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Abstract

We have analyzed the terrace width distribution on a large number of Cu (100) and (111) vicinal surfaces using
the standard Gaussian fit as well as by using an alternative analytical distribution, which comes from the perspective
of fluctuation phenomena and is referred to as the generalized Wigner surmise. The chief motivation is to extract
optimally the strength A of the elastic repulsion between steps. Both methods provide generally consistent estimates
of the variance. We find the Wigner approach provides a viable alternative to the standard Gaussian approach. We
review competing views on the proportionality constant relating A to the inverse square of the variance of a Gaussian
fit; the experimental range of data seems to straddle the range over which various values are optimal. The previously
suggested method for analyzing skewness proves unsatisfactory with actual data. By comparing data for different
temperatures and misorientations with predictions based on scaling, we illustrate the difficulties of obtaining
quantitative information about A. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Copper; Equilibrium thermodynamics and statistical mechanics; Stepped single crystal surfaces; Surface structure,
morphology, roughness, and topography; Vicinal single crystal surfaces

1. Introduction these interactions are strong [2]. There are prob-
lems with this standard method for both small and

By examination of the quantitatively measurable large interactions. For small interactions, the fun-
terrace width distributions (TWDs) on vicinal sur- damental assumption that the potential can be
faces one can extract information about the inter- quadratically expanded — ultimately that the fluc-
action between the steps. The typical analysis tuations of a step are small compared with the
procedure makes use of the mean-field-like mean spacing — breaks down. Then the TWD can
Gruber–Mullins expression when there are no no longer be determined reliably in this framework.
energetic interactions between the steps [1] and a In the other extreme, there are more subtle issues
similarly derived Gaussian approximation when (to be discussed shortly) on how to gauge the

repulsion strength from the width of the Gaussian.
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GWD, for ‘generalized Wigner distribution’), aris- and offer suggestions on how best to extract infor-
mation from experimental data.ing from random-matrix theory, could describe

We wish to address the following set of ques-these equilibrium fluctuations, as it does many
tions. Under which conditions does the Gaussianother fluctuation phenomena in physics [3]. This
or the Wigner expression provide the better fit ofrecognition relies on the intimate relation of the
experimental TWDs? For a particular data set,problem of interacting steps to that of fermions in
how well does the variance associated with theone spatial dimension. The simple analytic expres-
GWD fit compare with that immediately emergingsion provides an excellent approximation of the
from the Gaussian fit? How much difference isexact distribution for the three particular inter-
there among the various estimates of the inter-actions for which the problem can actually be
action strength for any particular actual data set?solved, as well as for other values in that range of
Can consistent information about interactions alsointeractions.
be extracted from the skewness of the TWDs?This finding proves particularly timely, since in
How do the various errors innate in experimentalrecent years two groups have taken issue with how
data confound the extraction of accurate informa-the Gruber–Mullins approach estimates the
tion from each type of fit?strength of the interstep interactions — particularly

The paper is organized as follows. In Section 2for large repulsions — from the variance of a
we describe the experimental set-up. We provideGaussian fit to the TWD [4–8]. While still affirm-
the reader with the essential theoretical ideas ining that the variance of the Gaussian is propor-
Section 3. Then Section 4 follows with a presenta-tional to the inverse square root of this strength,
tion and discussion of the analysis of experimentalthese papers argue that the prefactor should be
results for various copper vicinal surfaces usingconsiderably larger, by a factor somewhat below
both the standard Gaussian approximation andtwo (but by a different factor for the two groups);
the GWD. Section 5 summarizes our findings andthus, the interaction strength obtained from the
gives conclusions.

Gruber–Mullins Gaussian expression underesti-
mates the actual interaction strength considerably,
at least for large strengths. 2. Experimental

All these Gaussian methods neglect the TWD’s
skewness, which is considerable for weak inter- The experiments were performed in a standard
actions — at which none of these Gaussian approx- ultrahigh vacuum chamber with a base pressure
imations are suitable. In contrast, the GWD does of 5×10−11 mbar. Our variable-temperature scan-
allow for skewness within an expression almost as ning tunneling microscope (STM) is of the Besocke
simple as a Gaussian and has been applied success- type. The experimental set-up and the sample
fully to study the fluctuations of a broad range of cleaning are described in detail in previous publica-
problems in many fields. tions [9,10].

EP [3] offered a number of ideas on how to We used six different samples. Three of them
approach experimental data via the Wigner sur- were vicinal to the Cu (001) plane: Cu (117),
mise, but did not actually test them. In this paper (1 1 13) and (1 1 19).1 These crystal planes have
we describe the first attempt to apply straightfor- miscut angles of 11.4°, 6.2° and 4.3° respectively
wardly and systematically this formula and view-
point to a large number of vicinal surfaces of 1 It should be noted that these vicinal orientations are not
copper at various temperatures. The data sets facets but correspond to rough parts of the equilibrium crystal

shape. As such, there is no physical importance associated withinclude both good experimental data and poorer
the actual orientation having 
s� simply related to a

)
, as itresults; they span the range from the upper end of

would be on a facet plane. (E.g. for close-packed steps on aweak step repulsions to moderately strong inter- {100} surface, this simple relation is that 
s�/a
)

be a positive
actions. We can thus assess under a wide range of integer plus 1

2
.) In other words, the Miller indices can be viewed

as approximate.conditions which analysis procedures are viable
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about the dense [1:10]-direction. The mean step 10–40 STM images from different areas of the
sample.separation 
s� is 8.9 Å [corresponding to

3.5a(001)
)

, where a(001)
)

=2.55 Å is the spacing
between 
110� (close-packed) atomic rows on the
(001)-oriented copper terrace], 16.6 Å [6.5a(001)

)
] 3. Theory

and 24.2 Å [9.5a(001)
)

] respectively. The terraces are
separated by parallel single-layer {111}-microfacet 3.1. Review of fermion mapping and ‘mean field’
steps along [110]. The other three surfaces are
vicinals to the Cu (111) plane. Their miscut angles In the downstairs direction on a vicinal surface

there is just one characteristic length, the averageare 12.75°, 3.05° and 2.49° about the [1:1:2] direc-
tion. These surfaces have orientations (11 7 7), 
s� of the step spacings s. Hence, it is natural to

use as the independent variable s¬s/
s� to plot(19 17 17) and (23 21 21) respectively.1 The
samples consist of parallel single-layer A-type the TWD P(s). This distribution must be normal-

ized, and by construction it has unit mean. In[{100}-microfacet] steps along 
110�.2 The mean
terrace widths between adjacent steps are 9.2 Å general there is a repulsion between the steps of

the form A/s2, due to elastic or dipolar forces, and[corresponding to 4.17a(111)
)

, where a(111)
)

=2.21 Å
is the spacing between close-packed rows, so there is always an entropic repulsion — because

steps cannot cross — that obeys the same power-appropriate for a (100)-step on a (111)-surface],
39.1 Å [17.67a(111)

)
] and 47.9 Å [21.67a(111)

)
] law decay. Then there are three energy-related

quantities that determine the TWD (below therespectively.3 The accuracy of the quoted miscut
angles for all surfaces is within 0.1°. roughening temperature of the terraces): (1) the

thermal energy, kBT, which produces the fluctua-In our experiments, the concentration of pin-
ning sites on the surface was lower than 10−7 per tions of the steps; (2) the stiffness of each step b̃

[2], which opposes bending of the step and hasatom. For the analysis, we have chosen STM
images obtained from areas free of visible residual units of energy per length;4 (3) the strength A of

the repulsion, which has units energy×length.contamination. A measured TWD was accepted
for further analysis only when the average step There is only one dimensionless combination that

can be formed: we definedensity found from the distribution was consistent
with the nominal step density given by the miscut
angle of the surface. Fig. 1 shows STM images of Ã$

Ab̃

(kBT )2
. (1)

(a) Cu (11 7 7) at 296 K and (b) Cu (23 21 21) at
303 K. The scan widths are 240 Å and 760 Å Since steps do not start, end, or cross, the set
respectively. STM images of the stepped Cu (001) of their configurations is equivalent to world lines
surfaces were published previously [12]. (‘time-lapse photos’) of fermions evolving in one

We used a computer code in order to determine spatial dimension [i.e. (x, y) plots can be viewed
the step–step distance distributions. This code as (x, t) plots]. When A=0, the world lines are
searches for the maximum slope in a spline fitted those of free fermions. The venerable Gruber–
to the gray-scale values of each scan line perpendic- Mullins approximation fixes the two neighboring
ular to the step edges. For each distribution we steps of a fluctuating (‘active’) step to be straight
analyzed a total step length of 5–17 mm taken from and separated by twice the average spacing [1].

2 For the analysis, we choose exclusively vicinals with A-steps 4 Equivalently, b̃ can be written as kBTa
d
b−2, where b2 is the

diffusivity [2] and a
d

the lattice spacing along the step. Assumingbecause a previous study of Cu (997) (which consists of parallel
B-type steps) showed that these surfaces are unstable and that the energy of kinks is proportional to the kink length, the

diffusivity can be expressed in terms of the kink formationrestructure into other facet orientations [11].
3 In Ref. [10], erroneously different values for the nominal energy e [13,14]: b−2=2a−2

)
sinh2(e/2kBT ), where e=

128±3 meV for Cu (100) vicinals [15] and e=113±12 meV for
s� were given. The analysis of the TWDs presented there,
however, is not altered. (111) vicinals [16 ].
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Fig. 1. STM images of (a) Cu (11 7 7) at T=296 K and (b) Cu (23 21 21) at T=303 K. The scan widths are 240 Å and 760 Å
respectively. The monatomic steps run from top to bottom, and the surface height increases from left to right.

Since the TWD corresponds to the ground-state if all steps are included. [Since the coefficient of
ÃG in Eq. (5) is about 8% larger than that in Eq.density in the corresponding quantum problem,

we find from recollection of the standard problem (4), the estimate of ÃG from Eq. (5) is about that
much smaller than that from Eq. (4), i.e. assumingof a particle in a 1-D box that
just nearest-neighbor interactions. The subscript
G serves as a reminder that ÃG is determined fromP(s)=sin2Aps

2 B. (2)
the Gaussian expression, Eq. (3).]

Analytic approximants containing large numbers
of elementary functions offer an arbitrarily accu- 3.2. The GWD
rate representation of the exact result [17], but
can be inconvenient to use. Most of the above is well known, as is the

When there are strong repulsions between the existence of exact solutions for Ã=2, 0, and −1
4steps, so that the motion of each step tends to be [18]. (These three exceptional cases correspond to

confined near its mean position, a Gruber–Mullins special cases of repulsive, vanishing, and attractive
argument shows that P(s) can be approximated energetic interactions between steps, as depicted in
by a Gaussian [1,2] Ref. [17]. E.g. for steps on a Cu(001) vicinal

surface at room temperature, the case Ã=2 corres-
P(s)=

1

sE2p
e−[(s−1)2/2s2] , (3) ponds to a repulsive interaction constant A=

1.8 meV Å.) The new idea from random-matrix
theory [19,20] is that fluctuations should exhibitwhere the variance s2 is given by
certain universal behavior (ultimately determined

s2=(48ÃG)−1/2 , (4) by the symmetry of the couplings of the states, in
a way that does not have any obvious physicalif only nearest neighbors are considered and by
interpretation in the present context). According
to the generalized Wigner surmise, the distributions2=A 15

8p4ÃG
B1/2$(51.95ÃG)−1/2 (5)

of fluctuations can be approximated by [3] the
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GWD form: approximate br and ln(ar) excellently (to within
0.1% and ~0.3% respectively) when 2≤r≤8.

Pr (s)=arsr exp(−br s2). (6) Eq. (6) [supplemented with Eq. (8)] represents
an interpolation scheme between the three specialThe exponent r is related to ÃW — the subscript
cases to which it reduces [the (‘ungeneralized’)W denoting that Ã is estimated using the GWD
Wigner distributions] at the values 1, 2, and 4 forgiven in Eq. (6) — by5
r (or −1

4
, 0, and 2 for ÃW) for which the exact

r=1+E1+4ÃW or ÃW=(r−2)r/4. (7) solutions occur. At these three calibration points
the Wigner expressions P1, P2 and P4 [Eq. (6)],Thus, r provides an alternate, albeit non-linear,
though quite simple analytically, provide remarka-way to describe the strength of the dimensionless
bly accurate — at the percent level — approxim-interaction.
ations of the corresponding exact distributions.The constants ar and br are determined by the
The free fermion case (Ã=0, r=2) was illustratedtwo conditions of normalization and unit mean
in Ref. [3]. In Fig. 2 we show the correspondingrespectively. Owing to the simple analytic form of
curves for the case r=4 (or, equivalently, Ã=2),the GWD [Eq. (6)], these two r-dependent con-
which is a repulsive moderately strong energeticstants can be expressed explicitly in terms of
interaction.Gamma functions:

For values well beyond r=4 (i.e. strong step
repulsion), the Wigner form can no longer be
justified as an interpolation scheme. However,

br=CC Ar+2

2 B
CAr+1

2 B D2 Forrester [21] showed (for even values of r,
extended to rational values by Haldane [22] and
Ha [23]) that the leading (small-s) behavior of the
exact TWD is proportional to sr but with a pre-and
factor somewhat different from ar, as given in Eq.
(8). For 2≤r≤4, the prefactors agree to within

ar=
2b(r+1)/2

CAr+1

2 B
=

2CCAr+2

2 BDr+1

CCAr+1

2 BDr+2
. (8)r

These two constants turn out to have a rather
linear dependence on r. For example, the expan-
sions about r=4

br$2.2635+0.4971(r−4)+0.0006(r−4)

+O(r−4)3 , (9)

ln ar$2.4508+0.6060(r−4)−0.0111(r−4)2

+0.0015(r−4)3−0.0002(r−4)4

+O(r−4)5
Fig. 2. P(s) versus s¬s/
s� for the exactly soluble case Ã=2.
The small squares, representing an accurate numerical imple-
mentation of the exact solution, was generated using a code

5Eq. (7) follows from inspection of the Sutherland kindly provided by N.C. Bartelt, which he had developed to
produce fig. 5 of Ref. [17]. The standard Gruber–Mullins-likeHamiltonian [18], which describes interacting spinless fermions

on a large ring. To our knowledge, there is no intuitive explana- Gaussian approximation is given by the dashed curve. The
Wigner distribution for this case, P4(s), is the solid curve; it istion for the profound connection between this Hamiltonian and

the random-matrix results underlying Wigner’s surmises. visually indistinguishable at this scale from the exact solution.
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1.5%, whereas ar is about 10% above the exact tions. The traditional Gruber–Mullins approach
value for r=30. starts from a mean-field-like viewpoint. Recently,

To make connections to Gaussian analyses and starting from different perspectives, two groups
to gauge skewness, we study the moments of have re-derived Gaussian behavior for the TWDs
Pr(s). In this problem it is arguably more conve- of vicinal surfaces. Since they make different fun-
nient [3] to compute nth-order moments of the damental approximations, however, the detailed
TWD Pr(s) about the origin (m∞

n
) than about the relationship between the width of the Gaussian

mean (m
n
): and Ã differ notably. In other words, just because

one can fit a TWD well with a Gaussian does not
m
n
∞ (r)=P

0

2
snPr(s) ds. (10) mean one has an unambiguous way to estimate Ã.

In this section, we provide a quick overview of the
various Gaussian approximations and catalog theirSpecifically, the second moment m∞2 takes the form
predictions. The goal is to elucidate the distinction
between the schemes. Readers who are new to them

2
∞ (r)=

r+1

2br

. (11)
subject, or who are disinterested in the controversy
about gauging interaction strength from GaussianIn dealing with experimental data, one typically
width, can skip the remainder of this subsection,seeks the standard deviation s (or the variance
Table 1, and the consideration in Section 4 of colss2) of the TWD. For all distributions with unit
9, 10, 16, and 17 in Table 2.mean [including Pr(s)]

As noted in the Section 1, the Grenoble group
s=Em

2
∞−1. (12) [4,5] argues that the variances given in Eqs. (4)

and (5) are too small in the limit of large step
repulsions. At the core of their argument is the3.3. Recent alternative interpretations of Gaussian
observation that the GM approach determines thewidth
variance of the TWD from the fluctuations of a
single ‘active’ step, the neighboring steps beingThe Gaussian distribution has been the standard
straight/rigid. If both steps bounding a terrace arefitting function for analyzing TWDs, not only for
allowed to fluctuate independently, then the vari-its analytic simplicity but also because it can be

derived readily from physically plausible assump- ance of the TWD should be the sum of the

Table 1
Coefficients for different approximation methods, to extract interaction strength from the variance of a Gaussian fit. NN denotes
that just the steps bounding a terrace (‘nearest neighbors’) interact [with strength A/(terrace width)2], and ‘all’ indicates that all steps
interact in this way. The Saclay and modified Grenoble schemes use s2=k

X
r
X
−1 [Eq. (13)] followed by Ã

X
=r

X
(r
X
−2)/4, whereas

the Gruber–Mullins and Grenoble schemes use s2=(k
X

Ã
X

)−1/2 [a generalization of Eqs. (4) and (5)]. As discussed in the text, for
asymptotically strong repulsions, either equation can be used; the entries in parentheses are applicable in that limit. Likewise, the
limiting values for the GWD are included for comparison

Model Approximation Ref. Label X NN/all k
X

K
X

Gruber–Mullins Single active step [1,2] G NN (0.289) 48
all (0.277) 8p4/15$51.95

Grenoble Entropy of interaction completely neglected [4,5] E0 NN (0.520) 14.80
Independent steps all (0.475) 17.75

Grenoble, modified Entropy of int’n included in average way [3] E NN 0.520 (14.8)
all 0.475 (17.7)

Saclay Continuum roughening theory [6–8] R all 4p−2$0.405 (24.4)

Wigner Wigner surmise [3,19,20] W all (1/2) (16)
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variances of the fluctuations of each step, with free energy; this contribution decreases monotoni-
cally as Ã increases, consistent with comments in thecorrections for correlations of their motion. Thus,
preceding paragraph.) By comparison with the firstif the two steps fluctuate independently, the vari-
of Eq. (7), the effective value is just r2/4. In otherance of the width of the enclosed terrace should
words, after substituting the effective for the ‘bare’be twice that obtained from the GM picture. On
energetic repulsion, one finds s2=(k

X
r2/4)−1/2closer examination, the motion of neighboring

=k
X

/r, where k
X
=2k

X
−1/2. This expression for thesteps is anticorrelated.6

variance can be inverted to provide an estimate r
X
,It has long been known (but perhaps not widely

X=E, for the variance and dimensionless interactionappreciated) that the contribution of the entropic
based on this modified approximation of the entropicrepulsion decreases with increasing energetic repul-
contribution:sion. Physically, the latter repulsion diminishes the

chance of neighboring steps approaching each
other, where the non-crossing condition underlying r

X
=

k
X

s2
; Ã

X
=

r
X

(r
X
−2)

4
. (13)

the entropic repulsion becomes significant. Thus,
in the limit of very strong energetic interstep Specific values for kE are given in Table 1. For
repulsions, the Grenoble group argues that comparison, for large Ã, the variance of the Wigner
entropic repulsions between the steps become distribution becomes asymptotically (2r)−1.
inconsequential. By neglecting entropic repulsions However, for physical values of Ã, kE[1+
entirely, the Grenoble group can compute the E(1+4Ã)]−1¬kE/r is larger than s2W from Eq.
reduction due to anticorrelations of fluctuations (11) [with Eq. (8) and then Eq. (12)] by about
from the enhancement (relative to Gruber– 4% at r=8, rising to about 10% at r=5. (For
Mullins) factor of two for independently fluctuat- comparison, at these two values of the dimension-
ing steps. The basic form of the variances remains less interaction, s2G is less than s2W by 30% and
as in Eqs. (4) and (5): s2=(k

X
Ã
X

)−1/2 , where the 17%, respectively.)
subscript X gives a mnemonic for the employed All the approaches discussed so far make a
analysis scheme (G for Gruber–Mullins Gaussian; continuum approximation along the ‘time-like’ y
E0, denoting zero entropy, for the Grenoble direction but maintain discrete steps. By making a
group’s approximation). For nearest-neighbor and continuum approximation in the x direction as
all steps interacting, the variance should be well, and invoking correlation functions from
increased by factors of 1.801 and 1.711, thereby roughening theory, the Saclay group [6–8] argued
leading to smaller values of kE0 than kG, as indi- that the variance is (4/p2)[1+E(1+4Ã)]−1 , which
cated in Table 1. is also of the form kR/r, with kR=4/p2 somewhat

EP [3] showed that estimates of s2 based on this smaller than kE. Using X=R in Eq. (13), we find
idea could be extended to systems with weaker an estimate rR based on this perspective, with the
energetic interactions by including entropic repul- subscript R as a reminder of the roots of this
sions in an average way (instead of neglecting them approach in roughening theory.
completely [4,5]). This improvement is achieved In summary, the conclusion that experimental
readily via replacing the dimensionless interaction TWD data are well described by a Gaussian does
strength Ã by an effective value Ãeff¬(Ã+1

4
) not mean that the dimensionless interaction

[1+(4Ã+1)−1/2]2, which is obtained from the cubic strength is uniquely determined. There are several
term of the expansion of the projected free-energy competing ways to proceed to extract Ã, and which
of a vicinal surface as a function of misorientation is best evidently depends on how big Ã actually is.
slope. (The difference between Ãeff and Ã is thus an
average contribution of entropic repulsion to the 3.4. Skewness

A distinctive feature of the Gaussian distribu-6 In the Gruber–Mullins picture, the anticorrelation is com-
tion Eq. (3) is that the distribution is symmetricplete since the sum of neighboring terrace widths add to twice

the average spacing, 2
s�. about the mean. Although this description is satis-
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values of the dimensionless interaction strength,
i.e. 1≤Ã≤6, the skewness can be well approxi-
mated by [3]

a
3
$5

w+−w−
w++w−

. (15)

While assessing the asymmetry of the half
widths proves more practicable, the experimental
TWD data must be suitably smoothed before
invoking Eq. (15). In the present analysis we
explored two different fits to smooth functions.
Initially, we approximated the experimental TWDs
by a cubic polynomial in the normalized terrace
width s using just the data in the range
smax−w−≤s≤smax+w+.8 This procedure yieldedFig. 3. Schematic to illustrate the parameters to study the asym-
unreasonable results. Instead, to optimize the like-metry in the half widths of the TWD. The abscissa of the peak

is denoted smax, and the two values of s at which the TWD has lihood of capturing the intrinsic shape of the
half this peak height are denoted s+ and s−. The skewness is a TWD, we fitted the TWDs to an expression of the
measure of how much the half width w+¬s+−smax exceeds

form in Eq. (6), but taken as a three-parameterw−¬smax−s−.
expression, i.e. with ar, br, and r treated as free
rather than interrelated parameters. Thus, the onlyfactory for strong repulsions, it obviously is not
savings over a full fit to Pr(s) of Eq. (6) are thatgood as one approaches the free-fermion limit [a
one does not need to deal with the analytic expres-noteworthy shortcoming of Eq. (2)!]. The standard
sions for ar and br. Viewed conversely, the GWDway to quantify the asymmetry is to compute the
is arguably the simplest analytic expression thatskewness a3, defined in terms of the third moment
properly captures the innate asymmetry of TWDs.about the origin (m∞3) as [3]

a
3
¬

m
3

s3
=

m
3
∞−1

s3
−

3

s
where m

3
∞=r+2

2b
r

=
r+2

r+1
m
2
∞ .

4. Results

(14)
Fig. 4 shows TWDs measured on a Cu (1 1 13)

Ref. [3] suggested that r and/or Ã could be surface at three different temperatures. The length
determined readily by fitting separately the second scales of the experimental distributions are normal-
and the third moments of the distribution. This ized with respect to the experimentally determined
proposal turns out not to work well with actual mean terrace widths in each specific measurement.
data. The moments are too sensitive to the errors In other words, 
s� is adjusted so that the first
in the measured distribution and the discreteness moment m∞1, computed from the discrete version of
of the possible terrace widths. Eq. (10), is unity. Since our vicinal surfaces are

Plummer [24] in turn suggested assessing the not facets, the nominal value of 
s� given by the
skewness more directly by gauging the asymmetry misorientation angle may differ from the value of
of w+ and w−, the half widths (hw) at half 
s� of the measured region of the sample. (Indeed,
maximum, as depicted in Fig. 3.7 For moderate such variations are to be expected, and the size of

the fluctuations can be quantitatively charac-
7 In prose, let smax denote the value at which (a smooth fit

terized; see footnote 7 of EP [3].) The value of rto) the experimental TWD takes its maximum, and w+ and
w− are the differences between smax and the values
s±=smax±w± above and below smax respectively at which the

8 The thinking underlying this approach is that the relativesmoothed TWD is half of P(smax); i.e. P(s
max

±w±)=
1
2

P(s
max

). errors in the data are smaller in the larger values.
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For differences of order a
)

, errors in r up to 50%
occur (corresponding to 25% errors in s).

By treating the Wigner fit as a two-parameter
fit, in which the length scale 
s� is adjusted along
with the exponent r, we have been able to deal
with these troublesome cases [25]. Since the goal
of the present paper is to explore the consequences
of conventional, straightforward analysis, we defer
presentation of the details of this process [25].
With respect to a simple determination of the
variance of the distribution, the Gaussian analysis
is less sensitive to deviations of the mean value
from the nominal terrace width. (Again, details
are deferred to Ref. [25].) Here, deviations of
order a

)
/2 still provide results stable to within 5%.

The interaction strength A is relatively indepen-
dent of T, whereas b̃ decreases moderately [ like
T exp(e/kBT ), referring to Footnote 4] with
increasing T over the relevant thermal range.
Hence, Ã decreases strongly with T. Thus, study
of the same sample at several different, increasing
temperatures provides a scan in Ã from high to
low values, even though A is essentially constant.

For relatively low T, the experimental distribu-
tion is approximately symmetric. In the top panel
of Fig. 4, both the Wigner (solid curve) and the
Gaussian (dashed curve) model provide excellent
fits to the data. At low temperatures the value of
r determined using the GWD is relatively large
(rW=7.5 at 295 K ).9 With increasing temperature,
the asymmetry of the step–step distance distribu-
tion increases, and the value of r correspondingly

9 For Cu(1 1 19) around room temperature, broad distribu-
tions were observed that could not be described by a repulsive
interaction potential [9,26 ]. Accordingly, it was proposed that
attractive step–step interactions may be responsible. In Ref. [9],
however, the TWD was found to be well described by ( just) a
repulsive interaction potential above room temperature. It is
still controversial as to whether the strange TWD on Cu(1 1 19)

Fig. 4. TWD (indicated by circles) measured for Cu (1 1 13) at at room temperature arises from attractive interactions between
different temperatures. The solid curves are fits to the GWD steps. Another intriguing possibility is that one is seeing incipi-
[Eq. (6)] with respect to the single parameter r. The dashed ent low-temperature facetting between (100) and (111):
curves are fits to a Gaussian. Frenken and Stoltze recently proposed [27] that such facetting

instabilities might be common at low-enough temperature, but
that the vicinal surfaces are stabilized at higher temperatures
by the vibrational entropy of step edges. For this scenario todetermined by a fit to the GWD depends sensitively
be operative, however, there must be some subtlety, since the

on this scale factor. Differences of less than a
)
/2 facetting instability should occur first (i.e. at highest temper-

between the actual and the assumed mean terrace ature) for the more misoriented samples, (1 1 7) and then
(1 1 13), in the most straightforward view.width introduce errors of 15% into the analysis.
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decreases (rW=4.4 at 348 K ). Though the
Gaussian distribution still describes decently the
data in the vicinity of the distribution peak, it fails
in the range of large step separations. On the other
hand, the Wigner expression gives a slightly less
accurate accounting in the range of the peak,
though it fits the range of large terrace widths
reasonably well. From a formal statistical perspec-
tive, the x2 for the 35 cases we have studied is
higher (i.e. worse) for the Wigner fit than the
Gaussian fit in two-thirds of the cases, but rarely
by more than a factor of two. (Actually, this
comparison is heavily biased against the Wigner
expression, since the Gaussian fit used here to
obtain s allows three adjustable parameters: the
peak center and the prefactor in addition to the
width.)

For cataloging behavior, we find it convenient,
if perhaps imprecise, to divide the TWDs into
three groups based on a visual assessment of their
‘quality’: ‘good’ data changes height essentially
monotonically below the peak and again above it;
there are no dips, humps, or double peaks, and
there is minimal scatter in the data points. Thus,
the data are well described by the fitting functions.
Data that are ‘okay’ have more scatter, with small
dips and peaks introduced by variations (within

Fig. 5. TWD measured for two Cu (111) vicinal surfaces. Thethe limits of the general error margin) of single
upper panel shows ‘good’ data, and the lower shows ‘poor’

data points. The remaining TWDs, called ‘poor’, data. The solid and dashed curves are fits to the data using the
have double-peaks or humps at large s; corre- (single-parameter) Wigner and the Gaussian expressions respec-

tively. The fitted value sGexp and the value sWr deduced from thespondingly, the position of the (prime) peak occurs
fitted r are indicated.noticeably below s=1, even when the peak is fairly

narrow and the skewness minimal. As described
in more detail in Ref. [25], fits to the Wigner (111) vicinal surfaces are compared: (a) ‘good’

data from the (11 7 7) plane and (b) what turnsexpression can be improved considerably by simul-
taneously adjusting r and the characteristic length out to be ‘poor’ data from the (19 17 17) surface.

In addition we show the variance from using Eqs.by which s is scaled to get s. In a Gaussian fit with
just the single adjustable parameter sG (fixing the (7), (11) and (12) and the variance obtained from

the Gaussian fit respectively in both panels inpeak center at s=1), the resulting values for sG
(and so for ÃG and AG) are not changed signifi- Fig. 5. In the top panel both the GWD and the

Gaussian approximation provide good agreementcantly for ‘good’ data, and the x2 roughly doubles.
For ‘poor’ data, the x2 rises by nearly an order of with the experimental data. The variances deter-

mined using the two models agree nicely: theirmagnitude as the standard deviation increases by
about 10%, thereby decreasing ÃG and AG by difference is less than 4%, comparable to that due

to typical experimental errors (3–6%). Such errorsabout 40%.) The ~30% of cases in which the
single-parameter Wigner fit has lower x2 occur can be caused by slight deviations of the experi-

mental TWD from the true equilibrium distribu-often but not always at higher temperatures.
In Fig. 5 two distributions measured for copper tion due to various types of noise, sampling errors,
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etc. Even when there is no obvious evidence of vicinals, one would have to measure step–step
distance distributions at higher temperatures thannoise in the data, deviations of this nature must

be expected. In the lower panel of Fig. 5 the TWD shown here. This process, however, would require
samples with a larger mean terrace width (i.e.measured on (19 17 17) is a double-peak distribu-

tion and is obviously not well described by either smaller misorientation): with increasing temper-
ature, the equilibrium fluctuations of stepsof the fitting functions.

Table 2 gives an overview of our data obtained increase. When the mean amplitude of these fluc-
tuations is of the order of half the step separation,by analyzing TWDs measured on various copper

vicinal surfaces as a function of the temperature. it becomes difficult (if not impossible) to distin-
guish positions of adjacent steps. This is due toReferring to Fig. 5, the column labeled Q indicates

a visual assessment of the quality of each TWD. the temporal information in the STM images for
higher temperatures [12], which causes the stepsAll cases with ‘good’ (+) data are included, along

with representative cases of ‘poor’ (−) and of to appear in STM images as if they crossed.
Alternatively one could make use of faster STM‘okay’ (0) data. As shown in Fig. 4, the TWD for

Cu (1 1 13) becomes broader and more asymmetric instruments. To extend the temperature range in
the case of copper to T=500 K, one would needas temperature increases. In Table 2 we see for

each misorientation a monotonic — to within error a high-speed STM that is capable of recording
high-resolution images at video frequency (whichbars — decrease in the value of r with increasing

temperature, as is expected from Eq. (1) and one can easily estimate assuming the diffusion
barrier along steps to be of order 0.5 eV forsubsequent discussion. For the Cu(11 7 7) surface,

no such monotonic decrease in r is observed. This Cu(001) [15]). For the present measurements on
copper surfaces, 370 K is the upper limit for theis probably due to a systematic shift in the peak

position of the normalized experimental TWDs determination of step positions. Even for T=
320 K the data reflect a great deal of temporal(measured for this sample) compared with the

Wigner fit, which might introduce errors into the rather than spatial information due to the limited
speed of the STM tip [12]. Use of samples withanalysis.

Considering all surfaces, we obtain values of r lower step densities invites a new restriction: resid-
ual pinning sites at step edges. Residual pinningbetween 3.5 and 8.6. The lower end, occurring at

higher temperatures, corresponds to interactions sites exert greater influence on the TWD as the
mean step separation increases, making it moreweaker than the calibration point at r=4, near

the lower limit of viable Gaussian approximations challenging to measure equilibrium distributions.
In terms of the ‘quality’ of the data (col. 2), wefor moderate-to-strong dimensionless repulsion

[3], still far from the free fermion limit and even note that for small misorientation ( large Miller
indices) and to some degree for higher T, there isthe weak-interaction regime. Near r=4, there is

considerable numerical evidence that the GWD a greater tendency for TWDs to be ‘poor’.
In col. 5 we list the standard deviation sWr toshould describe the data well, provided the viability

of fundamental assumptions such as pure inverse- be expected from the tabulated r, assuming the
validity of the GWD — specifically Eq. (11) [withsquare decay of energetic repulsions (even at small

spacings s) and interactions only normal to the br from Eq. (8) and the general relation Eq. (12)].
Evidently sWr (col. 5) and sGexp (col. 4) determinedmean step direction (viz. at the same time for

fermions evolving along their world lines). For from the Gaussian fit are in reasonably good
agreement for all values of r (see Table 2) mea-lower temperatures, the dimensionless interaction

on copper is more strongly repulsive, correspond- sured in our experiments, with sWr generally larger
(but rarely by over 10% and typically much less).ing to r well above four.

For values of r below 3.5, the Gaussian approxi- Notably this is seen even when the peak of the
Gaussian is not exactly positioned at s=1 due tomation is expected not to provide an adequate fit

to the TWD, whereas the GWD should be excellent noise in the experimental data in the peak area. In
other words, the determination of the variance[3]. In order to explore this limit for copper
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using a three-parameter Gaussian fit remains reli- become apparent. From the tabulation we see that,
over our experimental range of dimensionless inter-able for shifted and slightly asymmetric distribu-

tions. Hence, the Gaussian analysis also provides action strengths, the results stemming from the
vantage of roughening theory ÃR are mostly muchexcellent results for the variances and the inter-

action constants when an experimental distribution closer to ÃW than those approximating the entropic
repulsion ÃE (which presumably are the mostis not normalized with respect to the mean terrace

width and unit mean, and so is more forgiving accurate for asymptotically large interactions).
Even though rE/rR is just kE/kR=1.17, we findthan the one-parameter Wigner approach.

Following suggestions in EP [3] we have also [with Eq. (13)] that ÃE/ÃR#1.5±0.1. If the
entropic repulsion is neglected completely [4,5],determined directly and explicitly the second and

the third moments of the experimental distribu- then the analogous ratio ÃE0/ÃR is even larger,
around two.tions [Eq. (10)]. We discuss m∞3 below in the context

of skewness. From the second moment about the Column 11 in Table 2 concerns fitting the asym-
metry of the half widths at half maximum. Ourorigin, we tabulate the corresponding standard

deviation s(m∞2) via Eq. (12). In many cases s(m∞2) approach, as noted in Section 3.4, was first to
smooth the data by fitting to the generalized(col. 6) agrees well with sWr and sGexp , but in a few

cases it is considerably larger or smaller. The Wigner expression taken as a three-parameter
function, with a and b not fixed by normalizationscattering in the results for the second moment is

due to noise in the experimental data. Even with and unit-mean conditions. From the fitted form
we obtained the half widths w+ and w−, then usedthe relatively large database of our experiments,

the evaluation of m∞2(exp) depends sensitively on Eq. (15) to determine the skewness ahw
3

and thence
the value of Ãhw.10the noise of the data. Hence, simple direct determi-

nation of the second moment from an experimental Finally, we explore some consistency checks of
the dimensionless interaction strength: we havedistribution is not a reliable method to obtain

information about r and the step–step interaction. tabulated the values for T2ÃW and T2ÃG in units
of 106K2 (cols 12, 13). From Eq. (1) and assumingHaving found decent agreement of the variances

deduced from the Wigner and the Gaussian analy- that the elastic repulsion between steps to be
relatively insensitive to temperature, we expect thisses, we next tabulate the associated dimensionless

interaction strengths based on competing approxi- quantity to have the same T dependence as the
step stiffness b̃. Fig. 6 shows T2ÃW and T2ÃG formation schemes. In the Wigner framework, ÃW

comes immediately from the fitted r via Eq. (7) the complete data set obtained for Cu (1 1 13).
The solid circles and open squares are the experi-(col. 7). Columns 7–11 give the value of Ã deduced

pursuant to several perspectives from the (same) mental data obtained from ÃW and ÃG respectively,
and the solid curve is the scaling prediction embod-standard deviation sGexp of a Gaussian fit. The

standard Gruber–Mullins single-active-step result ied in Eq. (1), with b̃ computed as specified in
Footnote 4 and AG=7.1 meV Å as found inis given by ÃG; here we use the expression derived

for interactions between all steps [Eq. (5)] rather Ref. [9]. Considering the error bars introduced by
than the conventionally invoked expression for

10 The drawback of this method, at least as presently imple-just nearest-neighbor-step repulsions [Eq. (4)]. For
mented and for the range of the dimensionless interaction con-smaller values of the dimensionless interaction
sidered, comes from sensitivity in fitting the TWD to get half

strength (Ã<5) the agreement between ÃG and widths, not in then using Eq. (15). Although our extracted
ÃW is generally good, whereas for large values Ãhw is consistently too large, it does display the correct trend,

and so might serve as a general check. The unmet challenge is(Ã>7) ÃG is generally smaller than ÃW. In the
to assess the skewness without in essence fitting the whole TWD.discussions by the Grenoble [4,5] and Saclay [6–
Attempts to determine the skewness by computing m∞3 directly8] groups of the shortcomings of the Gruber–
from the data [ following Eq. (10)] were futile. Noise had a

Mullins perspective, it was not evident how large more dramatic effect than for m∞2, sometimes producing a nega-
the dimensionless interaction strength must be for tive value for m3 and so the skewness. Therefore, we have not

listed the third moments or their equivalents in Table 2.the underestimation of it by Eqs. (4) or (5) to
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earlier estimates. Combining both sets, we deter-
mine A=7.1±0.5 meV Å. Recall that the close
agreement here between these two estimates is
exceptional; more generally for this system, Table 2
indicates that the Wigner estimate of the inter-
action strength (AW; col. 14) is closer to the value
of the interaction strength extracted from the
experimental Gaussian width assuming the rough-
ening picture advanced by the Saclay group (AR;
col. 16). The expectation of thermal insensitivity
is somewhat better realized by AG extracted from
T2ÃG than by the corresponding AW (Table 2), as
measured by a somewhat smaller standard devia-
tion of their average. Moreover, one expects A notFig. 6. Temperature dependence of T2ÃW (solid circles) and

T2ÃG (open squares) for Cu (1 1 13), with error bars distin- to depend on the misorientation angle for a given
guished by narrow and wide feet respectively. The solid curve terrace plane, at least for small angles. The sizeable
is calculated from Eq. (1), with b̃ obtained from Footnote 4 variability gives a powerful indication of the
and A set to 7.1 meV Å, the value determined in Ref. [9]. The

difficulty in extracting quantitative estimates of thegray band blanketing the data corresponds to a range of about
elastic repulsion.±50% of A.

the error of ÃW and of ÃG (as given in Table 2), 5. Conclusions and summary
the experimental data satisfy the predicted thermal
scaling behavior. The error bars of ±3.8 meV Å We have seen that for vicinal copper surfaces

at temperatures near and within ~50 K abovequoted in Ref. [9] are fortuitously similar to the
bounds of the gray region in Fig. 6, room temperature, the dimensionless interaction

can be characterized as moderately strong. In the7.1+3.5−4.2 meV Å, that blanket the data.
We now invert this approach, assuming the weak regime, the Gaussian approximation would

provide a poor fit to highly skewed TWDs.11 Invalidity of Eq. (1) and use it as a test. Even though
the quality of the Gaussian fit to TWDs may be the very strong regime, the interaction strength

would likely be extractable using the asymptoticcomparable or somewhat better than the Wigner
fit, extraction of Ã from sGexp can be problematic expression for ÃE in Eq. (13). For the present

experiments, we find that both the Wigner and thesince the optimal prefactor of the Gaussian
depends on Ã. (E.g. the ÃE estimate should be Gaussian fits provide adequate accounts of the

data. The Wigner form captures the notable skew-more accurate than the ÃR estimate at high Ã, or
low temperature.) In the case of Cu (1 1 13), for ness at smaller Ã values and by virtue of the

excellent agreement with the exact results at r=4,which we made measurements at most temper-
atures, Fig. 6 shows that the Gaussian data are should be particularly accurate for the cases of

weaker Ã values we studied. Even if it were easiernot particularly worse than the Wigner data. By
removing the stiffness as well as the thermal energy to extract Gaussian widths than to fit to the

generalized Wigner form, the interpretation offrom ÃW and ÃG, we extract the physical ampli-
tudes AW and AG of the elastic repulsion, which these widths has become problematical. Since Ã
have dimensions [energy]×[ length]. Separate fits
to the Gaussian (from Gruber–Mullins perspec-

11 Experiments in such a regime were recently reported fortive) and to the Wigner data give estimates
vicinal Pt(110) [28]; the data beg analysis with the generalized


AG�=6.9 meV Å and 
AW�=7.2 meV Å, the Wigner surmise, from which we [25] obtain a quantitative rather
angular brackets indicating that these estimates than a qualitative estimate of the interaction of the apparent

weak step–step repulsion.are based on several different temperatures, unlike
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depends on the fourth power of this width, while sobering warning about the level of accuracy one
can presently hope to achieve in gauging theonly quadratically on r, the error seems to be

somewhat amplified in the Gaussian fit. More strength of the elastic repulsion, especially for a
limited set of measurements. While evidently thisseriously, there is controversy over the optimal

choice of prefactor when analyzing the Gaussian strength deduced from the traditional Gruber–
Mullins approach (AG) is systematically muchwidth, as discussed in Section 3.3 (cf. Table 1).

For the present range of dimensionless inter- lower than that deduced from the Wigner formal-
ism for lower temperatures ( larger Ã), anotheractions, the value derived by the Saclay group

based on roughening theory arguably gives the pervasive problem is the unexpected variability of
A under changes of temperature or misorientation.best overall estimate of Ã from the Gaussian width.

However, Monte Carlo tests [29] provide evidence Presumably this is a measure of the noise in the
measurement process. It appears to be optimisticthat the GWD offers a superior estimate, not just

between the values of Ã for which exact solutions to believe that one can measure A for this sort of
system to within better than 5–10% accuracy; errorexist, but throughout the physical range of Ã and

beyond. Moreover, for large r the GWD tends bars several times larger may often be more realis-
tic. When accurate probing of A is needed, onetoward a Gaussian; Ref. [25] provides a quantita-

tive analysis of this approach. Furthermore, a should measure several temperatures and misorien-
tations to check stability and reliability.straightforward expression has been developed [25]

to go from the variance of the GWD as given in Furthermore, all analyses rely on the approxi-
mation that the repulsion between steps occursEq. (11) to Ã without an implicit inversion br as

given in Eq. (8). only perpendicular to their mean direction (which
corresponds to instantaneous interactions betweenWe have learned many practical lessons regard-

ing analysis of data in light of the EP [3] results. pairs of fermions) and take as given the A/s2
repulsion. Both may well break down at small sThe direct determination of the moments of TWDs

generally offers little reliable information on actual or large fluctuations. However, it has been noted
already that measurements in this regime are prob-TWDs due to large errors caused by noise in the

experimental data. Although the skewness of the lematical, so that issue may not pose a significant
obstacle in approaching good data. As discussedTWD should provide a useful measure for weak

interactions, it is not clear how to fit conveniently in Ref. [3], there are further assumptions, often
unrealistic, needed to deduce a surface stressto get quantitative information without going to

the full Wigner expression, thereby obviating the responsible for the value of A.
need to monitor the skewness separately. In fitting
to the Wigner expression, the most pressing con-
cern is to devise ways to minimize the sensitivity
to uncertainty in the local average step separation. Acknowledgements
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