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Using a modified fourth-moment approximation to tight-binding theory, we have carried out a systematic
study of the energetics of steps and kinks on the W$110% surface. This model predicts an oscillatory interaction
~as a function of separation! between isolated stable steps on the W$110% surface, whereas previous studies of
step-step interactions on late transition and noble metals with the embedded atom method found a purely
repulsive, inverse-square decay. The oscillations are similar to those found by scanning tunneling microscope
measurements of vicinal Cu$100% and Ag$110% systems.@S0163-1829~96!05228-9#

I. INTRODUCTION

The study of the energetics of steps, kinks, and step-step
interactions on metal surfaces is very important because
these energies provide the key to understanding equilibrium
surface structures, surface roughening, and the dynamics of
crystal growth. Recently, the availability of the scanning tun-
neling microscope~STM! has made it possible to measure
such energies.1–7 STM observations of semiconductor
surfaces1–4 indicated that step-step interactions were purely
repulsive, decaying inversely with the square of their sepa-
ration, indicative of entropic and elastic mechanisms. How-
ever, similar studies of some metallic systems revealed a
more complicated interaction between steps.6,7 Frohn and
co-workers6 measured the distribution of terrace widths on
vicinal Cu$100% surfaces using a STM. They found that the
distribution does not scale simply with the mean terrace
width and so are not produced simply by inverse-square re-
pulsions. Instead, the step-step interactions can be interpreted
as repulsive at short distances and attractive at larger sepa-
rations of 3–5 atomic spacings. In their study of vicinal
Ag$110% surfaces, Paiet al.7 similarly concluded that inter-
actions did not decay monotonically and were attractive at
intermediate spacings. Furthermore, they noted that in this
case the oscillatory interactions could be described as indi-
rect electronic interactions, the envelope of which decayed
unusually slowly because a surface state near the Fermi en-
ergy ~and in the correct direction! mediated the interaction.

Much theoretical work has been motivated by these in-
triguing STM measurements. Most of these studies concen-
trated on the fcc transition metals, both because the experi-
ments were on these systems and because the semiempirical
methods usually used are most suitable for these elements.
For example, the embedded-atom method~EAM! has been
used to calculate step formation energy and step-step inter-
actions on Cu$100%,8 Ag$100%, and Ag$111% ~Ref. 9! and
other fcc metal surfaces.10–12 Similarly, faceting on the
Au$11n% surfaces has been studied using the similar glue
model.13 The step formation energy and step-step interac-
tions on Cu$113% and$115% were calculated using anN-body

potential.14 The energetics of steps and kinks on Ag and Pt
were also investigated using equivalent crystal theory.15 In
these calculations, the interaction potentials between steps on
the metal surfaces are dominated by a repulsive term, which,
in general, can be described with ar22 term. ~Here r is the
separation between two steps.! However, they failed to yield
an attractive force between steps at intermediate separation,
as found in STM measurements.6,7

In this paper we report an investigation of the energetics
of steps and their interactions on a W$110% surface. Our cal-
culations indicate that the interaction potential has oscillatory
behavior, dominated by anr22 term plus an oscillatory
modulation, compatible with STM observations.

This paper is arranged as follows. The theoretical ap-
proach used in this work will be described in Sec. II. The
results of step and kink formation energies on the W$110%
surface will be reported in Sec. III. Section IV discusses the
interaction between two steps. Finally, conclusions will be
drawn in Sec. V.

II. THEORETICAL MODEL

The model used in this work is based on the low-order
moments approximation to tight-binding theory. Complete
details of the fourth-moment method are contained in the
paper by Xu and Adams.16 The method builds on earlier
work by Carlsson17 and Foiles.18 The total energy is given by

E5
1

2(i , j Vpair~r i j !1E~2!1E~3!1E~4!. ~1!

Here Vpair(r i j ) is a pair interaction between pairs of ions
separated by a displacementr i j . The second-, third- and
fourth-moment terms of the electronic density of states
@E(2), E(3), and E(4) in Eq. ~1!# are evaluated by taking
double, triple, and quadruple products of tight-binding ma-
trix elements of thed orbitals, which are formulated in Ref.
16. These moment terms represent the angular components
of the interatomic interactions. In general, EAM-type poten-
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tials include only the first two terms in Eq.~1!, without the
third- and fourth-moment terms in their Hamiltonians. The
parameters in this fourth-moment method were determined
empirically by fitting to many bulk properties. In previous
papers,16,19,20 this fourth-moment method has successfully
yielded the W$100%(A23A2)R45° surface reconstruction,
reasonable activation energies for single adatom self-
diffusion on the W$110%, $211%, and$321% surfaces, adatom-
adatom interactions, and dimer diffusion on W$110% and
$211% surfaces.

The computational method used in this work will be
briefly introduced as follows. The W$110% surface is mod-
eled by creating a slab with two free surfaces and periodic
boundary conditions in the two directions parallel to the sur-
face. The periodic length is held fixed at the bulk value. The
N-atom slab is 25 Å thick~along thez direction! with about
1200 total atoms. Thex-y plane is about 15345 Å2, with
steps parallel to thex direction. Energy minimization by a
conjugate gradient method is used to determine the stable
structure of this system.

III. ENERGETICS OF PRINCIPAL STEPS
AND KINKS ON W ˆ110‰

The surface structure of W$110% has been reported in an
earlier paper.20 In general, the calculated multilayer relax-
ations are in reasonable agreement with experimental results.
Three different step orientations on$110% surfaces have been
considered in this study. Figure 1 shows the top view of
these three steps with their orientations along the@111#,
which is the closed packed direction,@110#, and @001#. To
calculate the formation energy, we add a half-monolayer
strip of atoms onto the fully relaxed$110% surface with the
direction of the pair of up and down steps along@111#, @001#,
and @110#, respectively. Then, the whole system is relaxed
freely to find the ground-state energy (Estep). As discussed,
e.g., in Ref. 9, the step formation energyG step at 0 K ~Ref.
21! can be constructed as

Gstep52Lbstep5~Estep2NstepE
coh22Ag~110!!. ~2!

HereL is the length of the step,bstep is the step formation
energy per length,N step is the number of atoms in this sys-
tem, andEcoh is the bulk cohesive energy. For the orienta-
tions we consider, the up and the down steps are geometri-
cally equivalent, enabling us simply to include the factor of 2
to account for the two of them. The factor 2Ag (110) is deter-
mined from a calculation of the energy of a slab bounded by
flat $110% surfaces:

2Ag~110!5Esurf2NsurfE
coh, ~3!

whereA is the surface area of each side of the slab,g (110) is
the $110% surface energy per area, andNsurf is the number of
atoms of this flat$110% slab ~without the extra half layer!.

Table I lists the calculated step formation energies for
three steps along the@111#, @110#, and @001#, on a $110%
surface, specifically a~11̄0! plane, as illustrated in Fig. 1.
The microfacet orientations for these steps are$110%, $112%,
and$001%, respectively. An obvious feature found in Table I
is that the@111# step has the lowest formation energy~136
meV/Å! compared with the other two~208 and 309 meV/Å!.

Thus, as expected from Ref. 9, the step energy increases as
the planar density of the microfacet decreases. While simple
bond coordination models can sometimes be misleading, we
note that on a bcc$110% surface, each ledge atom on the
@111# step has 5 nearest neighbors~NN’s!. When@110# and
@001# steps are formed on this surface, however, the number
of NN’s changes to 4 with one extra bond to be broken.
These two steps thus will require much higher formation
energy compared to that of a step along the close-packed
@111# direction.

The step formation energy can be estimated using the
‘‘awning’’ approximation.9 We briefly summarize this ap-
proach here; further details can be found in Ref. 9. One starts
with the free energy per area of the microfacet of the step
riser planes connecting atoms at the top and bottom
‘‘creases’’ of a step, multiplied by the distanced across the
riser. From this one subtracts the free energy per area of the

FIG. 1. Schematic of steps and kinks on the W$110% surface:~a!
@111# step with kink (A) and antikink (B), ~b! @001# step with kink,
and ~c! @110# step with kink.
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terrace plane times the projection ofd onto the terrace plane
~i.e., d times the cosine of the tilt of the microfacet!. For a
simple @110# step, the riser is a$112% microfacet with
d5 (A3/2)a, wherea53.165 Å is the lattice constant for
bulk W. We find, in this case, that the free energy per unit
length of step formation can be approximated as

b@110#/~110!'FA32 g~112!2
1

2
g~110!Ga, ~4!

whereg (112) andg (110) are the surface energies per unit area
of the $112% and the$110% planes, which have the values 137
and 116 meV/Å2, respectively. The estimate ofb for the
@110# step is 192 meV/Å , close to the calculated value in
Table I. Similarly, the step formation energy for@111# and
@001# steps on the$110% surface are

b@111#/~110!'FA63 g~110!2
A6
6

g~110!Ga50.4082g~110!a ~5!

and

b@001#/~110!'Fg~001!2
A2
2

g~110!Ga ~6!

and the surface energy of the$001% plane is 217 meV/Å2.
The estimatedb ’s for these two steps are 150 and 427
meV/Å , respectively. The awning estimates, while fair, are
not as good as for late transition and noble metals because
the directionality of bonds is much more important for W.

In a two-dimensional zero-temperature Wulff plot, we
would quickly find that the@111# step provides the dominant
‘‘facet,’’ i.e., edge. Moreover, closer inspection shows that if
b@111#,A2/3b@110# , there will be no@110# edge on the equi-
librium crystal shape, where the numerical factor comes
from the inner product of the unit direction vectors of the
two steps. This inequality is in fact satisfied by the numbers
in Table I. Likewise, sinceb@111#,A1/3b@001# , there will be
no @001# edge. Presumably, no other lower-symmetry orien-
tation is stable either. In other words, the fourth-moment
calculations predict that the only stable step orientation at 0
K is @111#, so that the equilibrium two-dimensional crystal
shape is a diamond.~At finite temperature, we expect these
statements to remain excellent approximations, though, of
course, the facet will be rounded by finite-temperature
roughening.! We shall see next that the instability of the
@110# and the@001# steps in these calculations is reflected by
their negative kink energies. Experimentally, there are no
direct measurements of isolated single steps on the W$110%
surface. However, low-energy electron diffraction studies of
the W$430% surface, which can be treated as@001# steps uni-
formly separated on$110% surface, revealed no roughness for

@001# steps.22 Since the separation of@001# steps (; 16 Å!
on $430% surface is rather large, it seems unlikely that inter-
actions between@001# steps reduce this discrepancy. This
issue certainly demands further investigation.

To compute the kink formation energyGkink at 0 K, we
use two methods. When we remove a half row of atoms from
one step, it will actually create two kinks in the simulation
cell, due to the periodic boundary condition~Fig. 1!. Two
kinks created in the simulation cell on@110# or @001# steps
are equivalent to each other, i.e., have the same microfacet
structure. Therefore,Gkink can be calculated using this ex-
pression

Gkink5~Ekink2NkinkE
coh22Ag~110!22Lbstep!/2, ~7!

whereNkink is the total number of atoms in this system and
Ekink is the total energy of the system in the ground state.
The Ag (110) andLbstep are the formation energy of surface
and step, which have been given in Eqs.~2! and ~3!. The
distance between kinks is over 15 Å. The kink formation
energies on the@110# and @001# steps are listed in Table I.

For @111# steps there are two kinds of kinks: kinks and
antikinks. As shown in Fig. 1~a!, a kink (A) is a simple unit
deviation of the step along the ‘‘other’’@111# direction on
the surface. To return to the original step requires a unit
deviation along the higher-energy@100# direction; we call it
an antikink (B). Alternatively, the antikink can be viewed as
returning to the original step one atom sooner, along the
same@111# direction as the kink, along a ‘‘Z-shaped’’ path,
forming an acute rather than obtuse angle with the step. This
perspective turns out to produce a lower energy in the aw-
ning approximation that is closer to the computed value.
Since a kink-antikink pair will be created using periodic
boundary conditions~i.e., by adding or removing half a chain
of atoms!, we need to adopt a different method to obtain the
isolated kink or antikink formation energy. We could use a
slab with a high Miller index associated with an azimuthal
twist, but it is easier to use a large cluster on the$110% plane
with its four edges along different̂111& directions. The
length of each edge is over 20 Å. Then, an isolated kink or
antikink can be created in one edge. Similarly,Gkink can be
written as

Gkink5Ekink2NkinkE
coh22Ag~110!2Lbstep, ~8!

where L is the total ledge length of the cluster and other
terms have the same definition as Eq.~7!. Table I gives the
formation energies of single kink and antikink on a@111#
step.

One feature observed from Table I is that the@110# and
@001# steps possess negative kink formation energies, in con-
trast to that on@111# step. This negativity simply indicates
the @110# and @001# steps are energetically unstable in this

TABLE I. Formation energies of a step and a kink on W$110% at 0 K.

Step formation energy~meV/Å! Kink formation energy~meV!

@111# step 136 on@111# step kink 349
@110# step 208 antikink 427
@001# step 309 on@110# step 2288

on @001# step 2275
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calculational method, decaying into segments with the stable
orientation. In the other words, the@111# step, in which the
step ledge is running in the@111# direction, will be very
smooth and have a very low density of thermally excited
kinks. In contrast, the@110# and@001# steps, as well as steps
in any other direction, would form a large-scale zigzag pat-
tern with a high densities of kinks. To understand the differ-
ence in kink formation energies, we first count the bond co-
ordination change when a kink is created. Then an
‘‘awning’’-type argument is used to give quantitative esti-
mates. Qualitatively, when a kink is formed on the@111#
step, one NN bond will be broken with the total NN’s for the
outer corner kink atom changing from 5 to 4 and the other
ledge atoms retain the same NN’s. The formation energy
therefore is a positive value. In contrast, during the formation
of a kink on the@110# and @001# steps, the number of NN’s
will increase by one~5 NN’s for the inner corner kink atom
vs 4 NN’s for a ledge atom!. Thus it is energetically more
favorable to form a kink on the@110# and @001# steps with
formation energies of2288 and2275 meV per kink, re-
spectively.

Similar to the estimates of step formation energy using an
awning approximation, the kink formation energies on@111#,
@110#, and@001# steps can be approximated as

Gkink
@111#'FA32 b@111#2

A3
6

b@111#Ga5
A3
3

b@111#a, ~9!

Gantikink
@111# 'FA32 b@111#1

A3
6

b@111#Ga5
2A3
3

b@111#a

'Fb@100#2
A3
3

b@111#Ga, ~10!

Gkink
@110#'FA32 b@111#2

A2
2

b@110#Ga, ~11!

Gkink
@001#'FA32 b@111#2

1

2
b@001#Ga. ~12!

Such simple estimates will give the kink formation energies
to be 249 meV for a kink and 497 meV~or 730 meV if one
chooses the@100# perspective! for an antikink on a@111# step
293 and2116 meV on@110# and@001# steps, respectively,
which agree qualitatively with the full calculation based on
Eqs.~7! and ~8!.

IV. INTERACTION BETWEEN †111‡ STEPS
ON THE W ˆ110‰ SURFACE

Using this fourth-moment method, we studied the interac-
tion potential of two isolated straight@111# steps as a func-
tion of their separation. There are three possible geometries
for two isolated steps. As shown in the inset of Fig. 2, the
first type involves an up and down pair, with the region
between them elevated above the surface by one layer; we
call this the ‘‘mesa’’ configuration. The second type, illus-
trated in the inset of Fig. 3, has a down and up pair, with the
intervening region depressed by a layer; we call this a
‘‘dado’’ configuration. Such interactions occur across islands
and pits, respectively, on the surface. The third type of step-
step interaction, having two ups~or two downs!, is shown in
the inset of Fig. 4. It would occur on a vicinal surface and is
called a ‘‘staircase’’ configuration.

To calculate the interaction between a mesa pair, we first
create two@111# steps on the$110% surface, separated by 20
Å. The distance between steps is defined as the distance be-
tween the midpoints of the riser planes. The ground-state
energy of this fully relaxed system ofN` atoms is denoted as

FIG. 2. ‘‘Mesa’’ step-step in-
teraction potentialU(r ) shown
~diamond points! as a function of
step separationr on the W$110%
surface. The dashed line is from
Eq. ~14!, using parameters listed
in Table III.
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E` . Then, we reduce the separation between the two steps
by removing atomic rows and relaxing the new structure
~total energy denoted asEI with NI atoms!. The interaction
can be written as:

UI5
1

2L
@EI2E`2~NI2N`!Ecoh#. ~13!

Figure 2 shows the interaction potential as a function of
separationr . Basically, the interaction potential can be
treated as a monotonic repulsive function plus a decaying

oscillatory modulation. Atr51.4 Å, only one linear adatom
row is left on the$110% surface and the interaction is a very
strong repulsion~82.3 meV/Å!; this indicates that such a
linear pattern of adatoms on the$110% surface is very unfa-
vorable energetically. With the separation increased to
r53.77 Å , two steps will attract each other with an interac-
tion energy of216.8 meV/Å. Thereafter, the interaction os-
cillates between repulsive and attractive out to very large
separations.

Similarly, we can calculate the interactions for dado pairs
as a function of separationr . In this case,E` is the ground-

FIG. 3. ‘‘Dado’’ step-step in-
teraction potentialU(r ) shown
~diamond points! as a function of
step separationr on the W$110%
surface. The dashed line is from
Eq. ~14!, using parameters listed
in Table III.

FIG. 4. ‘‘Staircase’’ step-step
interaction potentialU(r ) shown
~diamond points! as a function of
step separationr on the W$110%
surface. The dashed line is from
Eq. ~14!, using parameters listed
in Table III.
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state energy with the two steps separated by 20 Å. The in-
teraction potential also shows oscillatory behavior for dado
steps. The minimum distance between two dado steps is 1.29
Å, which actually is the nearest distance between two@111#
atom rows on a$110% plane. The interaction atr51.29 Å is
2135.8 meV/Å. Whenr increases to 4.03 Å, the interaction
is still attractive with a magnitude of22.9 meV/Å. At large
r , the interaction changes to repulsive and then fluctuates as
seen in Fig. 3.

Unlike the previous two types of steps, most of the inter-
actions between staircase pairs are repulsive, with a small
attraction atr516.81 Å. ~See Table II.! Figure 4 shows the
interaction potential as a function of separationr . ~Herer is
just the lateral separation and does not include the vertical
component.! The staircase interactions also exhibit the main
feature observed in mesa and dado interactions: oscillatory
behavior. At the nearest separation~3.91 Å!, the interaction
between two steps is a repulsion of 7.9 meV/Å. When
r increases to 6.5 Å, the repulsion reduces to 0.9 meV/Å.
The interaction oscillates back to 2.9 meV/Å atr59.06 Å
and then decreases again as seen in Fig. 4.
Two experimental studies found that the interaction po-

tential between two steps on particular noble metal surfaces
exhibits oscillatory behavior.6,7 Evidently the step-step inter-
actions are repulsive for small step separations and attractive
at intermediate separations, in contrast to the step-step inter-
actions on semiconductor surfaces, which show a monotonic
r22 repulsion due to elastic~or at least entropic! effects.1–4 It
has been suggested that the attractive step-step interactions
can result from dipole-dipole interactions23,24 or indirect
electronic interactions.6,7,25,26

Figures 2– 4 show that the interactions between two iso-
lated steps on the W$110% surface do not simply decay
monotonically with increasing separation. Instead, they can
be modeled as a monotonic function plus an oscillatory
modulation. In order to establish the source and form of the
interactions, we fit a general form to the ‘‘data’’ produced by
the fourth-moment method. Following the arguments by Pai
et al.7 and Einstein,26 we choose the general form as

U~r !5
A

r 2
1
Bcos~2kr1d!

rm
. ~14!

Here A, B, m, k, and d serve as fitting parameters. The
r22 term is the elastic or dipolar interaction. The second
term in Eq. ~14! has the Ruderman-Kittel-Kasuya-Yosida-
like form27 characteristic of indirect interactions in the as-

ymptotic limit; k is the Fermi wave vector with velocity in
the direction of the interstep separation;d is associated with
the localized perturbation. In fitting Eq.~14! to the results of
the fourth-moment calculation, we found values ofm rather
close to 2~and decidedly less than 5! for the three interaction
potentials. While the indirect interaction is typically charac-
terized by an envelope decaying asr25, it decays asr22

when the interaction is mediated by surface states.~See foot-
note 27 in Ref. 7.! While, to our knowledge, there has been
no computation of the surface electronic structure of W$110%,
there have been such computations for its neighbor,
Ta$110%.28,29 There are some surface states in these calcula-
tions a couple eV about the Fermi level. They might be
closer to it for W. Unfortunately, the computations were not
performed in the direction associated with propagation be-
tween @111# steps, so it is not clear whether these states
actually contribute to the step interaction. In any case, to
simplify our argument, we setm to be 2. The fitting param-
eters for three interactions are listed in Table III. The dashed
lines on Figs. 2–4 are from Eq.~14! using parameters listed
in Table III. The agreement with the fourth-moment calcula-
tions is quite reasonable, consistent with the idea that the
oscillations arise from indirect electronic interactions, as
conjectured from experimental measurements.6,7 Further
positive evidence in Table III is the fact that thek values for
three cases are similar, while the values ford differ consid-
erably.

From Table II it is clear that relaxations of the individual
steps play a notable role in these problems. For an isolated
step, the top edge retracts both inward and downward~by
about 0.01 Å!, as one might expect from because of its de-
creased coordination. The atom at the base of the step moves
about the same distance and direction horizontally, while ris-
ing twice as much. The lateral part of this shift can be seen in
the decrease~except at the smallest separation! of separations

TABLE II. Step-step interactions in the three configurations as a function of their separation.

Rigid Mesa Dado Staircase
r 0 ~Å! r ~Å! U ~meV/Å! r ~Å! U ~meV/Å! r ~Å! U ~meV/Å!

1.29 1.40 82.3 1.29 2135.8
3.88 3.77 216.8 4.03 22.9 3.91 7.9
6.46 6.35 16.8 6.59 1.6 6.50 0.9
9.05 8.99 27.3 9.20 0.2 9.06 2.9
11.63 11.52 4.6 11.77 0.8 11.67 0.2
14.21 14.13 23.0 14.35 20.1 14.23 0.9
16.80 16.69 1.0 16.93 0.0 16.81 20.4
19.38 19.29 21.3 19.38 0.0

TABLE III. Parameters used in Eq. 14 for three types of step-
step interactions.

Parameter Mesa Dado Staircase

A ~meV Å! 84.51 2117.12 109.05
B ~meV Å! 406.44 568.99 126.43
k (Å21) 0.52 0.56 0.51
d 20.03p 0.10p 20.80p
m 2 2 2
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relative to the rigid lattice for the mesa configuration and the
concomitant increase for the dado configuration. In the stair-
case configuration, both steps relax in the same direction, so
there is less effect on their separation.

The elastic interaction, which can be described by the
r22 term in Eq.~14!, only contributes partly to the step-step
interactions on a metal surface. Indirect electronic interac-
tions will dominate at longer separations. A simple EAM-
type potential always yielded a monotonic interaction be-
tween steps for all the region and failed to predict such
oscillatory behavior.8,9,12This is because the Hamiltonian in
the EAM includes only a mean electronic density~like the
second-moment term! contributed from its local environ-
ment. Although the fourth-moment model, which includes
the higher moments~third and fourth! of the local electron
density of states, is unable to provide detailed information
about Fermi-surface singularities, it certainly is a consider-
able improvement over the EAM-type potentials in describ-
ing interaction energetics on transition-metal surfaces.

V. CONCLUSION

We have studied the formation energies of steps and kinks
and the interactions of steps on W$110% surface, using a re-
cently developed theoretical model: the fourth-moment
method. Our calculations indicate that a step with its orien-
tation along the closed-packed@111# direction has a much

lower formation energy compared to other steps along@110#
and@001#. On the other hand, it is much easier to form a kink
on the @110# and @001# steps, with negative kink formation
energies, than that on the@111# step. A simple theory based
on the bond coordination change and an ‘‘awning’’ approxi-
mation can be used to understand the difference of those
formation energies.

The present calculation shows that the interaction poten-
tials between two isolated steps include two parts:~i! an
elastic r22 term and ~ii ! an oscillatory modulation
r2mcos(2kr1d). This is consistent with recent STM mea-
surements, which found the step-step interactions on metal
surfaces are repulsive for small step separations and attrac-
tive at intermediate step separations, unlike the step interac-
tions on semiconductor surfaces. Our analysis supports the
belief that the oscillations are due to indirect electronic in-
teractions.
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