over ten thousand two-parameter fits, in

which the weight for each point in the TWD was weighted data. Thus, as mentioned in Section 5, it appears
proportionally to P(s). Each diamond represents a sampling to come from the curious high-s undulations that
over ten thousand applications of Eq. (6). The line is the predic- plague poor data. The fitting techniques, being lesstion of Eq. (17). Both in terms of computational difficulty and

sensitive to these points, give values of s that arestatistical quality, Eq. (6) is clearly superior to nonlinear least-
less distorted by them.squares fits.

Finally, we note that single STM images do not
allow for a large number of independent values of
s. The number of independent measurements is

priate smooth function is desirable to minimize generally much smaller than the total number of
the effects of statistical fluctuations. It seems likely, measurements, due to correlations between the
though, that the real problem lies in the weighting measurements. Although a precise determination
of the data in the fit. It has been suggested that of the effects of correlations on fitted parameters
greater weight should be given to the points near would be rather involved, a working estimate of
the peak of the TWD, so we once again repeat the number of ‘independent’ measurements – from
our procedure, this time making a least-squares fit which uncertainties can be estimated – can be
in which each point is weighted proportionally to made in the following way. First, one obtains the
the measured value of P. As Fig. 6 shows, the terrace width l

n
( y) between steps n and n+1 for

standard deviation of r̂ again varies linearly with each position y along the steps. Then the correla-
r, but with a slope that is slightly higher than that tion function [14]
of the uniformly-weighted case. In retrospect, this
result should not be surprising, since each point

C
n
(y)¬


l
0
(0)l

n
(y)�−
l�2


l2�−
l�2on the TWD represents the result of Nsamp binomial
experiments (i.e. Bernoulli trials: either the meas-
urement of step separation gives this distance s

L
or some other distance). Elementary statistics [13]

=
1


l2�−
l�2 C
∑
n∞
N−n

∑
y∞=1
Ly−y l

n∞(y∞)l
n∞+n(y∞+y)

(N−n)(L
y
−y)

−
l�2Dshows that the statistical error of binomial experi-
ments is smallest when the probability of success
is nearly zero or nearly one – in our case, for (18)
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is calculated, where N is the number of terraces in
the image (i.e. N+1 is the number of steps). The
correlation function along the steps decays expo-
nentially as C0( y)~exp(−y/j

y
), where j

y
is the

intrastep correlation length.2 j
y

is given by Eq.
(18) of Ref. [15], but the safest procedure is simply
to measure it. The correlation function between
steps, on the other hand, is more complicated;
C1(0) is negative [3], but the trend is for the
absolute value of C

n
(0) to decrease rapidly with

increasing n. We define y
c

to be the smallest value
of y for which

|C
0
(y)|∏c Yy�y

c
, (19)

Fig. 7. Twenty TWDs were simulated by drawing Nsamp=400and likewise n
c

to be the smallest value of n for
values of s according to a DGWD with r=5 and 
L�=6, indi-which
cated by the solid curve. Each TWD was then fitted to a single-
parameter CGWD, as in Eqs. (1)–(3). Shown are the TWDs

|C
n
(y)|∏c Yn�n

c
, (20) with the smallest ($) and largest (%) values of x2. The fits to

these are shown as the black dashed curve and the ×s,
respectively.where c is a small cutoff (we recommend c=0.1).

The number of ‘independent’ terrace widths will
be approximately (L

y
/y
c
) (N/n

c
).

and thus increasing the uncertainty in the measuredAs an example, we performed a Monte Carlo
value of A.simulation of a system with A=0. For simplicity,

With such small samples, the measured TWDwe chose kBT to be equal to the energy for
can differ distinctly from the DGWD due toproducing a kink, and we chose the mean distance
statistical fluctuations alone. In order to demon-between steps to be ten lattice units. We measured
strate this idea, we produce 20 TWDs, each con-j

y
=15 (consistent with theoretical predictions, see

sisting of 400 independent values of s=sL sampledpreceding footnote) and y
c
=40, and we observed

from a DGWD with r=5 and 
L�=6, and fittedthat |C
n
(0)|≤0.1 for all n≥3. Suppose this had

each TWD with a DGWD. (In this model,been an STM image representing a square region
s
L
=L/
L�; there is no offset between successiveof the crystal 200 lattice units on a side; then there

terraces.) Fig. 7 shows the TWDs with the lowestwould be approximately 20 terraces in the image,
and the highest values of x2. Curiously, in thisand (200/40)(20/2)=50 independent widths –
particular case the TWD with the largest value ofmuch smaller than the 4000 independent measure-
x2 happens to produce better estimates of both rments that one might naively suspect. As a result,
and 
L� than does the TWD with the smallestwe see that the uncertainty in statistically derived
value of x2. In no case, however, do we see thequantities such as the measured value of A are an
shoulders or second peaks in the TWD at largeorder of magnitude larger than the naı̈ve estimate.
values of s occur systematically in the ‘poor’ dataLowering the temperature relative to the kink
of Fig. 2 here or Fig. 5b in Ref. [2]. Since thecreation energy would have the effect of further
‘poor’ data were based on several dozen indepen-

reducing the number of independent measurements
dent STM measurements, they should be statistic-
ally comparable to the data of Fig. 7, but the
systematic deviation indicates that the ‘poor’ data2 As discussed in Ref. [15], from the Gruber–Mullins [16 ]
cannot be entirely understood within the frame-perspective j

y
=8
l�2 b̃/3p2kBT for A=0 and j

y
=2
l�b̃/

kBT for AI0. work of a generalized Wigner distribution.
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8. Conclusions between terrace widths within individual STM
images. As we saw in Section 7, the typical STM

In this paper we have performed several numeri- image suitable for measuring terrace widths will
cal experiments and analyses to understand better contain no more than about 50 independent terrace
the TWDs derived from physical data from vicinal width measurements, almost two orders of magni-
surfaces. We have quantitatively studied how the tude less than the 4000 total terrace width
Wigner distribution approaches a Gaussian for measurements.
large dimensionless interactions, and shown that
for most systems of physical interest the standard
deviation of the terrace width can be estimated Acknowledgements
from either distribution with little difference.
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no results from theory – such as interaction

Appendix A: Derivation of expansionsstrengths – can be meaningfully extracted from
TWDs with the wrong normalization.

In this appendix we derive a useful series expansionWe have proposed a two-parameter extension
Eqs. (2) and (8) for the coefficient br in theof the generalized Wigner surmise, which really is
quadratic exponential of the generalized Wignerjust a consistent fitting of both r and the mean
distribution. For convenience, we define the vari-terrace width within a single two-parameter least-
ablesquares fit. This added flexibility allows one to

deal more fruitfully with poorer-than-desirable
experimental data, while not changing good data r¬

r+1

2
(A1)

(or the data emerging from various numerical
simulations). Thus, this fitting function can be

Then we use Stirling’s asymptotic series [17],applied generally. On the other hand, for ‘good’
C(r)=p1/2exp(−r)r−1/2F(r):data, we have shown that a simple series expansion

based on the directly measured mean and standard
br¬CC(r+1/2)

C(r) D2 (A2)deviation of the terrace widths has better statistical
properties. The least-squares fit is more robust,
but this is a property that is useful only when the

=Ce−(r+1/2)(r+1/2)rF(r+1/2)

e−r(r)r−1/2F(r) D2 ,Wigner distribution does not capture all the impor-
tant physics, such as the role of defects or more
complicated step-step interactions; in such cases, where
the estimated values of the step–step interaction
from the Wigner – or the Gaussian – distribution F(r)=1+

1

12r
+

1

288r2
−

139

51840r3must be treated with great caution.
Finally, we emphasize the importance of using

many STM measurements to ensure good statistics −
571

2488320r4
+O(r−5). (A3)

and the desirability of calculating the correlations



73H.L. Richards et al. / Surface Science 453 (2000) 59–74

We concentrate initially on the first part of the Using reversion of series, we then find
fraction:

r−1=2s2+3(s2)2+6(s2)3+
32

3
(s2)4+O[(s2)5],Ce−(r+1/2)(r+1/2)r

e−r(r)r−1/2 D2=e−1rA1+
1

2rB2r. (A4)
(A9)

from which we getBut

r=
1

2
(s2)−1G1+

3

2
(s2)+3(s2)2A1+

1

2rB2r=expGlnCA1+
1

2rB2rDH
+

16

3
(s2)3+O[(s2)4 ]H−1=expGC1−

1

2
(2r)−1+ 1

3
(2r)−2− 1

4
(2r)−3

=
1

2
(s2)−1G1−

3

2
(s2)−

3

4
(s2)2

+
1

5
(2r)−4+O[(2r)−5 ]DH

+
7

24
(s2)3+O[(s2)4 ]H.

(A10)=e+1C1−
1

2
(2r)−1+ 11

24
(2r)−2− 7

16
(2r)−3

Finally, with Eq. (5) we can use these results to
find the dimensionless interaction constant ÃW in

+
2477

5760
(2r)−4+O[(2r)−5 ]D. terms of s2:(A5)

It is also straightforward to show that ÃW=
1

16
(s2)−2− 7

16
(s2)−1+ 27

64CF(r+1/2)

F(r) D2=1−
1

3
(2r)−2+ 1

3
(2r)−3

+
35

96
(s2)+O[(s2)2]. (A11)

−
13

90
(2r)−4+O[(2r)−5 ]. (A6) For Ã≥0.0525, the relative error in Eq. (A11) is

<1% (<0.1% for Ã≥0.15). The absolute error is
<1% for Ã≥−1/4.By combining all of these we find

Appendix B: Effect of displacement of a Gaussianbr=rA1−
1

4
+

1

32
r−1+ 1

128
r−2

fitting function in fits of a Gaussian

Suppose we have a Gaussian distribution with−
13

6144
r−3+O[r−4]B. (A7)

mean m and variance s2; we attempt to fit this
Gaussian with a second Gaussian with a mean

From this formula for br, we can use Eq. (4a) to m+Dm and a variance (1−f)2s2, where Dm is fixed
write s2 as a power series in r−1: and f is unknown. Explicitly, we write x2 as a

function of f and Dm:
s2=

1

2
(r+1)−1+1

8
(r+1)−2− 1

16
(r+1)−3

x2=P−2

2
dxGC 1

s(1−f)E2p
expA− (x−m)2

2s2(1−f)2BD
−

17

384
(r+1)−4+O[(r+1)−5]

−C 1

sE2p
expA− [x−(m+Dm)]2

2s2 BDH2
=

1

2
r−1−3

8
r−2+ 3

16
r−3+ 7

384
r−4+O[r−5].

=
1

2s(1−f)Ep
+

1

2sEp
+

1

sE2p[1+(1−f)2](A8)
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