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11.1. Introduction 

Progress in computing the interactions between small numbers, even pairs, of 
chemisorbed atoms has been remarkably slow because of the very low symmetry of 
the problem. In contrast, the energetics of monolayers of adatoms, which have the 
full two-dimensional symmetry of the substrate, can now be characterized with 
impressive precision. However, even treatment of partially completed adlayers with 
(2x 1) or c(2x2) symmetry doubles the size of the surface primitive cell, but 
quadruples the size of secular matrices, raising computer time requirements by a 
factor of order 43

. At the other end of the scale, a single adatom (in a symmetric site) 
will at least have the point-group symmetry of the substrate. Associated with these 
symmetries are conserved quantities ("good quantum numbers") which make cal­
culations simpler. As a result, a variety of elaborate many-body techniques have 
been applied successfully to these systems. For two adatoms on a surface, there is 
little or no symmetry, typically just a two-fold rotation or mirror plane (leading 
often to splittings of levels). Few systems have been treated in a satisfactory way. 
Sophisticated computations attempting to assess these interactions tend to resort to 
studies of ordered overlayers (Tomanek et al., 1986). Desjonqueres and Spanjaard 
( 1993) signaled the difficulty of the problem by placing it as the final topic in their 
recent text. Reviews stressing various aspects of the problem have been presented 
by Einstein (1979a, 1991), Muscat (1987), March (1987, 1990), Braun and Med­
vedev ( 1989), Feibelman ( l 989a), and N0rskov ( 1993). 

This chapter will explore the many mechanisms by which chemisorbed atoms 
interact with each other. To set the stage early, it is useful conceptually to distin­
guish between direct and indirect interactions. Direct interactions would occur even 
if there were no substrate; they are, thus, sometimes called "through-space". 
Examples include van der Waals, dipolar, and electronic hopping (between the 
adatoms). The substrate, however, will generally provide at least some degree of 
perturbation. The alternative is indirect interactions, in which to lowest order there 
would be no interaction without the substrate. The coupling can be by electronic 
states (usually predominant), elastic effects, or vibrational coupling (usually insig­
nificant). Since the coupling to the substrate is crucial, these are sometimes called 
"through bond". Special emphasis will be given to the indirect electronic ("pair") 
interaction between two light gas or transition series atoms on a (transition) metal. 
Moreover, we thoroughly explore a simple model of these interactions. The moti­
vation is not so much to explain specific data but rather to give a theoretical 
framework in which to understand the relative magnitudes and qualitative behavior 
of the interactions. Without this sort of picture, it is difficult to make sense of the 
results that emerge from more realistic attempts to describe the adsorption systems. 
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We also present a thorough summary of the methods that have been applied to make 
progress in understanding this general problem. 

As we fix ideas, it may be helpful to describe our problem in oversimplified 
terms by speaking of three characteristic energies: ( 1) Ea, is the binding energy of 
an isolated atom to the most attractive site on the surface. Typically this is a 
high-symmetry site; e.g., on a square lattice, such sites (cf. Fig. 1.12) can be called 
A (atop, or linear, or on-top, the latter two inconsistent with the abbreviation), B 
(bridge, between two substrate atoms), and C (centered, or hollow, above the 
middle of a square). Identical terminology applies to substrates with triangular 
symmetry. Ed denotes the diffusion barrier, due to variations in the adatom-sub­
strate potential, between adjacent most-favored sites. Usually this is a saddle point 
in a potential energy surface; e.g., if the C site is most attractive, one might expect 
Ed = Ee - E8 , although substrate relaxation can sometimes lower this barrier 
significantly. The corrugation of the substrate potential provides an upper bound 
for Ed. Finally, Eaa is the magnitude of the characteristic energy of interaction 
between nearby atoms. In physisorption, E •• is comparable to Eas• both being much 
greater than Ed. (For dense overlayers, the actual diffusion barrier increases signifi­
cantly due to adatom-adatom effects.) In contrast, in chemisorption Eas >Ed>> Eaa· 
Thus, in this ideal scenario, adatoms all sit in the most favorable site; their lateral 
interactions are relatively small. In this case it is fruitful to couch the discussion in 
terms of a classical lattice gas picture. (Cf. Chapter 13 by Roelofs.) 

In setting the stage for what we will find regarding electronic lateral interac­
tions, it may be helpful to divide (somewhat artificially) the physics into a few 
regimes, depending on the separation between adsorbates. (I) In the near regime, 
the adatoms may be close enough to have non-negligible direct interactions. If not, 
they typically still "share" one or more substrate nearest neighbors, so that the 
bonding of one adatom to this substrate atom is strongly influenced by the presence 
of the second adatom. This regime is the most important for applications: in 
chemistry it determines the details of dissociative adsorption; in surface transport 
it enters problems of surface diffusion mechanisms. The strong impact of one 
adatom on the other may alter their binding sites, weaken bonding to the substrate, 
etc., as emphasized in a review by Feibelman (I 989a). In short, in this regime E •• 
may be comparable to E.,. (2) In the intermediate regime, these effects fade and the 
lattice-gas approximation improves. The individual-adatom adsorption process is 
largely immune to the interactions. Most of the interesting physics can be isolated 
in the question of how the disturbance produced by a point defect at some position 
propagates to another. All the occupied band states in the substrate are involved in 
a complicated way. This regime is important in describing the formation of ordered 
fractional monolayers of adsorbates and in characterizing the chemical potential 
and the correlation functions of these adsorbates, even at higher temperatures at 
which there is little order. Thus, these interactions play a role in understanding 
thermal desorption spectra, vibrational line shifts, etc. (3) The asymptotic regime 
is reached when the adatoms are several spacings apart. The interaction is domi­
nated by the substrate Fermi surface. Analytic expressions, albeit complicated, 
can be derived. Until recently, there was little evidence of experimental impact of 
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this regime, but there may be implications for the interactions between steps on 
metal surfaces. We caution that as with most simple pictures of complicated 
phenomena, it is easy to point out ways in which the broad-brush rendition is 
oversimplified. For example, in the case of weak, non-directional bonding, the 
adatoms may slip out of high-symmetry binding sites even when a couple spacings 
apart, as suggested by Persson (1991) for some cases of CO adsorption. Moreover, 
for weak bonding, the Fermi-surface electrons may dominate at close spacings, 
inviting simple descriptions in terms of frontier orbitals (Hoffmann 1963, 1988). 

A major motivation for studies of pair interactions is to understand the origin of 
the wide variety of ordered overlayers at fractional coverages on metal surfaces (see 
Chapter 13 ). These have been tabulated by Ohtani et al. (1987), Van Hove et al. 
(1989), Watson (1987, 1990, 1992), and Watson et al. (1993). Consider a c(2x2), 
i.e. a checkerboard pattern on a square lattice (Chapter 1, Fig. 1.1 ). This pattern 
could arise simply because of a strong nearest-neighbor repulsion: £ 1 > 0 for an 
overlayer with about half the sites occupied. If additionally there is a next-nearest­
neighbor attraction, one finds islands of adatoms with c(2x2) symmetry at low 
temperatures and coverages. Sometimes these lie at temperatures so low that the 
equilibrium local configuration is not attained during the time of an experiment, at 
most several hours. But when islands are present, they provide strong evidence of 
an attraction. There are many more complicated phases. The explanation of most of 
their ground-state energies in terms of pair interactions is fairly obvious (cf. 
Suzanne and Gay, Chapter 10, and Roelofs, Chapter 13), but for troublesome cases, 
exhaustive tabulations have been published by Kaburagi and Kanamori ( 1974, 
1978) and Kaburagi ( 1978). By attraction or repulsion here, we mean that the lattice 
site is favorable or unfavorable. There is no implication about the direction of a 
force acting on an adatom sitting in a lattice site; in the lattice gas picture, this force 
is assumed to vanish. In the near region, this assumption may often be questionable, 
but in the intermediate region it should be reasonable. 

Some experimental data on these systems appear in Chapters I 0, 12 and 13 to 
which we shall refer. We will dwell mostly on theory. Progress in the field has come 
in the form of study of self-consistency and correlation effects (which seem to be 
less important than might be expected) and of multi-parameter-model attempts to 
describe real systems. Next we shall show in a single simple model how pair, 
three-adatom, etc., interactions combine to produce ordered overlayers. We will 
briefly consider changes in density of states (DOS) caused by two-adatom interac­
tions from a similar viewpoint, and also show the more dramatic effects that arise 
when these combine to produce an ordered overlayer. In closing, we shall speculate 
on areas ripe for development. 

11.2. General features of lateral interaction energies 

11.2.1. Fundamental ideas 

If chemisorbed atoms are sufficiently close to overlap each other, there will be a 
strong direct interaction. This interaction is essentially a chemical bond, compara-
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ble in strength to the chemisorption bond. (There is interesting physics in the degree 
to which these bonds are not simply the equivalent of bulk bonds. We shall explore 
these effects further in later sections.) For larger lateral interadatom distance R, the 
interaction falls off exponentially along with the overlap so that for R more than a 
few A, it is negligible. Most of the physics of this problem comes from the two 
adatoms and their substrate nearest neighbors; hence a cluster calculation can be 
appropriate. These interactions are important for supersaturated or even monolayer­
covered surfaces. They also arise in the problem of dissociation and reassociation 
of adsorbing molecules (e.g., the question of whether there is an activation barrier) 
which has been studied both schematically and in great detail. 

If the chemisorption bond involves charge transfer, electric dipole moments µ 
will develop. Kohn and Lau ( 1976) showed that the non-oscillatory part of the 
dipole-dipole interaction energy on metals behaves as 

(II.I) 

for large R. The novel aspect of this expression is the factor of 2, for which they 
give the following qualitative explanation: For either adatom, say a, µa is the 
product of the charge transfer qa to the adatom and the distance z. between the 
adatom and the surface/image plane, at which the induced charge of -q. lies. 
However, the potential experienced by a second adatom is determined by the first 
adatom and its image at -z., and so is 2µ.zb(4m: 0 f 1W3

. Hence, the work in bringing 
the second charge from z = +00 to z = zb, and so Edip-dir contains the novel factor of 
2. Inserting numbers, we find this interaction energy to be 1.25 eV times the two 
dipole moments in units of debyes divided by R3 in A3

. 

N0rskov ( 1993) reviews the direct electrostatic interaction in some detail. The 
effect is generally larger for electropositive than electronegative adsorbates be­
cause the latter tend to bond closer to the substrate; consequently, they are better 
screened and so have a smaller dipole moment. For alkali adatoms, dipolar effects 
dominate the interactions which determine the 2D phase diagram (Bauer, 1983; 
MUiier et al., 1989). Pre-adsorbed alkali-metal atoms increase both the binding 
energy and the dissociation rate of light gas dimers like CO, NO, N2, or 0 2 on 
metals, while preadsorbed electronegative atoms do the opposite: Typically adsorp­
tion of these dimers involves some charge transfer to them. (Back donation to the 
anti-bonding molecular orbital exceeds donation from the bonding orbital.) In the 
simplest approximation, the resulting energy is the product of the admolecule-in­
duced dipole moment normal to the surface and the gradient of the electrostatic 
potential due to the preadsorbed atoms (or the extra charge times the potential 
itself). To support this picture, N0rskov et al. (1984/5) explored the form of this 
potential, for several different preadsorbed atoms on jellium, as a function of the 
height of the dimer above the surface. For the particular case of N2 on Fe( 111) with 
pre-adsorbed K, Njijrskov ( 1993) finds an interaction of 0.08 eV, which can be used 
to account for most of the measured shift in adsorption energy due to predosing. 
The second-order correction, proportional to the square of the potential, is always 
attractive. Thus, for cases in which the charge transfer is from the dimer, he notes 
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that the long-range interaction with a pre-adsorbed alkali can be repulsive while the 
short-range interaction is attractive. 

In addition to producing static repulsions, dipole-dipole interactions can raise 
the vibrational frequency of adsorbed molecules. For example, Scheffler (1979), 
using just dipole-dipole coupling, accounts for the coverage dependence of the shift 
of the C-0 stretch frequency of CO on Pd( 100) and Pt( 111) measured by IR 
absorption reflection spectroscopy. In the process, he derives a coverage-dependent 
(as well as frequency dependent) effective polarizability which depends signifi­
cantly on the distance of the dipole from the reference (image) plane of the metal 
(assumed to be jellium). In focusing on the cases of CO on Cu( 100) and Ru(OOO 1 ), 
Persson and Ryberg (1981) advanced the treatment of these questions by treating 
the adsorbate polarization as a single entity rather than trying to split it into 
admolecule and an image; they, furthermore, used the coherent potential approxi­
mation (CPA) (Soven, 1966) to consider interactions for a dense but not ordered 
overlayer. They find that the dipole-dipole interaction is enough to account for the 
coverage-dependent frequency shift for the Ru substrate, but that on Cu there is a 
counteracting chemical shift of nearly the same magnitude. N~rskov ( 1993) dis­
cusses the shifts of dimer vibrational frequencies due to interactions between 
pre-adsorbed (non-neutral) atoms and the dimer. 

The van der Waals interaction always produces a weak attraction between two 
adatoms and is the dominant contribution in the case of physisorption. The leading 
term is the dipole-dipole contribution, which goes as -C/R6

; C in turn is propor­
tional to the square of the polarizability. According to Hirschfelder et al. (1954 ), C 
is roughly 30 eV-A6 for Ar, N2, and 0 2, and five times as great for Xe. For 
physisorbed gases, this mechanism dominates the interaction, and hence the details 
of the interatomic potential have been studied extensively. To fit gas-phase data, 
one must go beyond a simple W 12 Lennard-Jones repulsion (to some exponential 
description) to avoid overestimating C by nearly a factor of two. Two higher-order 
gas-phase effects are non-negligible: (I) The R-8 dipole-quadrupole force which 
increases the depth of the well-minimum by roughly 10% and (2) the repulsive (in 
all important cases) W9 triple-dipole (Axilrod-Teller ( 1943)-Muto ( 1943)) interac­
tion, the magnitude of which is at most 3% (for Ar) to 5% (for Xe) of a pair 
interaction if all distances are set at their equilibrium values. While this effect is of 
little concern here, there have been interesting applications (Klein et al., 1986). 

A variety of calculations of rare gas adsorption onto jellium (Sinanoglu and 
Pitzer, 1960), continuous dielectrics (McLachlan, 1964 ), Xe crystals (MacRury and 
Linder, 1971 ), and graphite (Freeman, 1975) all show that physisorption reduces 
the gas-phase pair attraction by roughly 20%. As an example of the state of the art 
in this refined subject, Barker and Rettner (1992) produce an accurate "empirical" 
(actually more semiempirical, in the language we will use later) potential for 
Pt( 111 )-Xe as a "benchmark." For the lateral interactions, they include, in addition 
to the van der Waals potential, the "nonadditive" McLachlan modification, the 
interaction of adsorption-induced and image dipoles, and the triple-dipole term, 
citing as reference Bruch's (1983) clear and comprehensive discussion of the 
significant contributions. (This classic review of lateral interactions in physisorption, 
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as well as of the single-atom holding potential, provides an account of the general 
features of this problem that is evidently still timely a decade later. March (1987, 
1990) presents more recent reviews. Vidali et al. (1991) have produced a useful 
compilation of potentials for physisorption.) The substrate-mediated dispersion 
energy is the largest contribution to the lateral interaction at the intermediate 
separations of ordered overlayers, accounting for slightly over half the (repulsive) 
corrections to the gas-phase interaction for two sample Xe overlayers (Bruch, 
1983). The effect of the substrate on the interadatom interaction was first tackled 
using perturbation theory by Sinanoglu and Pitzer (1960). McLachlan (1964) 
calculates in second-order perturbation theory the interactions of adatom dipoles 
and their images in the substrate, including a frequency-dependent response for the 
substrate. Explicit expressions for the substrate-mediated dispersion energy and 
tables of the attendant coefficients are given by Bruch's (1983) review; a key issue 
is determining the distance of the adatoms from the image plane. Freeman ( 1975) 
approaches the problem using the Gordon-Kim ( 1972) version of density functional 
theory (for Ar adatoms) and obtains fair agreement with the preceding formalism; 
similarly, Vidali and Cole (1980) apply both methods to He on graphite. 

The next largest contribution to the substrate-related interaction, perhaps half 
the size of the preceding, is the interaction of adsorption-induced dipoles. The role 
of the surface was noted earlier in Eq. (I I. I). Bruch (1983) reviews the many 
contributors to this subject. He and Phillips ( 1980) showed how to compute these 
effects for an overlayer lattice. Other effects include triple-dipole (Axilrod-Teller 
( 1943)-Muto ( 1943)) interactions within the overlayer and changes in zero-point 
energy. In this framework, lateral interactions can be computed to an accuracy that 
makes those working on chemisorption truly envious. Nonetheless, there are some 
differences between calculations on particular systems, e.g. the above-mentioned 
benchmark (MUiler, 1990; Gottlieb and Bruch, 1991; Barker and Rettner, 1992). 

To apply the van der Waals perspective to chemisorption, we can invoke the 
surface molecule picture to posit that the interaction between, say, two chemisorbed 
0 atoms (coupled to their substrate neighbors) is similar to that between two 0 2 

molecules (although now the molecules are oriented), i.e. roughly -25 eV­
A 6/(R[A])6

• At second and third neighbor separations on Ni(l 00), for instance, this 
yields an interaction of -13 meV and -2 meV, respectively, which is usually 
negligible compared to the electronic indirect interaction. For heavy adsorbates 
(e.g., W or Re) these numbers could possibly be several times greater; no firm data 
exists. A curious application, to Ni(I00)-0, of van der Waals ideas by Gallagher 
and Haydock ( 1979) suggested that by virtue of large overlap with the attractive Ni 
potential of the substrate, the 0 2p orbitals become larger and far more polarizable, 
dramatically increasing the associated interaction. There has been little follow-up 
work on this viewpoint. 

The first proposal that adatoms might interact indirectly was made by 
Koutecky ( 1958). The essence of this interaction is seen in Fig. 11.1, taken from the 
pioneering work by Grimley ( 1967) on this problem, which even now begins most 
discussions. Consider two atoms, each with an atomic potential producing some 
(relatively high-lying) bound state. In free space (and at moderate separation), each 
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Fig. 11.1. Classic schematic of the indirect interaction between pairs of adatoms. (a) Potential and wave 
functions for two atoms in vacuum separated so far that there is no overlap and so no direct interaction. (b) 
The same atoms, now chemisorbed on a simple metal surface. From Grimley ( l 967a), with permission. 

of the bound-state wavefunctions will remain confined near its atomic site; the 
vacuum barrier is insurmountable. If, alternatively, they are adsorbed onto (or 
absorbed into) a metal, both atomic wavefunctions can tunnel through the narrow 
potential barrier to the metal and couple with propagating metal wavefunctions. 
Figure 11. lb shows how both atomic wavefunctions might couple to one such 
background eigenstate. If the coupling places the two atomic wavefunctions in (out 
of) phase, the interaction is attractive (repulsive}, lowering (raising) the energy of 
the participants. From the oscillatory nature of the intermediate wavefunction, the 
electronic indirect interaction should be oscillatory in sign as a function of intera­
datom distance. It should be (two-dimensionally) isotropic if and only if the 
(surface of the) metal background is. Such isotropy is expected only for substrates 
which can be well approximated by free-electron or jellium models. Furthermore, 
the two adatomic orbitals can couple through not just one, but any of the occupied 
states (including surface states). As adatom separation increases, fewer substrate 
wavefunctions will match well with the atomic orbitals, causing a rapid decay in 
magnitude of the interaction energy. 

As discussed at the outset, our discussion assumes that Ed>> E ••• which should 
be a good approximation for strong chemisorption at low to moderate coverage. 
Under these circumstances, the most favorable adsorption sites will be filled or 
vacant, and when nearby sites are filled, the associated interaction energy will 
modify the total energy of the system. In this lattice gas picture, the Hamiltonian of 
the adatoms takes the form: 

(ij), (i}), 

(I 1.2) 

+ L, ET L, n; nj nk + L, £ 0 L, n; nj nk n 1 + ... 
T (ijk), Q (ijkl)Q 

Each site of the net of most-favored substrate sites (labeled i) can be occupied (n; = I) 
or vacant (n; = 0). Here the pair interaction energies are denoted Em for mth 
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neighbors; ET is the "trio" (three-adatom, non-pairwise) interaction energy, with the 
index running over the possible trimer configurations; E0 is the "quarto" energy; 
and so forth. For this formulation to be useful, the pair energies should fall off 
relatively rapidly in magnitude with increasing m, so that only a few need be 
considered. Furthermore, the multisite terms should be small; at worst, only a small 
number of the most closely spaced multiadatom terms should contribute. We shall 
see that the pair interactions do decay rapidly. The multisite terms are smaller but 
not always negligible. Moreover, there may be several different configurations with 
comparable magnitude. Nonetheless, cancellations typically occur such that the 
energies of ordered submonolayer overlayers are often adequately described by the 
pair energy of the closest pair(s) found in the overlayer. 

Before delving into specific simple models, it is worth stating the underlying 
philosophy motivating them. 

I 1.2.2. Electronic indirect interactions in simple tight-binding model 

To gauge roughly the relative magnitudes and general behavior of these interac­
tions, it is convenient and customary to study a simple model, in this case a 
tight-binding model in which the substrate is a single-band, simple-cubic solid. (See 
Lafemina, Chapter 4, for a discussion of tight-binding models.) This model was 
adopted two decades ago (Einstein and Schrieffer, 1973) (hereafter ES) to embody 
the idea that the d-bands of the substrate were primarily responsible for the 
interactions and, unlike jellium, allowed one to consider the dependence of the 
interaction on the type of adsorption site in a simple way. 

I 1.2.2. I. Model Hamiltonian 
The model, as well as many subsequent discussions of interactions between ada­
toms, is couched in terms of an Anderson (1961) (magnetic) model in which the 
adatoms are represented as dilute impurities at sites r (= a,b for pairs) in an 
unperturbed host: 

H = H;;,eial + L (H~ + H',) (11.3) 

The first term in the parentheses represents the atomic factors of adatom r, while 
the second is this atom's coupling to the metal. To include a direct interaction, one 
would add terms of the form H'u,, coupling atoms a and b. Until recently, most work 
on the problem has amounted to taking progressively more realistic expressions for 
various of these terms and solving the resulting system to varying levels of approxi­
mation. To simplify notation, we assume that the adatoms are identical. Over the 
last decade the coadsorption problem has attracted some interest; it is straightfor­
ward to extend the formalism. Some of the simplicity of the above ansatz comes 
from the use of an atomic orbital picture. While this formulation makes it easy to 
do initial calculations, it neglects such effects as orbital deformation and local 
distortion, which may often be important. 

The adatom part of the Hamiltonian is 
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(11.4) 
a 

and similarly for H~. This expression can be generalized to include degenerate 
orbitals, multiple levels, etc. As a first approximation, one might set £~ at the 
ionization level -/ of the adatom and take as U the difference between -/ and the 
affinity level. For greater accuracy,£~ should be raised and U reduced by correlation 
effects (screening and image charges). In a (restricted) Hartree-Fock approach, one 
neglects U entirely and replaces £~ by £" = £~ + U(na0 ) where (nacr is the mean 
occupation of the adatom for either spin direction. For neutral chemisorption, (n"

0
) 

is 1/2, suggesting£" be the (negative) average of the ionization and affinity energies, 
as in many chemical molecular orbital calculations (where this is called the Mul­
liken ( 1934) electronegativity) (cf., e.g., Pople and Beveridge, 1970) Using the idea 
of chemical transferability, Pandey ( 1976) adjusted the adatom and coupling pa­
rameters so that cluster computations of small molecules fit the levels found in 
photoemission experiments; presumably the same parameters carry over to the 
chemisorption system. Brenig and Schonhammer (1974), Hertz and Handler 
( 1977), and Bell and Madhukar ( 1976) went beyond Hartree-Fock in the case of 
single atom adsorption. The first group also showed in the pair problem that 
correlation effects are relatively unimportant, compared to the single atom case, as 
we shall discuss below. On the other hand, using self-consistent Hartree-Fock and 
resorting to mean-field theory, Gavrilenko et al. ( 1989) explored the parametric 
conditions for magnetic ordering of the adatoms. Davydov ( 1978) considers a 
similar question, including direct interactions for a chain of adatoms. 

The simplest approximation for the substrate assumes a single band of one-elec­
tron states with energy Ek. (A band index would also be needed if more than a single 
band were considered.) Many-body effects could also be included by putting a 
diagonal Coulomb term like U on each substrate site. Since only the component of 
crystal momentum parallel to the surface is conserved for a slab or semi-infinite 
crystal, k merely labels the states in some suggestive fashion. It is usually conven­
ient to work in a mixed representation of k

11 
and a layer index. 

In general there can be a different coupling between each k state and the adatom. 
For most purposes, it is adequate to consider, in the case of bonding at an atop site, 
a single coupling constant V between adatom a (orb) and its nearest neighbor on 
the substrate: 

( 11.5) 

where c+ and care creation and annihilation operators, respectively, for electrons in 
the state indicated by the substrate. For bonding in a bridge or centered site, c

0
a is 

replaced by a symmetric normalized combination of c-operators for the number of 
substrate neighbors of the adatom. In principle this coupling should also consider 
an overlap term between atoms and metal. This question has been discussed at 
length by, among others, Schonhammer et al. ( 1975), Grimley ( 1974 ), and Einstein 
( 1973). The usual approach is to "renormalize" previously stipulated natural orbi­
tals (and resulting energies) with Lowd in ( 1950) or Gram-Schmidt (Birkhoff and 
MacLane, 1965) schemes. 
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I 1.2.2.2. Calculation of change in one-electron energies using Green's functions 
Our goal is to find interaction energies between chemisorbed atoms, which in a 
one-electron framework can be expressed in terms of the associated change in 
density of states ~p: 

(11.6) 

The factor of 2 comes from spin degeneracy, and the use of E - EF rather than just E 
indicates that the number of electrons rather than the chemical potential is being 
fixed (Grimley, 1967; Newns, 1969; ES). (The contribution due to the integral over 
Er~P(E) is the result of an infinitesimal shift in the Fermi energy.) 

In the calculation presented below, the essential idea is that the interaction 
between adsorbates can be obtained by finding the underlying shifts in the one-elec­
tron energies of the system. It is convenient to do so in terms of one-electron 
Green's functions. We present enough detail below to show that this procedure is 
not so daunting as novices might suspect. Nonetheless, we follow this subsection 
with an explicit simple illustration using a ring as the "substrate" and analyzing the 
results in terms of level shifts to make contact with those readers more comfortable 
thinking in terms of quantum chemical models. 

To obtain the change in density of states ~p needed so that the integral can be 
evaluated, we adopt a method used earlier in the theory of dilute alloys by Lifshitz 
( 1964). Suppose the unperturbed (H' = H 0 m = 0) and perturbed Hamiltonians, H" and 
H = H 0 + H', have eigenvalues £1 and £1, respectively. Then' 

~p= I,[o(E-£)-O(E-E)J (I I. 7) 

I 

But this can be rewritten as 

~p(E)=--Im -I [ I I l 
7t ~ E - EJ + i8 £ - EJ + i8 

= - _!_Im Li_ (In (E - H + i8) - In(£ - H., + i8)) 
7t d£ 

(I 1.8) 

I 

= - _!_ Im l_ Ln det [ I l (£ - H + i8) 
7t dE E - H., + i8 

I d 0 /\ 
= - - Im - In det (I - G V) 

7t d£ 

Remember that the units of a delta function are the inverse of its argument. 
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where G0 is the unperturbed retarded Green's function(€ - H0 + iof1 and V = H"s 
was given in Eq. (11.5). (Since we choose here to follow convention by using 
retarded functions, the signs of all imaginary quantities will be the opposite of those 
appearing in ES and subsequent papers in that series, which used advanced Green;s 
functions, with infinitesimals of the opposite sign.) In scattering theory det (1 - G0 V) 
is familiar as the Fredholm determinant (of the 0th partial wave) (Gottfried, 1966). 
Furthermore, 

/\ 

-Im In det (I - G0V) = TJ(E) (11.9) 

where TJ(E) is the s-wave phase shift. (This identification is perhaps clarified by the 
observation that "Im In" is an arctangent, yielding an angle that amounts to a 
scattering phase shift.) This approach makes optimal use of the higher symmetry of 
the unperturbed system and the locality of the perturbation associated with adsorp­
tion. It is generalized in the scattering theory approach (Feibelman, I 989a). In terms 
of TJ, one writes the interaction energy simply as 

E, 

L1W= - c2in) J TJ(E) de (11.10) 

The Fredholm determinant contains a dense set of alternating poles and zeros, 
which turns into a branch cut in the continuum limit. Dreysse and Riedinger ( 1983) 
pointed out that one can circumvent numerical difficulties with this sort of integral 
by adopting the contour-integration approach (in the T = 0 limit) developed for 
temperature-dependent fermion Green's function problems. The result is basical,ly 
an integration of the real part of the analytic continuation of In det (I - G0 V) 
from Er: + ;o+ to eF + ioo. This integration can be cast into a finite interval by 
making a substitution for the imaginary part of the energy integration variable (Liu 
and Davison, 1988). 

To evaluate the phase shift for the two-adatom problem, we arrange the 
matrix so that the adatom sites (a and b) and the substrate nearest neighbors to 
which they couple (o and

11
n) come first (o, a, n, b) and then all other substrate 

sites. The matrix (1 - G0 V) then differs from a unit matrix only in the upper left 
hand 4x4 block: 

[-G~V,. 
-G~oVoa 0 

-y~l 0 

-c:O~Oll 
(I I. I I) 

-cihv,'" 
-G"" Vnh 

0 I 

The superscript X indicates that the substrate Green's functions can be easily 
generalized, for adsorption in B or C rather than A sites, to represent a (normalized) 
hybrid (cf. remarks after Eq. ( 11.5)) of substrate orbitals (Einstein and Schrieffer, 
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1973). 1 The major result coming from the possibility of coupling to combinations 
of orbitals is that GB or Ge is generally very different from GA, so that the pair 
interaction will depend very strongly on the adsorption site. This feature arises 
naturally in LCAO models, in contrast to the other simple starting point, jellium 
models (see below). (Braun ( 1981 ), however, argues that the effective Eu becomes 
adsorption-site dependent, possibly mitigating the variation with site symmetry.) 
The determinant of this matrix can be written as 

f\ 

det(I - G"V) =(I - G""G~01V0f) (I - Gbb c:nlVn/)- GauG~nGnnc:)V0fVnbl 2 

(11.12) 

It is notew_Qrthy in this expression that the parentheses enclose the contribution to 
det( I - G0 V) from the adsorption of an isolated adatom a at o (orb at n). Factoring 
out these terms, and assuming adatoms a and b are identical, as are sites o and n, 
we find 

f\ 

o " det ( I - co V) x 2 x 2 • A 
Jet (I - G V)pair = 2 = I - (Ga,,) (G 0 n) V 

[ det (I - G
0 ~single J 

(11.13) 

where G,~, is a Green's function for a single adatom renormalized to account for its 
adsorption: 

c,;, = ( 1 - c,,,, c~,,1v,,,/r 1 c,"' =tr- r,, - v2 c~,(r)i- 1 (11.14) 

Because of the logarithm, the phase shift (and hence the changes in DOS and 
energy) characterizing the "pair" interaction QJthe adatoms can be obtained directly 
from the phase shift associated with (I - V'(G,~,)2(G~n)2 ) rather than from explicitly 
subtracting twice the single-adatom-phase shift from the two-adatom shift. For any 
number of adatoms, the single adatom adsorption part factors out of the matrix (ES; 
Grimley and Walker, 1969). On the other hand, as shown below in Eq. (I 1.20), for 
more than two adatoms there is no way to factor out the pair effects from the higher 
order ones. (The feature that the single-adatom part factors out is a pleasant 
convenience, but with modern computational power it does not produce a signifi­
cant improvement in numerical results, except perhaps in the asymptotic regime.) 

. . A ~ cos(k' ·Rn) . . . . 
Exphc1tly, G

0
n = ~ . , where Rn 1s the vector m the surface plane from site o to site n, Ej 

I 
E - E

1
+10 

denotes the eigenvalues of H0 , and the notation on the wavevector reflects the fact that only crystal 
momentum in the surface plane is a good quantum number. If a single adatom sits in a bridge site between 

surface atoms 0 and I, then G~0 = G~0 + G~ 1 • If a second adatom sits between n and n+l (assuming all 

four sites colinear for simplicity, then G~n = G~n + ( l/2)(G~.n+I + G~.n-I ). To complete the description, 

one must make some statement about how the adatom-substrate hopping depends on the adsorption site, 
which will involve some at-least-implicit assumption about dependence on bond angles, bond lengths, 
local relaxations, etc. The parameter Vthat appears in the formalism corresponds to {i times the hopping 
parameter between the adatom and one of the z members of the hybrid to which it couples. 
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In the LCAO framework, the formula for the pair interaction energy En between 
the adatoms adsorbed on sites o and n (which we identify as nth nearest neighbor 
sites on the surface) is, from Eqs. (11.9), (11.10), and (11. 13), 

(11.15) 

To gain some understanding of this interaction, we first expand the logarithm 
and consider the lowest order term (Kim and Nagaoka, I 963), which becomes a 
good approximation for weak coupling (small V) or large separation (small G

0
n): 

E, 

En=_ l Im f v4 (G,;(£)) 2 (G~,(£)) 2 d£ 
7t 

(11.16) 

If G is neglected (which is generally a poor approximation at small separations), 
expression (11.16) is just the RKKY interaction energy (Ruderman and Kittel, 
1954; Yosida, 1957), in which two localized spins (here localized defects) interact 
via coupling to a bulk conduction electron sea. If this sea is viewed as a free-elec­
tron gas, the propagator G,," reduces to a continuum G(IRI;£), where R goes from 
one bulk spin/defect to the other. This bulk interaction is proportional to (x cos x -
sin x) x-4

, where x = 2kFIRI. It is thus oscillatory in Rand decays asymptotically as 
W 1

, characteristic of Fermi surface domination. We shall discuss the decay on 
surfaces in the section on asymptotics. 

A physical interpretation of Eq. ( 11.15) is that an electron in an occupied state 
starts at one adatom, hops back and forth to the substrate many ti mes, then 
propagates to the second adatom, hops back and forth again for a while, then 
propagates back to the starting site. Alternatively, one can describe the process as 
a particle and a hole propagating from one adsorption site to the other (Zangwill, 
1988). While Eq. ( 11.16) suggests that the interaction is proportional to v4, such 
behavior only obJi!ins in the limit of weak coupling. For stronger coupling, the 
V-dependence in G eventually cancels the leading v4. This strong-adsorption case 
is the limit of the "surface molecule", in which the adatom and its substrate partner 
form a dimer which rebonds perturbatively (with the bulk coupling strength) to the 
substrate. The interaction between the adatoms then comes from the interference 
between the two dimers in the rebonding process, which does not depend on V. 

Grimley (Grimley, 1967; Grimley and Walker, 1969) was the first to apply the 
Anderson model to chemisorption, using as a substrate a semi-infinite single-band 
crystal with a phenomenological surface reactivity. This adjustment highlights a 
problem with free-electron gas substrates, namely how to allow coupling with 
adatoms. If the adatom sits beyond an infinite barrier, e.g., there will be no coupling 
whatsoever. To avoid this problem, to put in site specificity in a natural way, and 
to reflect the belief that the d-bands were primarily responsible for the lateral 
interactions, ES modified Grimley's model by using as the substrate the (100) face 
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of a single-band simple cubic crystal ("simple cubium") in the nearest-neighbor 
tight-binding approximation. Eq. (11.15) was then evaluated numerically. 

Table 11.1 capsulizes the results of ES. The energies are measured in units of 
one-sixth of the bandwidth (i.e., twice the hopping parameter). For the typical 
transition metal d-band being modeled, this unit is of order I to 2 eV. The Fermi 
energy and adatom level are measured relative to the center of the band. As the table 
illustrates, the pair interaction is highly anisotropic, oscillatory in sign, and rapidly 
decaying. At close separations the decay is precipitous, more exponential than 
inverse power like, dropping roughly by 1/5 with each lattice spacing, while 
asymptotically it decays as W5

. While asymptotic behavior is discussed in more 
detail in § 11.2.6, we note here that it is characteristic of dominance by a single 
k-state on the Fermi surface. The more complicated behavior at shorter range shows 
that many electronic states participate in the pair interaction. The pair interaction is 
comparatively insensitive to changes in £0 and V, somewhat more sensitive to shifts 
in the Fermi energy (especially for larger interadatom separation), and very sensi­
tive to the adatom binding site. Typical values of the magnitude of the nearest, next 
nearest, and third nearest pair energies are 1x10-1

, 2x10-2
, and 8x10-3 units, al­

though each of these can vary over a range of an order of magnitude. 
As presented here, this formalism implies that the substrate is essentially rigid 

during the adsorption process. In fact local distortions certainly do occur. Feibel­
man ( 1987, 1989, 1990) has emphasized that these distortions can play a crucial 
role, particularly at near-neighbor spacings. At farther separations, it does not seem 
unreasonable to believe that the distortions essentially renormalize G0~, while leav­
ing G,," relatively unaffected. Thus, over this range, the distortions might be taken 
into account by tuning the atomic and coupling parameters. 

11.2.2.3. Simpler illustration: pairs on a ring 
Many of the ideas in the preceding section may be couched in a (Green's functions) 
language unfamiliar to some readers. In an attempt to make the key ideas clearer to 
people more comfortable with the language of quantum chemistry, we present in 
this section results of an explicit calculation, done with Mathematica'", in which the 
substrate is taken to be a ring of 50 atoms. For a system of such limited size, we can 
keep explicit track of what happens to all of the molecular orbitals. While ID 
models are a typical starting point in similar studies (Hoffmann, 1988; Whitten, 
1993), we caution that consequently they contain some anomalous features which 
are not characteristic of most 30 substrates. In attempting to keep the following 
discussion uncluttered, we do not dwell on such unpleasantries as the inevitability 
of split-off states (due essentially to the divergence of the density of states at the band 
edge) and the anomalously slow decay of the interaction with separation. After explor­
ing interaction energies from the perspective of shifting molecular orbitals, we show 
how the problem can be recast in the Green's function formalism presented above. 

The Hamiltonian of the ring itself (H~e•al of Eq. ( 11.3)) can be represented by a 
50x50 matrix with non-zero entries (taken as -1/2) only along the two diagonals 
next to the main diagonal (i.e. entries { n, n± I } ) and at the corners ( { 1,50}, { 50, I } ) 
to close the chain into a ring. By analogy, e.g., to benzene rings, it is well known 



Table 11. l 
Display of the pair interaction energy En suggesting the sensitivity of adatom arrays to changes in the Fermi level, the hopping potential V, the adatom energy 
level £a, and the binding-site symmetry A, C, B, and BP. (For bridge-site adsorption, there are two nearest-neighbor configurations: in B, the vector R between 
adatoms is in the plane formed by the adatom and its two substrate neighbors; in BP, R is perpendicular to it. Note that, e.g., for £2 there is no difference between 
Band BP.) One adatom sits at the origin "O"; the pair energy is for a second adatom at the nth nearest-neighbor site. The magnitude of the number given is IO 
plus the common logarithm of the magnitude of the interaction. A plus (minus) sign indicates that the interaction is repulsive (attractive). Thus, table entries of 
+8.9, -7.7, and--6.6 represent interactions of +8x10-2• -SxI0-3, and-4x!0-4, respectively. The energy unit is one-sixth the substrate band width, roughly 1-2 eV. 

Each chart is labeled by the symmetric adlayer pattern predicted. Adapted from Einstein and Schrieffer (1973) and Einstein (1979). 
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that the 50 eigenstates are traveling waves with wavevectors k = nn/25a, where a is 
the nearest-neighbor spacing. There are just 26 distinct eigenenergies -cos(ka); all 
but two (viz. I and -1) are doubly degenerate (due to the symmetry of clockwise 
and counterclockwise travel). The bandwidth in these units is, thus, 2, and the band 
is centered about 0. 

The prescription in this Htickel model for adding extra atoms essentially follows 
that in the tight-binding model. An adatom having energy Ea (i.e. -a' in Htickel 
language; a = 0) couples, via the hopping parameter -V (i.e. -13' in Htickel 
language; recall f3 = 112) to an orbital of the ring (as in atop bonding). Consequently, 
one adds a row and column to the 50x50 matrix. The diagonal entry { 51,51 } is Ea; 

the only other non-zero entries are pairs of-V's at { 1,51 } and { 51, I } . For simplic­
ity, to retain symmetry in E and to focus on covalent effects, we take Ea= 0. As might 
be expected, the computed eigenvalues move away from Ea= 0, by an energy oc V2 

in the perturbative regime. (Actually, this interaction splits the degeneracies of the 
ring. The combination of the two eigenstates with an anti node at the adsorption site 
gets shifted, while the other combination with a node keeps its original value of 
-cos(ka).) This downward shifting of orbitals increases the adsorption energy 
(absolute value of the change in total energy due to adsorption) as the Fermi energy 
approaches Ea = O; thereafter, the adsorption energy decreases, eventually reaching 
zero (as particle-hole symmetry demands). 

To assess pair interactions, we add a second adatom n sites away from the first. 1 

The matrix becomes 52x52, with E" = 0 at { 52,52} and -V at { n+ 1,52} and 
{ 52,n+ I } . To compute the pair interaction at close spacings, we compare the 
eigenvalues when the adatoms are at neighboring or next-nearest neighbor sites 
with those when they are at opposite sides of the ring. To make sense of these 
results, we first consider the situation of adatoms at opposite sides of the ring. For 
an infinitely large ring one would expect results to be similar to the single-adatom 
case, but with shifts twice as large. For the finite case here, we note that this will occur 
only for states with an even number of nodes, so that the ring eigenstates to which the 
adatoms couple will have the same amplitudes on the two adsorption sites. 

The pair interaction arises from the shifts in the energy levels when the above 
widely-separated pair of adatoms are moved to nearby sites. 2 We expect that the 

Note that on the ring, there is really a second pair interaction over separation (50-n)a. Because of the 
periodic boundary conditions used in the previous section, this effect exists implicitly in the formalism 
developed there. For a large ring, this second interaction is negligible, but this effect prevents us from 
using a small ring. The alternative of using a chain rather than a ring is undesirable because the "substrate" 
sites are inequivalent. 

2 There are alternative definitions. Burdett and Fassler ( 1990) start with ligands (viz. CO) attached to I, 
2, or 3 metal atoms, using the extended Hiickel model, and seek to explain the structure of the ligand 
"pair potential" for a monolayer. Since it is impossible to move ligands far apart, they define the pair 
energy as the sum of the energy of the system with both ligands present and the energy with both absent, 
minus twice the energy with just one ligand attached. Some thought shows that this definition is 
equivalent to the one we use, assuming that our adatoms are far enough apart that they do not interact. 
While this perspective may be appealing, it is a chore to keep track of the electrons as they are added, 
and tricky to trace the evolution of the levels. 
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eigenenergy will decrease (become more energetically favorable) if the coupling is 
in-phase and increase if it is out-of-phase. More explicitly, we consider the eigen­
vectors of the antecedent of each energy level, from the original ring (without 
adatoms). If the eigenvector has the same sign on the two nearby sites, we expect 
the shift to be attractive (i.e. the level Jowers in energy when the adatoms are 
brought to the nearby sites). The pair interaction comes from the shift of the 
occupied levels. How many levels are occupied is, of course, determined by the 
Fermi level. We generally expect that near the bottom of the band, the shifts will be 
attractive (negative) because the adatoms couple in phase. As the Fermi energy 
increases, more-rapidly oscillating eigenstates become involved. 

To plot and thereby analyze this behavior, we do the following: Along the 
horizontal axis we use the energy of each of the levels of the ring with the adatoms 
at opposite sides. Thus, as we set the Fermi energy further to the right along this 
axis, more levels become filled. At each of these 52 discrete energies, we plot as 
the vertical coordinate the shift of the level when the adatoms are brought to nearby 
sites. It is these shifts, due to the "interference" of the proximate adatoms, which in 
the weak-V limit tend to scale as V' (cf. Eqs. (11.15) and (11.16)), i.e. as a 
next-order effect after taking into account the V2 shifts due to adsorption. The sum 
of these shifts, for the occupied levels, is the pair interaction. 1 Thus, what we have 
plotted is the integrand in Eq. ( 11.15), essentially the phase shift 11 · Near the bottom 
of the band, the integrand is, as noted above, generally negative, but with increasing 
energy, it begins to oscillate in sign. (The closer the adatoms, the larger is the 
energy between sign changes.) In performing this analysis, the shifts alternate 
between the expected behavior and a much weaker shift of the uninteractive ring 
eigenstates. Thus, in Fig. 11.2 we combine pairs of shifts, plotting their sum vs. the 
average of their (unshifted) energies (from the case of adatoms at opposite sides). 

We now seek to show that these results offer a decent finite-size approximation 
of the quasi-continuous behavior considered in the previous section. For an infi­
nitely long chain, one can derive the analytic expression (cf., e.g., Economou 
( 1979) or Davison and Steslicka ( 1992) for background information, or Kalkstein 
and Saven ( 1971 ), with no intralayer hopping): 

(11.17) 

inside the band (1£1 < I); outside the band -vT7 -t i-sgn(E) ~and G0 n is pure 
real (Ueba, 1980). For the 50-atom ring, the substrate Green's functions can be 
computed numerically as 

I ~ cos(kna) 
G,,"(E) = 50 ,t_, s: 

£ + cos(ka) + iu 
k 

(11.18) 

Actually, it is half of the interaction, since we have been neglecting the factor-of-2 spin degeneracy in 
this section. 
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Fig. 11.2. Integrand used to compute pair interaction energy for adatoms at nearest-neighbor and 
next-nearest-neighbor sites on a ring. Solid curve: continuum limit, as described in§ 11.2.2.2. x: shifts 
of pairs of eigenvalues vs. average of their unshifted energy for a ring of 50 atoms. See text for discussion. 

setting the infinitesimal at a value of, say, 0.1. 1 While these Green's functions have 
many secondary oscillations, their overall behavior is rather similar to the analytic 
infinite-length Green's functions of Eq. ( 11.17). In any case, inserting the analytic 
form into Eq. ( 11.15), we produce the integrand (without the factor of 2) and coplot 
it in Fig. 11.3. We see that the couple-dozen pairs of levels from the ring provides 
a decent accounting for the results of an infinite ring in a form that may be more 
transparent. 

Our exercise further supports the idea that the pair interaction is a delicate mix 
of the couplings to all the occupied levels (or at least the half of them which are 
symmetric with respect to the inversion about the midpoint of the adsorption sites). 
Thus, a discussion in terms of HOMO (highest occupied molecular orbital) and 
LUMO (lowest unoccupied molecular orbital), i.e. frontier orbitals (Hoffmann, 
1963, 1988) will not capture all the physics of the problem. On the other hand, with 
increasing separation there are more oscillations in sign as a function of cF. In the 
limit of large separations, reminiscent of stationary-phase problems, the interaction 
energy will be dominated by the endpoint of the integration, namely the behavior 
at cF, making a frontier-orbital approach appropriate, if one has some grasp of the 
long-range behavior of wavefunctions at this energy. (In the section on asymptotics, 
we shall explore this problem further.) More importantly, in the limit of small V, 
the shifts and hence the interaction are quite small except when cF is close to c". In 
the limit of weak chemisorption, then, the HOMO/LUMO viewpoint may well offer 
a fruitful perspective on pair interactions. Burdett and Fassler ( 1990), for example, 
in modeling CO adsorption find the interaction is strong only when cF is near a large 
HOMO-LUMO gap. 

Before closing, we mention, for those particularly interested, some details 
skirted above. In Fig. 11.3 only 24 pairs of levels are included. In addition, there 

The size of o in this discussion should be large enough so that the spiked distribution due to the discrete 
levels is smoothed but not so large that it is completed washed out. This parameter broadens the levels, 
a common way to represent a large system by a much smaller one with a limited set of eigenenergies. 
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Fig. 11.3. Off-diagonal Green's functions G111 (nearest-neighbor) and G02 (next-nearest-neighbor) for 
a ring of 50 atoms (setting 8 = 0.1) compared with the continuum form (solid curves), computed exactly. 

x: imaginary parts; D: real parts. 

are pairs above and below the band, corresponding to what have been called 
"split-off' states (ES) and amount to localized levels outside the substrate band 
(where Im G vanishes). As one might guess from Eq. (11.12), they are the solutions 
£± of the equation 

£ - £,, - V2(Re G,"'(E) ± Re G,'"(E)) = 0 (11.19) 

For the case of isolated adatoms at opposite ends of the chain, the± term is absent 
and the solutions £0 are doubly degenerate. The eigenenergies of the 52x52 matrices 
correspond virtually identically to the solutions of these equations, which use the 
quasicontinuum Green's functions. For 3D substrates, these states typically occur 
only for strong coupling (large V) but in ID they are always present, formally due 
to divergent van Hove singularities in Re G at the band edge, physically because of 
the large number of states near the band edge in ID models. From the figures in 
ES 1, one sees that E+ + L - 2£0 is positive. This initially counterintuitive result can 
be derived analytically or graphically from the generic form of the Green's func­
tions. The fact that E+ shifts down from £0 less than e_ shifts up corresponds to the 
relative decrease in shifts in the levels as one gets farther from the band and£". The 
split-off state involves fully in-phase hopping around the ring. Perhaps when the 
adatoms are close to each other, the electrons get somewhat concentrated in the 
region near the adatoms, so that they cannot take full advantage of the hopping all 
around the ring. In any case, this result leads to the spikey behavior with the 
unexpected sign near the band edge. 

11.2.3. Multisite interactions 

11.2.3. 1. Three-adatom (trio) interactions 
In general there will be several adatoms in close proximity. Eq. ( 11.2) anticipated 
the possibility of multiadatom interactions. The expectation of ES is that overlayer 

Beware some misleading analysis in § 11.B.3 of ES. 
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electronic energies are overwhelmingly dominated by nearest pair interactions. To 
evaluate multisite interactions, and thereby check this idea, it is straightforward 
(Einstein, 1979a,b) to enlarge the matrices needed to compute the phase shift in Eqs. 
(11.9) and (11.10). If the sites to which the adatoms bind are /th, mth, and nth 
nearest neighbors, we find 

e, 

ET=lmn = - ~ f Im ln(~)d£ - E1 - Em - En (11.20) 

where 

(11.21) 

As indicated in § 11.2.1, Eq. ( 11.21) does not factor, making an explicit subtraction 
of pair energies necessary. 

There are two parts of this new interaction: ( 1) a new triangular path, repre­
sented by the G G G term; and (2) an "incompleted cubic" term, marked by the 
absence of v8 and V12 terms that would be present in E1 +Em+ En if their logarithms 
were merged. Trial calculations using just the "triangle path", with moderate V 
appropriate to chemisorption, reproduce the full interaction at least qualitatively. 

Computations of trio energies using Eq. ( 11.20) suggest that their magnitudes 
are determined primarily by the two closest (strongest) pairs. In explicit compari­
sons (Einstein, I 979a,b) of Eimn = E223, E225, E238, and E335, for typical V and £", for 
all possible substrate fillings, the first two have the strongest trio interaction energy. 
Em, which has a 3rd neighbor spacing as its third side, is somewhat the larger, and 
is nearly as strong as E3• The other two are smaller by at least half an order of 
magnitude. With increasing adatom separation the trio energies fall off rapidly, 
much like the pair energies. 

11.2.3.2. Complete over/ayers 
While quartets and higher-order terms could be calculated, numerical noise prob­
lems from successive cancellations would become troublesome. Starting from the 
other extreme, one can easily show (Einstein, 1977) that the indirect interaction 
energy per adatom for a complete (Ix I) adlayer of Na adatoms is 

e, 

2 L f Im In [t - V2 Gaal G(ku, £) - Goo(£) l] d£ 
rtNa 

kll -oo 

( 11.22) 

where the summation goes over the surface Brillouin zone (SBZ), containing N
11 

(the number of adsorption sites) points. G(k
11
,£) can be computed analytically 

(Kalkstein and Soven, 1971 ), rather like a semi-infinite chain. 
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For a real monolayer, direct interactions between the closely-spaced adsorbates 
are likely to produce an interaction energy quite different from that predicted from 
Eq. (11.22). Not only does the direct interaction make a great difference for 
individual pairs (Burke, 1976), but it often leads to the formation of two-dimen­
sional adlayer bands which overshadow any indirect effects (Liebsch, 1978). There­
fore, we focus on the c(2x2) overlayer. Since the real space unit cell area is doubled, 
the SBZ is halved, most naturally taking the form of an inscribed "diamond" (square 
rotated by 45°). Points outside the new SBZ get folded back in, giving doubling of 
the (highly blurred) two-dimensional band-structure. The upshot is that for a c(2x2) 
adlayer, G(k11 ,E) in Eq. (11.22) is replace by (Einstein, 1977, I 979a) and N0 = N11/2 

i G(k11 ,E) + G(1t( 1, 1) - k11 ,E)l/2 (11.23) 

Based on these ideas, one can compare (Einstein, 1977, I 979a) the indirect 
interaction energy (per adatom) for a full c(2x2) overlayer with an explicit sum over 
the pair energies for all pair configurations arising in a c(2x2) pattern - only the 
five shortest contribute significantly - weighting them according to the number per 
adatom existing in the pattern: two for pairs along the <10> and <I I> mirror axes, four 
otherwise. Overall, this curve does a good job of reproducing the c(2x2) plot. Trio 
interactions can also be included in the sum and help make up differences between the 
overlayer calculation and the explicit sum. Their contribution generally is important 
only near energies corresponding to the Hartree-Fock bonding and anti bonding reso­
nances in the DOS. In short, multisite interaction energies are not too important in total 
overlayer energies, although they may play a role in other circumstances. 

The other way to approach dense monolayers is to invoke results from the theory 
of alloys (Ehrenreich and Schwartz, 1976). Perhaps the simplest such scheme is the 
average T-matrix approximation (AT A) (Korringa, 1958), which assumes that 
adatoms are randomly distributed over the lattice sites. Urbakh and Brodskii ( 1984, 
1985) work out the formal expression for Lip(E) and apply it to Pt(l 11 )-H (cf. § 
11.4.2.). The next level of sophistication is CPA, in which the self-energy of the 
"effective medium" of the alloy is calculated self-consistently; an application by 
Persson and Ryberg ( 1981) was noted in § 11.2.1. 

11.2.4. Coulombic effects: self-consistency and correlation, and other improvements 

The issue of self-consistency has pervaded most subsequent efforts to apply tight­
binding methods to the pair problem. The inability to resolve this problem in a 
satisfactory way is one of the greatest difficulties in extending this approach to 
quantitative investigations. In the LCAO framework, since the electron orbitals are 
fixed at the outset, self-consistency is discussed in terms of the Friedel ( 1958) sum 
rule - which in this case requires charge neutrality within some finite range of an 
adatom - rather than Poisson's equation (Appelbaum and Hamann 1976). Typi­
cally, E,, is adjusted (making it a derived rather than a free parameter) (Allan 1970, 
1994). The energies of nearest neighbor(s) on the surface may also be altered, 
thereby inviting new surface states (Kalkstein and Soven, 1971; Allan and Lenglart, 
1972). Sometimes off-diagonal Coulomb terms are also included in various ways 
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(Rudnick and Stern, 1973; Leynaud and Allan, 1975), meaning that changes in 
charge on a site affect the potential of its neighbors. Generally neutrality is required 
either at each site or just in the surface cluster consisting of the adatom and its 
nearest neighbor(s), excluding any longer-range oscillations. The quantitative results 
are rarely compelling. The qualitative results (Einstein 1975, 1979a) are plausible. 

A second approach assumes that in a strongly chemisorbed system, the essence 
of the pair interaction lies in a surface molecule. A small cluster is treated carefully, 
gaining an improved description of local Coulomb effects at the expense of any 
background effects from the substrate. From studies of W 2H and W 3H2, for exam­
ple, Grimley and Torrini (1973) conclude that H atoms at nearest neighbor sites on 
W( 100) will be unstable, the repulsive energy being of order 200 meV. This method 
is not extended readily to more widely separated pairs, since the distance from the 
adatom to the edge of the cluster should presumably be at least as large as its 
distance from the other adatom. Since the "substrate" wavefunctions - via which 
the pair interacts - are sensitive to the details of the cluster, matching conditions 
to the background must be adjusted carefully. Moreover, in cases where adatoms 
bond to a common substrate atom, some anomalous structure may arise which 
should not be generalized (ES; Einstein et al., 1990). The best hope for cluster 
approaches is to embed them in well-characterized semi-infinite substrates (Grim­
ley, 1976). Grimley and Pisani ( 1974) have taken this approach for clusters contain­
ing single adatoms and calculated in a SCF-LCAO-MO scheme. 

The embedded cluster technique has indeed flourished (cf. NATO conference 
proceedings in Pacchioni et al. ( 1992)). Most of the applications are to monomer 
adsorption, but the dissociation of (gas) dimers is also often considered (e.g. 
Cremaschi and Whitten ( 1981 ), Madhavan and Whitten ( 1982)). As noted, it is hard 
to imagine applying the method to larger pair separations. Feibelman (I 989a) 
provides a lucid critique of this approach, questioning typical choices of bases and 
treatment of background effects. Also, since correlation is typically considered only 
in the cluster region, he wonders how much of the adsorbate binding energy actually 
comes from allowing substrate correlations in the bonding region. 

Grimley and Walker ( 1969) observe that while sizeable charge transfer might 
take place during chemisorption, little more should happen as a function of the 
relative placement of the adatoms. If energies in simple models could be determined 
in some plausible way, the pair interaction should work out satisfactorily even if 
the single-adatom results are somewhat inadequate. Moreover, the pair interaction 
is a rather insensitive function off.", as suggested by Table 11. I and shown more 
convincingly by Fig. 11 of ES. 

Schonhammer et al. ( 1975) studied carefully the correlation effects in indirect 
pair interactions. Using a ( 100) cu bi um substrate with parameters appropriate to H 
on N·i, Schonhammer ( 1975) had previously shown from a variational approach that 
the single adatom binding energy is roughly 113 stronger than in Hartree-Fock 
(although the two curves did have the same structureless shape as a function of f.F). 
They find that this correlation energy, 114 the binding energy, roughly cancels out 
when the pair interaction energy is computed. Although this cancellation is reported 
to be less complete for other parameters, the qualitative behavior holds for V's of 
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order the "critical hopping" (below which Hartree-Fock local moments arise). In 
addition to confirming the anisotropic, oscillatory behavior of the pair interaction, 
Schon hammer et al. ( 1975) corroborate the roughly exponential fall-off with sepa­
ration (for interadatom distances of order 1 to 4 lattice constants). The implication 
of this work is that correlation effects (in the form of careful treatments of the 
Anderson Coulomb term), while important for single adatom effects, can (to a 
reasonable approximation) be neglected in computing pair (and higher order) 
effects. Later studies discussed below(§ 11.3.5) cast doubt on how well this result 
generalizes to models treating the d-band aspects of the substrate. 

Over the last decade or more, research in chemisorption theory has stressed 
generation of numerical results to fit quantitatively data from UV photoemission, 
ion neutralization spectroscopy, low-energy-electron-diffraction (LEED), and 
scanning tunneling microscopy (STM) experiments. The primary object has been 
to compute the spatial and energy distribution of the electron density near the 
surface region and to find exact locations of surface states. For these applications 
self-consistency (here in a Poisson's equation sense) is crucial. The first attempts 
to gauge the role of such effects considered the adsorption of single adatoms on 
jellium. In semiconductors it is difficult to propagate electrons from one adsorption 
site to another, from a physics viewpoint because the Fermi energy lies in the band 
gap, from a chemical perspective because electrons are relatively localized in 
covalent bonds. (Some implications are discussed in the next section.) Tosatti 
(1976) has considered the interaction between adatom pairs on Si(l00)(2xl), 
assuming a short-range defect potential for the adatoms and linear response by the 
surface electrons. His pair interaction is always repulsive, oscillatory (in strength) 
with separation, but with an exponentially decaying envelope (due to trying to 
propagate electrons in the gap). 

Realistic slab calculations for transition and noble metals began appearing about 
a decade ago and are becoming more or less routine for flat surfaces. They are 
discussed at length in volume 2 of this handbook. Nonetheless, even today most 
total energy self-consistent calculations consider only a (Ix I) overlayer, with the 
full symmetry of the substrate. 

I 1.2.5. Lattice indirect interactions: phonons and elastic effects 

To check whether there were significant interactions mediated by phonon rather 
than electronic degrees of freedom of the substrate, Cunningham, Dobrzynski, and 
Maradudin ( 1973) studied the contribution to the free energy of the interaction 
between two identical adatoms via the substrate phonon field. In their model, the 
adatoms sit in the atop position on the (100) face of cubium. Results are computed 
as a function of the three dimensionless quantities: adatom mass over substrate 
mass, adatom-substrate coupling over substrate-substrate coupling, and inter-ada­
tom separation R (in lattice constants). They find that the zero-point energy is 
invariably attractive and that it decreases monotonically in strength with R, going 
like W7 for large R. The attraction is at most I0-4fi ooL (where ooL is the maximum 
phonon energy) or of order 10-6 eV, and thus nearly always negligible. 
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Given these negative results, little further work was done on this problem. 
However, beginning half a decade later, considerable interest has been paid to 
elastic interactions on surfaces. When electronic interactions play a significant role, 
it is generally not just difficult but artificial to try to isolate elastic effects from other 
electronic effects. However, for non-metallic substrates, where there are no elec­
trons near the Fermi energy, focus on elastic interactions may often be a fruitful 
perspective. Also, in the asymptotic region, the elastic interaction generally domi­
nates for large enough separation. In this section we first give a chronological 
account of studies of this interaction between adatoms. We then discuss in more 
detail, via a few examples, the interplay between elastic and electronic effects on 
metal substrates, and why this perspective is often not fruitful at close range. 

Lau and Kohn (1977) investigate the long-range interaction between two adatoms 
due to classical elastic distortion of an isotropic semi-infinite substrate, finding: 
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Fig. 11.4. Schematic of the origin of the elastic repulsion between like atoms on an elastically isotropic 
substrate. (a) Response of the substrate to a single atom. Here the displacement is taken to be away 
from the adsorbate, though it is more likely to be toward the adatom. (b) When two adatoms are present, 

substrate atoms between them cannot relax fully. 
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1-crAA 
E'•"(R) = __ ___!L.fz. A = ~ P · (R -R) 
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J 

(11.24) 

where Fj is the force exerted by adatom a at Rj, cr is the Poisson ratio, and µ the 
shear modulus. For identical atoms, this interaction is always repulsive, due to 
frustrated relaxation of substrate atoms between the two adatoms, as illustrated in 
Fig. 11.4. Taking cr ~ 112 and µ ~ 10-3 atomic units as typical, they estimate this 
repulsion to be of order 0.1 eV at R = 10 a.u. ~ 5 A. (If the adatom-substrate 
coupling on a triangular surface has the form -3yR~6 , where R0 = IRj - R) is the 
spacing between the adatom and one of its 3 substrate neighbors, then the "vi rial" 
(Stoneham, 1977) A= -6ya2 R~8 .) For different adatoms, the elastic interaction can 
have either sign. Its R" 3 decay is reminiscent of the dipole-dipole repulsion. Insert­
ing reasonable numbers for Xe pairs on Au, Lau and Kohn find at R = l 0 a.u. that 
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Fig. 11.4 (continued). Caption opposite. 
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the elastic repulsion is 0.53 meV, compared to their dipole repulsion of I. I meV, 
i.e., about half as large. On the other hand, at nearest neighbor sites it is three or 
four orders of magnitude greater than the phonon-mediated attraction just dis­
cussed; in essence Cunningham and coworkers' calculation (Cunningham et al., 
1973) gives the leading quantum correction to the classical distortive effects. 

Varying the vertical position of the adatoms relative to the isotropic substrate, 
Maradudin and Wallis ( 1980) also find the W3 decay but find that the interaction is 
attractive if the average distance below the surface is greater than R/2-fi. 

Stoneham ( 1977) shows that if the substrate or the adatom-substrate coupling is 
anisotropic, then the elastic interaction between like adatoms can again be attrac­
tive. He estimates that the magnitude of interaction of neighboring bridge-bonded 
Hon Wis of order 0.1 eV, large enough to account for some measured interactions 
without recourse to electronic effects. He also considers additional elastic effects 
due to clusters of adsorbates. 

Lau ( 1978) in turn considers anisotropic substrates with hexagonal or cubic 
symmetry. Using Green's functions derived by Dobrzynski and Maradudin (1976) 
and by Portz and Maradudin ( 1977), he works out explicit formulas. For Xe pairs 
on graphite, separated by 5 A, he finds a repulsion of0.18 meV. On Au (100), with 
pairs of Xe again 5 A apart, he finds an attraction of 0.30 meV along the cube axis 
and a repulsion of 1.73 meV at 45°. He expects this anisotropic behavior to be fairly 
general. While these energies are quite small, he expects elastic effects to become 
stronger and play a significant role in distortive phase transitions. 

Kappus ( 1978) rederives the previous results on isotropic and cubic substrates, 
finding again the possibility of homonuclear pair attractions on anisotropic sub­
strates. Between clusters a repulsive barrier arises, proportional to the product of 
the areas of the clusters, even in directions in which the long-range interaction is 
attractive. Kappus (1980) extends this work to consider an anisotropic force dipole 
tensor, which enters the calculation of the virials, but restricts the substrate to be 
elastically isotropic, a reasonable approximation for W. Again there is the possibil­
ity of elastic attractions between like adatoms. The formalism is applied to explain 
the ordered p(2x I) phase of 0 on W( 110) (Engel et al., 1975; Wang et al., 1978). 
He obtains "reasonable qualitative agreement" with the pair interactions used by 
Williams et al. ( 1978) in a Monte Carlo simulation of this system. However, since 
they do not lead to the p(2x 1) superstructure, Kappus (1981) generalizes the model 
to include a nearest neighbor interaction, an electric dipole repulsion caused by 
adatom dipoles normal to the surface, and another long-range part coming from 
elastic dipoles of nearest-neighbor pairs of adatoms. This third energy leads to 
multisite interactions. Nonetheless, with an £ 2 interaction, he cannot stabilize the 
p(2x I) superstructure; such an interaction could, of course, arise from the electronic 
indirect mechanism, from small anisotropy in the elastic constants, or from a 
breakdown in the continuum approximation. 1 

This system has proved quite challenging. Rikvold et al. (1984) used a model with £ 1 < 0, £ 2 > 0, £ 3, 

and trio interactions, and still found that an attractive £5 I% of £ 1 could introduce pronounced first-order 
behavior at both low and high coverages. 
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Theodorou ( 1979) proposes an intriguing approach to the overlayer structure of 
W(l 10)-0. He noticed that on a rigid substrate the W-0-W angle of bridge-bonded 
O was 102.2° rather than the ideal 90°. Presumably, then, these two W's would be 
drawn toward each other; there are two other W's, at the far ends of the "diamond" 
at the center of which the 0 sits, which are repelled by a lesser amount. From this 
perspective, he estimated energies per 0 of isolated atoms, the chain constituent of 
the p(2xl ), the p(2xl) itself, and a full (lxl) to be 0.15 eV, 0.05 eV, 0.15 eV, and 
0.29 eV, respectively. In terms of interactions, he essentially finds an attraction £ 1 

= -0.10 eV which duly produces chains. A repulsion in a different direction keeps 
the chains apart. Unfortunately, some more distant (second-neighbor in some 
direction) interaction between chains is also repulsive, preventing the p(2x I) from 
forming. He speculates about what other interactions might overcome this repul­
sion, noting that the small work function change suggests that dipolar interactions 
are insignificant. Apparently no resolution of this problem was ever achieved and 
the paper seemingly has had little impact on research in adsorbate interactions, 
though perhaps it influenced thinking about strained superlattices in heterostruc­
tures (Tserbak et al., 1992). 

Tiersten et al. ( 1989) note that Kappus ( 1978) smoothly truncates 20 integrals 
over the surface Brillouin zone with a cutoff parameter of order the inverse lattice 
constant and that his interaction energies between adatoms separated by less than a 
few lattice spacings depends sensitively on this cutoff. Thus, they conclude that a 
lattice-dynamics analysis of the substrate is needed in the non-asymptotic range 
instead of the continuum elasticity approach. Working in a mixed representation 
(cf. just above Eq. 11.5) they find an expression for the pair interaction energy in 
terms of (Fourier-transformed) local force vectors associated with each adatom and 
a substrate propagator between the sites. This propagator they take to be essentially 
the inverse of the dynamical matrix. (In elasticity theory, the propagator is an 
angular-dependent term divided by the magnitude of the 20 wavevector; one then 
readily recovers the W3 decay.) Tiersten et al. (1989) apply their formalism to As 
dimers on Si( I 00). They plot the interaction along the three principal directions, 
finding that it (I) can change sign with increasing R, (2) is highly anisotropic, (3) 
is rather small, Jess than 10 meV (often much Jess) once R ~ 8 A. They also look at 
interactions between H pairs on reconstructed W(l 00). Again they find that the 
interaction can be attractive or repulsive, that it depends on the direction, and is at 
most about 3 meV for the shortest R's, and becomes Jess than an meV quickly with 
increasing R. Presumably electronic effects are much larger for this case. In both 
cases the sign of the interaction at small separations can usually be understood in 
terms of the dominant forces on the substrate atoms or by simple arguments based 
on interference of the relaxations produced by the individual adatoms (cf. Fig. 
11.4.). Later, Tiersten et al. (1991) consider Si(I 00)-0, finding generally similar 
qualitative features, but with larger magnitudes, around 50 meV at 4 A, but then 
falling quickly to less than 5 meV, then to Jess than a meV. In other words, when 
electronic interactions are present (on metals), they should dominate, but on semi­
conductors or ionic crystals, these could be the leading interaction. 

Recently Rickman and Srolovitz (1993) present a very general Green's function 
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formalism for finding the elastic interaction between defects of spatial dimension­
ality D and multipole character m on a surface. Specifically, they tabulate results 
for four generic defects: a point force (D = 0, m = 0), an impurity adatom or island 
(D = 0, m = 1), a stress domain (D = l, m = 0), and a step (D = l, m = l). Since 
defects in general involve more than the lowest-order multipole, the results apply 
for large lateral separation R. For point interactions (D = 0) between an m-pole and 
an n-pole, the interaction E(R) oc w<m+n+l), reproducing W3 for the interaction 
between adatoms. For linear defects, E(R) oc R-<m+•>, or C1 ln(R/a) + C2 form= n = 
0. Further comments related to steps are deferred to § 11.4.3. 

The preceding discussion assumes that one can neatly distinguish between 
electronic and elastic interactions. Such a distinction is generally possible at mod­
erate-to-large separations between adatoms, but fails in the "near" region: in 
computing carefully the electronic interaction between adsorbates (Feibelman, 
l 989a), relaxations can play an important role. There is clear experimental evidence 
that adsorption can distort the substrate in the vicinity of the binding site, although 
the precise nature of the deformation may be difficult to determine. For example, 
for Ni( 111 )p(2x2)-0 Narusawa et al. (1982) measured, with high-energy ion 
scattering, outward displacements of about 0.15 A of the three Ni's to which each 
adatom binds (i.e. substantial buckling and overall relaxation); from LEED analy­
sis, Vu Grimsby et al. ( 1990) note, in addition, lateral "twist" displacements of 
about 0.07 A. However, Schmidtke et al. ( 1994) find in a subsequent LEED analysis 
no twisting, minimal relaxation, but buckling of 0.09 A. In a painstaking LEED 
survey of Ru(OOO 1 )-S, Pfniir' s group finds progressively greater substrate distor­
tions with structures of increasing coverage: for the p(2x2) there is slight buckling 
and outward relaxation, of -0.03 A (Jiirgens et al., 1994 ). In the (ff xff) symmetry 
forbids such buckling; the relaxation is still comparably minimal (Jiirgens et al., 
1994). In the 1/2 ML c(4x2) phase, there is substantial (-0.2 A) row buckling 
(Schwennicke et al., 1994), Ru atoms bonded to two S's relaxing more than those 
bonded to one S. (Moreover, the S atoms occupy fee and hep sites with equal 
probability, but are shifted laterally from the high-symmetry 3-fold position by 
-0.16 A!) Finally, in the (-fl x-fl) at 0.57 ML, there is even stronger dependence of 
the Ru relaxation on the S coordination: surface atoms with 3 S's relax 0.39 A more 
than those with a single S (although the overall relaxation is minimal) (Sklarek et 
al., 1995). (It is also noteworthy that in all cases the local chemistry is preserved in 
the sense that S-Ru bond lengths do not change by more than 0.05 A!) Since these 
displacements are based on fits to data, accuracy depends on the insight and 
ingenuity of the experimentalist. Using Tensor LEED and scanning tunneling 
microscopy, Barbieri et al. ( 1994) investigate two of the four ordered overlayers of 
S on Re(OOOI) (Ogletree et al., 1991) and find a similar increase in surface 
distortions with increasing coverage. 1 Substantial displacements of surface atoms 
will certainly affect the electronic states nearby (and so the interaction energy) and 

Einstein (1991) points out that several distinct trio interactions would be needed to account for these 
ordered phases; presumably some of these are related to the local distortions. 
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evidently can depend on the separation between the adatoms. It is a futile exercise 
to sort out which portion of the interaction is elastic. As more specific systems are 
carefully documented, it will be interesting and important to look for trends in the 
evolution of buckling with coverage. 

11.2.6. Asymptotic form of the indirect interaction between atoms and between steps 

In this section we present more information than in § 11.2.2 about the nature of the 
indirect interaction between widely separated adsorbates. Our intention is to stress 
the general features and underlying physics while skirting explicit formulas, which 
can become quite complicated (Einstein 1973, 1978, l 979a; Lau and Kohn, 1978; 
Flores et al., 1979; Roelofs, 1980). From Eq. (11.16) we see that the asymptotic 
behavior hinges on the behavior of G0 n(E) at large R, where R is the vector from site 
o to site n. While studying scattering in solids four decades ago, Koster (1954) 
recognized that with the competition of rapid oscillations, the solution required 
stationary-phase arguments. He uncovered much of the essence of our problem, 
finding that 

G,,n(E) oc K 1 exp(i k(e) · R) ( 11.25) 

where k(E) is that wavevector along a constant-energy surface at which the velocity 
(viz. ~£)is parallel to R, as illustrated in Fig. 11.5. Moreover, the proportionality 
constant varies inversely with the Gaussian curvature of the constant-energy sur­
face at k. More generally, if G0 nCE) oc k- 1 R-m exp(ikR), then integration by parts 
(Grimley, 1967) leads to the important result 

v4 -2 2 
En -R Re [G00(£F) G,,"(£F)] (11.26) 

and the interaction decays like R-<im+ 1>. For surfaces, one can show quite generally 
that m = 2, i.e. that G0 n(£) oc k- 1 K 2 exp(ikR) (cf. the discussion in the paragraph after 
Eq. (11.28)) and 

En - R~5 cos(2krRn + <j>) (11.27) 

if the interaction is isotropic. The complex quantity G00 is independent of the 
separation and so leads to the phase factor <j>; from Eq. ( 11.14 ), this factor is given 
explicitly by (Joyce et al., 1987) 

(11.28) 

which vanishes when V27tp0(£F) << EF - £0 - V2ReG00(£F), e.g. when the coupling is 
weak or the adatom level is far from the Fermi energy. Gumhalter and Brenig 
( l 995a) emphasize that the phase factor only appears in nonlinear theories. 

In studying the static response function, Rudnick (1972) found essentially this 
result for jellium confined by an infinite barrier. He interpreted the sinusoidal 
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-3 -2 -1 0 2 3 

Fig. 11.5. Illustration of the wave vector which dominates the asymptotic interaction. The curves 
indicate constant-energy lines in the surface Brillouin zone, in the lower third of the band of a simple 
cubic crystal in the tight-binding model. The dots denote sites in real space. The dashed line shows 
the R connecting the origin with a particular site. For€= -2.1, the arrows show the velocity Vk€ of 
two candidates for this wave vector; it is not the k at which €(k) intersects R, but rather the lower one 
at which Vk€ is parallel to R, which enters Eq. (11.25). For isotropic systems, the contours become 
circles (as near the bottom of the band, as depicted for€= -2.8), and there is no distinction between 
the two candidates. When the Fermi curve lies on more than one "sheet", one must sum over the 

contributions from each k with Vk€ parallel to R. 

variation as a Friedel oscillation of the screening charge around a point impurity. 
Similar behavior was also found by Moore (1976) and Flores et al. (1977a). The 
response at point n due to a disturbance at point o of the infinite-barrier system can 
be described in terms of the bulk responses from the disturbance at o and from a 
comparable disturbance at the mirror image of o, with the opposite sign to produce 
a node along the barrier (Flores et al., 1979). Then the leading W 1 contributions to 
G

11
" cancel, leaving the next order, with coefficient R-2

, to dominate. 
Lau and Kohn ( 1978) verify that a similar asymptotic interaction occurs for a 

jellium substrate even if the barrier is finite. Treating the adatom-substrate interaction 
in second-order perturbation theory, they can separate the pair interaction energy 
from the adsorption energy of single atoms, analogous to what was done above for 
the tight-binding model. The R dependence of the pair interaction is given by 

f di k eik, R G(k ) 
II II• (11.29) 

where G(k 11 } is a kernal which depends only on the substrate energy spectrum (here 
of the free electron form). After detailed analysis, they find that asymptotically the 
integral is dominated by a singularity in the fourth derivative of G (k11)1 2k times a 
unit step function. Using the results for generalized functions given by Lighthill 
(1958), they reduce behavior to the form of Eq. (11.27). 
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Lighthill' s formulas can be applied more generally to find the asymptotic form 
of the G0 "(£), particularly in the tight-binding model; there is no need to assume 20 
isotropy, weak coupling, or large separation between £p and Ea, viz. ionic bonding 
(Einstein, 1973, 1978, l 979a). (From another approach with different expansions, 
Le Bosse et al. (1979) rederive most of Lau and Kahn's results without the latter 
restrictions.) The final expressions are rather cumbersome. An interesting qualita­
tive aspect is that the use of surface rather than bulk Green's functions means that 
one must be somewhat cautious in applying Koster's approach. (Cf. Flores et al. 
( 1979) for some details of the application to surfaces.) Only k

11 
is a good quantum 

number (since the surface destroys crystal translation invariance in the kl. direc­
tion), so we have a Fermi "loop" rather than a surface. For each k

11
, however, the 

kernel of the surface Green's function can be rather simply related to those of bulk 
Green functions (Kalkstein and Saven, 1971 ). For the (I 00) face of a simple-cubic 
tight-binding model, it turns out that there are essentially two subbands, each with 
2/3 the bulk bandwidth B and centered at B/3 from either band edge. Thus, in the 
central portion of the band, there are essentially two sheets to the Fermi surface, so 
that there are two special values of k

11 
to be considered. For a more realistic model 

of the substrate, there might well be even more. On the other hand, near the bottom 
of the band, the tight-binding dispersion relation simplifies to the parabolic form; 
Lau and Kohn ( 1978) manipulate the Anderson model (in essence, applying the 
Schrieffer-Wolff (1966) transformation) to make contact between their free-elec­
tron calculations and the earlier tight-binding work. (See also Einstein ( 1978).) 

An W 5 interaction at large separations is clearly of rather academic interest. 
However, in the infinite-barrier model, prompted by Hjelmberg's (1978) explicit 
numerical calculations, Johansson ( 1979) and Johansson and Hjelm berg ( 1979) 
notice that in addition to this "far asymptotic" region, there is a region with bulk 
W' interaction occurring for much smaller values of R, still larger than k"F 1 but 
smaller than the distance to the barrier, so that the image does not cancel the leading 
term due to the atomic charge. (Cf. comments after Eq. ( 11.28).) When R is a few 
lattice spacings (specific range dependent on the electronic charge density, i.e. kF, of 
the jellium), there typically is a crossover region between the bulk-like and far 
asymptotic limits, with a decay exponent varying continuously from 3 to 5. Le Bosse 
et al. (1978) also find the W3 decay, but do not report the transition or far asymptotic 
region and attribute (Le Bosse et al., 1979) the lack of R-5 decay to other factors. 

Seemingly the latest word on this problem is Eguiluz and coworkers' numerical 
treatment (Equiluz et al., 1984), based on a Kohn-Sham self-consistent approach, 
of two charges in Al- and Na-like jellium. They recover Lau and Kohn's result (Lau 
and Kohn, 1978) as the dominant result for contributions to the response function 
from wavevectors at least 2kF, but their calculations show that this weak oscillatory 
term is masked by a much larger, monotonically-decaying attractive interaction due 
to smaller wavevectors. (The singularity in the integrand at 2kF is numerically 
invisible.) When the charges are placed outside (inside) the jellium, the direct 
Coulomb repulsion overwhelms (roughly compensates) this attraction, which is 
presumably a manifestation of the polarization screening. In their range of study 
(which does not reach the "far asymptotic" regime), they also see the R-3 decay of 
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the envelope of the oscillatory part. The oscillations are observable in the total 
interaction only when the charges are inside the jellium, and are strongest when the 
charges are near the surface, with initial oscillation amplitudes somewhat larger 
than 10 me V (larger for "Na" than "Al"). Although for charges outside jellium there 
is no observable evidence of long-range oscillatory interactions due to polarization 
of the substrate electron gas, the authors carefully note that their model does not 
allow for electron exchange coupling to the substrate expressed in Eq. (11.5) 

In the asymptotic regime, the lateral interaction may be analytically tractable but 
is generally insignificant. At short distances, the interaction is far more compli­
cated, since it depends on all the occupied states and not just those at one point on 
the Fermi surface. By the distances that the asymptotic form dominates, the inter­
action is quite small and is often masked by other interactions decaying like W 3

• 

Thus, a particularly significant result of Lau and Kohn is: if the indirect interaction 
is mediated by a surface state (assumed to be circularly symmetric), the singular 
nature of expression (11.29) appears in the first derivative of G(k

11
) at 2kF, and the 

prefactor of cos(2kpR) in Eq. ( 11.27) becomes W2! Of course kF is now associated 
with the cylindrical Fermi surface. The slower decay should in retrospect be not so 
surprising, since the curvature of the cylinder vanishes along the axis direction, so 
that the form derived by Koster would diverge. For the more general cases of a (2D) 
hexagonal or square tight-binding substrate, Volokitin (1979) and Braun and Med­
vedev ( 1989), respectively, also find asymptotic W 2 decay, the latter suggesting that 
such behavior might be seen on Re (0001 ). With the axis of the cylindrical Fermi 
surface parallel rather than perpendicular to the physical surface, as obtained by 
adsorption onto the edge of a semi infinite square tight-binding net, Braun ( 1981) 
and Braun and Medvedev ( 1989) find W4 and W2 for the "surface" (edge) and 
"bulk" co_!ltributions..!. r~spectively, to the interaction energy; the physical analogue 
is Re (I 0 I 0) in the [ 121 O] direction. 

Lau and Kohn ( 1978) also consider a model in which the Fermi surface is 
defined by two exactly parallel planes spaced !:!..k apart in the x direction; they find 
Ex ex: x-'cos(!:!..kx). Braun (1981) and, more explicitly, Braun and Medvedev ( 1989) 
illustrate this decay for the case of a tight-binding chain as the substrate. In 
rederiving these asymptotic behaviors, Flores et al. (1979) also find a fractional 
exponent for a conical Fermi surface. Lau and Kahn's idea of mediation of interac­
tions by quasi-one-dimensional states with consequent x-1 decay has captured the 
imagination of many for years but has only very recently been applied to a physical 
system: Ni(l 10)-H (Bertel and Bischler 1994; Gumhalter and Brenig 1995). This 
speculative recent work is discussed at the end of§ 11.4.3. 

Further analytic progress was achieved by Brodskii and Urbakh ( 1981 ). (For a 
more general theoretical review from their perspective, see Urbakh and Brodskii 
( 1985).) They note that in the Lippmann-Schwinger integral equations underlying 
the formalism in § 11.2.2.2, behavior is dominated by poles in the Green's functions 
at the resonance energies of the closely-spaced and the infinitely-separated ada­
toms, as well as by the singularity in the energy spectrum of the substrate. Making 
a zero-range potential approximation, they recover the structure of the asymptotic 
form reported by Einstein ( 1978). They also obtain a somewhat similar expression 
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assuming a separable potential. More remarkably, they derive, with suitable ap­
proximations, analytic expressions for the "intermediate asymptote" regime, for 
smaller separations than the asymptotic regime. In trying to make contact with 
experiments, they consider both wide and narrow bulk bands, surface bands, and 
possibly different species of adatoms. Including the possibility of interactions 
between heterogeneous pairs, they produce a table with at least four different 
power-law decay exponents. 

Apparently independent of all the above work, Ebina and Kaburagi ( 1991) apply 
methods of Brovman and Kagan ( 1974) for finite-temperature Green's functions to 
study interactions on jellium substrates. By approximating surface electrons as 
two-dimensional objects, they implicitly focus on interactions mediated by surface 
states. From a step-like anomaly in the second-order susceptibility, they find a trio 
interaction dominated by wave vector kFf3. In their calculations, there is also a 
contribution from wavevector 2kF. Seemingly this competition in the asymptotic 
regime reflects the two interaction terms in Eq. (11.21 ). 

While most of this chapter is devoted to individual adatoms on flat surfaces, it 
is worth mentioning some relevant results for vicinal surfaces, i.e. surfaces misori­
ented slightly from high symmetry directions. On semiconductors, the energetic 
interactions between steps, if noticeable, are repulsive. In contrast, on metals 
evidence is emerging that the interactions can be oscillatory in sign. We discuss this 
novel application further in the § 11.4.3. 

11.3. Attempts to model real systems 

l I .3.1. Tight-binding, jellium, and asymptotic-ansatz 

The philosophy behind the single-band tight-binding calculations of ES is that the 
d-band is primarily responsible for the lateral indirect interactions. Burke ( 1976) 
raised doubts about the adequacy of this idea, even for refractory transition metals 
like W, by performing more realistic tight-binding calculations with a five-fold 
degenerate substrate band. His goal was to reproduce the pair data for transition 
metals on transition metals, gleaned from experiments performed by Tsong and 
coworkers ( 1973, 1975), Bassett ( 1975), and Graham and Ehrlich ( 1974) using field 
ion microscopy. Generalizing ES, Burke first showed how five-fold degenerate 
ad atoms may be incorporated into the formation starting with Eq. ( 11. 9) by an 
orbital-peeling matrix procedure. The idea was ( 1) to focus on one of a pair of 
nearby adatoms, (2) to remove it from the system orbital by orbital, and (3) to 
replant it infinitely far away (as though there had been originally five single-level 
adatoms rather than one at each site of the pair). In this procedure, the bulk is 
unspecified. In actual calculations, the substrate was the ( 100) or ( 110) face of a 
semi-infinite bee crystal, with adatoms imagined as the same element (viz. W) as 
the substrate and sitting in the otherwise vacant lattice sites above the surface. All 
diagonal matrix elements are set at the energy zero; the possibility of having to 
modify what amounts to E0 = 0 is discussed and dismissed, thereby neglecting 
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self-consistency corrections completely. Overlap is also excluded. Slater-Koster 
( 1954) matrix elements between nearest and next-nearest sites are calculated in 
terms of the two sets of 3 d-d tight-binding parameters. Alas, these six values are 
simply scaled up from narrow band values (Pettifor, 1969), ignoring any details of 
hybridization with s-p electrons. To compute the substrate Green's functions, Burke 
combines the continued fraction approach with a scheme counting poles and zeros 
on the real energy axis. When the adatoms are separated by just a (bulk) nearest or 
next-nearest neighbor distance, a direct interaction between them can (and should) 
also be included. With no direct interaction, the results look similar to those of ES: 
oscillatory in sign, peaking in strength when Ef is near Ea. Inclusion of the direct 
interaction makes a substantial difference for small interadatom separation, leading 
to an attraction at all Ef due to the bonding between the adatoms themselves 
(Desjonqueres and Spanjaard, 1993). Overall, Burke reconfirms that the pair inter­
action energy has roughly the same size as in ES and that it oscillates as a function 
of EF for fixed separation and as a function of R for fixed Ef. In a rather cursory look 
at decay with separation, Burke finds much faster fall-off on the ( 110) face than the 
(I 00); there are no analytic results. Burke was disappointed to find the calculated 
pair binding of a nearest-neighbor dimer on the ( 110) surface to be nearly five times 
the experimental value of 0.3 eV (Tsong, 1973; Tsong et al., 1975; Bassett, 1975). 
Another difficulty is that subsequent work suggests that the adsorbed W sits in a 
"surface site" rather than a "vacant lattice site". Burke alleges this makes little 
difference but gives no supporting evidence; in light of the results of ES - cf. Table 
11.1, especially the difference between the two bridge configurations - this 
insensitivity is surprising. Burke suggests a number of sources of error, but aside 
from adding a Coulomb counter term or massaging parameters, it is not clear how 
to improve matters. His dissatisfaction with this approach was heightened when he 
could not explain the ordered phases of Ni( I 00)-0 (Holloway and Hudson, 1974; 
Demuth and Rhodin, 1974); in this case the computed strength is typically much 
too small, of order 1-10 me V, to account for disordering temperatures. 

As discussed in § 11.2.6, Flores et al. (I 977a), Lau and Kohn ( 1978), Le Bosse 
et al. ( 1978, 1979), Johansson ( 1979), Johansson and Hjelm berg ( 1979), and 
Eguiluz et al. ( 1984) show that with a jellium substrate there are also 'indirect 
interactions of substantial magnitude. The last group in fact explore the interaction 
between two protons on/in Al as a function of separation, for several distances from 
the surface. A major result of the latter four of these studies is that the ultimate 
[W5cos(2kFR)] asymptotic regime is not reached till separations R so large that 
the interaction is negligible. At shorter spacings, the interaction goes first like 
R-3cos(2kFR), as in the bulk; for larger R, typically those of most interest, the decay 
exponent increases smoothly to the surface value of 5. Rogowska and Wojciechowski 
( 1989, 1990) use these ideas to consider noble-metal adatoms on jellium, using the 
exponent 3 exclusively (for separations larger than suggested by Johansson and 
Hjelm berg ( 1979)), offering ways to compute the charge density, from which to get 
kp While this approach may be reasonable for free-electron-like substrates, the 
eventual application to a W(l 10) substrate (Rogowska and Kolaczkiewicz 1992) 
seems questionable. 
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Proposing an alternative to the cluster-based picture of H-H interaction of e.g. 
Grimley and Torrini (1973), Flores et al. (1977b) consider the system Pt(l 11)-H. 
From a variety of experimental evidence, they argue that the H atoms sit in regions 
of high electron density, viz. center sites. They then invoke (without justification 
and rather implausibly) the asymptotic form of the interaction, Eq. (2.27), for five 
structures involving separations between one and two Pt nearest-neighbor spacings. 
Taking into account the coverage of the ordered phase and the idea that the assumed 
potential form must have a minimum at the pair spacing of the ordered structure, 
they deduce this spacing and the associated graphitic (2x2) overlayer, found sub­
sequently by LEED (Van Hove et al., 1978). Noting that for most of the structures 
there are at least two identical nets with the particular choice of neighbor spacing, 
they argue for the existence of two different binding states, consistent with experi­
ment (Christmann et al., 1976). Consistent with experiment again, these become 
identical at monolayer coverage, when both nets are complete (Burch, 1980). 

I 1.3.2. Embedded cluster model 

Muscat (Muscat, l 985a; Muscat and Newns, 1981) was the first to allow explicitly 
for contributions of both free and ct-like electrons in producing lateral interactions 
between adatoms, in his case H atoms. In his embedded cluster model, spheres are 
centered on the sites of the H adatoms as well as on several nearby metal atoms in 
the substrate. Within the latter muffin-tin spheres, he places self-consistent bulk 
band-structure potentials (Moruzzi et al., I 978). The spheres are then embedded in 
some model of a free-electron gas, usually infinite-barrier jellium. (In some later 
work, the jellium contribution is taken from effective medium theory (N0rskov, 
I 982; Nord lander and Holmstrom, 1985), discussed below.) The d-wave contribu­
tion comes from the l = 2 solutions. Again, interaction energies are calculated from 
changes in all the one-electron energies. The technique was applied to a wide 
variety of late-transition and noble metal substrates. Pair interactions generally 
have the correct sign and order of magnitude to corroborate the energies deduced 
from Monte Carlo simulations of the experimental phase diagram (but were often 
off by factors of very roughly 3). In these calculations the distanced between the 
H proton and the jellium edge (taken as a plane half-way between the surface atoms 
and what would have been the next plane above the surface (Muscat, 1986)) is the 
only explicit adjustable parameter. By quoting the results for a few values of d, 
Muscat gives some idea of an intrinsic uncertainty in this approach. While the 
variation is not negligible, the qualitative and usually semi-quantitative results are 
not overly sensitive. 

More specifically, this method also evaluates interaction energies based on 
integrations over one-electron phase shifts. For a pair of adatoms, an explicit 
subtraction is required (in contrast to Eq. (2.15)). As an illustration, the phase shift 
for a single H muffin tin centered z0 from the infinite barrier is 

(11.30) 
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where 80 is the phase shift of a single muffin tin in a free-electron gas. For two H 
atoms, the spherical Bessel function j 0(2kz0) is replaced by j 0(kR) - Jo(k--./ R2+4z~ ), 
similarly for the spherical Neumann function n0(2kz0), and there is a second tan-1 

term in which these Bessel functions are added rather than subtracted. To calculate 
00 one must stipulate the spherical potential in the muffin tin; Muscat and Newns 
( 1981) choose a simple exponential with a prefactor set to produce a bound state 
just below the bottom of the sp-band of Ni. On jellium (at the separations of C sites 
on Ni(l 11), neglecting any difference between "fee" and "hep" sites), they then find 
£ 1 = 900 meV, £ 2 = -70 meV, and £ 3 = -35 meV. Since £ 2 < £ 3, these interactions 
would lead to a ( lxl) rather than the experimentally observed graphitic (2x2). Next, 
they add a (hexagonal) cluster of (seven) spheres at the appropriate positions to 
represent the top layer of Ni. The effect is calculated using standard multiple-scat­
tering (KKR) techniques, using only the L = 2 component of the Ni-centered 
spheres. To the relatively simple argument oftan-1 above, one subtracts summations 
over products of scattering matrix elements. In this case, ford = 0, they now find 
£ 1 = 450 meV, £ 2 = 2 meV, and £ 3 = -9 meV. (As a measure of sensitivity, for the 
largest ldl, d = -0.4, £ 2 = -10 meV and £ 3 = -19 meV. For Cu with d = 0, £ 1 = 600 
meV, £ 2 =-2 meV, and £ 3 = 0 meV.) To calibrate these numbers, Bartelt et al. ( 1983) 
show with Monte Carlo simulations that the transition temperature at the saturation 
coverage of the overlayer (i.e. the correct number of adatoms to form a defect-free 
overlayer) is below I 00 K, far below the value of 270 K determined in LEED 
experiments by Christmann et al. ( 1979). 

Extending earlier work (Muscat 1984b, 1985b), Muscat (1986) gives the most 
comprehensive results, treating the close-packed faces of seven substrates: Ti, Co, 
Ni, Cu, Ru, Rh, and Pd. He first shows that the fee site is more favorable for H 
adsorption than the hep site (by about 10 me V for Ni up to 137 me V for Ru), except 
for Cu. Most of this energy is due to one-electron contributions, computed as 
described with phase shifts. To assess Coulomb corrections due to changes in 
electron density at the adsite, an effective medium function is computed. This 
correction is roughly an order of magnitude smaller, around I 0 me V. The principal 
goal was to evaluate the relative stabilities of the ground states of various possible 
ordered overlayers. In this regard, pairwise interactions alone, out to sixth neighbor 
(i.e. third neighbor for the Ni's or the same kind of 3-fold site), suffice. For Ni, Co, 
Ru, Rh, and Pd, the dominant interaction is an attractive sixth neighbor (producing 
(2x2) islands). An unsettling feature of the numbers is that the interactions do not 
tend to decay with increasing separation; these attractions have the largest magni­
tude, except for the very-short-range enormous £ 1 repulsion. 

For Pd( 111 )-H, Muscat confesses substantial problems in comparison with 
experiment: his interactions are quite small, dominated by £ 6 = -10 meV, which 
would produce a p(2x2) rather than the observed graphitic (2x2). He also notes in 
comparison with EAM calculations by Foiles and Daw (1985) that he does not 
obtain subsurface occupation, which they found to be crucial. On the other hand, in 
reexamining the system Ni( 111 )-H with larger clusters, he basically reproduces his 
earlier values for £ 1, £ 2, and £ 3 but now cites small £ 4 and £ 5 repulsions and a 
remarkable attraction £ 6 = -18 meV (at an H-H separation twice the substrate 
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nearest-neighbor distance). He claims "excellent agreement with experiment" 
(Christmann et al., 1979). This conclusion provides an opportunity to warn the 
reader that there are so many degrees of freedom in these systems that one can easily 
be tempted into unwarranted enthusiasm. In this case, Muscat obtains not only the 
correct ordered state, a graphitic (2x2), but even a good estimate of the disordering 
temperature for the saturation coverage. However, a more detailed look at the 
experiment reveals a fairly broad (2x2) region in the phase diagram which disorders 
continuously to a disordered state. In a Monte Carlo simulation using Muscat's 
interactions, Roelofs et al. ( 1986) find, in contrast, a very narrow pure (2x2) region 
surrounded by very broad coexistence ("island") regions produced by the anomal­
ously strong 6th-neighbor attraction. Roelofs (1982) and Nagai (1984) both wrote 
down sets of interactions based on fits to the whole phase diagram rather than on 
any microscopic computation; their sets had relatively weaker £ 6 interactions and 
stronger shorter-range repulsions. 

Another problem with the embedded cluster model is that it is expensive to 
extend the clusters, since the number of spheres grows rapidly with number of 
shells. Reduced symmetry in the clusters severely complicates the calculation, 
making it taxing to include local distortions. In general, there is no unambiguous 
way to find the parameter d nor to assess the accuracy. It is not clear what would 
happen for a transition metal with wider d-bands or for a more complicated 
adsorbate. In spite of these criticisms, I hasten to add that these calculations were 
the state-of-the-art in their time. They made several clear predictions and usually 
produced energies with sensible magnitudes. 

Special cautionary case Fe( 110)-H 
Muscat's (I 984a) most extensive tabulation of trio energies is in his treatment of 
Fe( 110)-H. Experimental determination of the adsorption site was problematic. 
Adsorption was first thought to occur in the long-bridge site (based on LEED 
(lmbihl et al., 1982)) and then in the short-bridge site (based on EELS (Bar6 et al., 
1981 )), a conclusion consistent with Muscat's calculations. The system has an 
interesting phase diagram with a phase transition that was thought to be highly 
unusual. Painstaking calculations (Kinzel et al., 1982; Selke et al., 1983) using 
lattice gas models were performed to elucidate the system. Eventually, however, 
they were supplanted by the conclusion from detailed LEED work (Moritz et al., 
1985) that H sits in the quasi-three-fold site and that the ordered phases observed 
in LEED have different real-space symmetry. 

11.3.3. Effective medium theory and embedded atom method- semiempiricism 

The first of the semiempirical methods (N0rskov 1977), effective medium theory 
(EMT) begins with the self-consistent calculation of the function E, 2 (p) of an atom 
i, with nuclear charge Z;, in a homogeneous electron gas of d~nsity p. (This 
laborious calculation need be done only once. While this procedure to get E,.z(P) is 
typical, N0rskov (e.g. 1993) mentions an alternative.) For non-noble-gas atoms, 
these functions have a simple shape with a single minimum at a value on the order 
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of 0.1 bohr-3
• In a solid each atom sits in the tails of the electronic charge density 

of its neighbor~ The total energy of a_:;olid is then approximated, to first order, by 
the sum of Ec.z,CP) for all atoms i. Here pis the average over the atomic sphere. There 
are correction terms due to electrostatic effects (discussed in § 11.2.1) and to 
changes in one-electron energy sums, say between an adsorbed system and the same 
atoms before adsorption (essentially the topic of§ 11.2.2). An early application was 
to adsorption on jellium (N!<'.Srskov and Lang, 1980), with later studies of transition 
metal substrates, reviewed by N!<'.Srskov (1994). Variants of this method are the 
quasi-atom approach (Stott and Zaremba, 1981) and the corrected effective medium 
theory (Raeker and DePristo, 1989, 1991). 

Applications of EMT to adsorbate-adsorbate interactions has centered on the 
issue of poisoning and promoting by preadsorption (N!<'.Srskov 1993, 1994 ). Most of 
this interaction is electrostatic and was discussed earlier in § 11.2.1. From another 
perspective, the role of rehybridization, i.e. altering of the chemical nature of the 
adsorption bond, has been stressed by Feibelman and Hamann (1984) and by 
MacLaren et al. ( 1987). These calculations focus on the change in the local density of 
states around metal atoms due to preadsorbed electropositive or electronegative atoms. 
Part of this change is electrostatic, but the rest, in EMT language, must be attributed to 
one-electron effects, i.e. the sort of covalent aspects discussed in § 11.2.2. 

There is a general result that emerges nicely in EMT (N!<'.Srskov 1993) that will 
be useful in later analyses. If one plots the cohesive energy of an fee metal as a 
function of coordination number for fixed interatomic spacing, the curve does not 
decrease linearly as it would for a simple nearest-neighbor pair interaction model. 
Instead the decreasing curve has a positive second derivative. The effective pair 
interaction, defined as the derivative of this curve, is therefore enhanced for small 
coordination numbers (below 5) and diminished for larger such numbers (above 5 
or 6), compared to ( 1/12) the bulk cohesive energy. Thus, interactions on surfaces 
should be considerably smaller than one would predict based on near-neighbor 
bond models gauged by bulk cohesive energy. 

The semi-empirical embedded atom method (EAM) (Daw et al., 1984, 1993; 
Foiles et al., 1986) has offered a relatively easy way to contend with the low-sym­
metry problems. In this approach, the cohesive energy is written 

£rnh = L F [ L.' p"(R;))+ 1/2 L U(R;) 
I J I) 

(11.31) 

where the p"'s are spherically-averaged computed atomic electron densities, the 
prime on the summation indicates j = i is excluded, and U is the electrostatic 
Coulomb repulsion Z;Z1e

2/IR;). The effective charge densities Z inserted into U are 
determined by the formula Z(R) = Z0(1 + P/?) exp(-a,l?). The embedding energy 
can be determined numerically by embedding an atom in a homogeneous back­
ground, as in effective medium theory (N!<'.Srskov 1982, 1994) or by using the 
"uni versa!" binding curve of Rose et al. (1984 ): 

E(a) = -Eb(I +a*) exp(-a*), a*= (a - a0)/A. (11.32) 
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where a0 is the equilibrium separation. Typically, the parameters are adjusted to fit 
the bulk properties such as lattice constant, cohesive energy, and elastic constants 
(e.g. 'A can be obtained from the bulk modulus). For adsorption of one species on 
another, one can fit adsorption position and vibration frequencies (Voter, 1987). In 
the "glue model" (Ercolessi et al., 1986, 1988) (and for Voter-Chen (1987) poten­
tials) one fits, in addition to F and U, the atomic density p (Tosatti and Ercolessi, 
1991 ). The fact that fitting functions are not uniquely specified leaves the method 
vulnerable to criticism, but alternatively can be viewed as a strength in that one can 
tailor functions for specific applications and gauge uncertainties by use of different 
sets of functions. In contrast, in an earlier but similar scheme, Finnis and Sinclair 
( 1984) took the functions F to be proportional to the negative square root (of p ), as 
they would be in the lowest approximation to a tight-binding model. 

Since the numbers produced by EAM and similar calculations can be tuned 
somewhat arbitrarily, they are most useful in identifying trends and rough magni­
tudes that do not depend on the detailed choices. For high-symmetry systems more 
exacting band-structure techniques become feasible and offer more reliable infor­
mation. (However, the flexibility of EAM can often lead the practitioner to unex­
pected structural revelations that might elude someone calculating with a scheme 
that depends on human ingenuity to determine the likely choices for equilibrium 
sites. For example, for Pd( 111 )-H the existence of subsurface sites and their 
domination of the interactions needed to describe the phase diagram (Felter et al., 
1986; Daw et al., 1987) were discovered "by accident" during dynamical simula­
tions!) EAM is quite helpful in assessing the effects of coordination number on 
bonding. This theme underlies more exact work by Feibelman, to be discussed 
below. The driving program developed at Sandia-Livermore easily allows for 
substrate relaxations or for preventing the motion of any atom in any direction. On 
the other hand, since there is no Fermi surface in the method, EAM cannot describe 
any effect involving Friedel oscillations, such as the asymptotic form of lateral 
interactions. 

In EAM calculations of Ni(l 11 )-H and Pd(l 00)-H, Einstein et al. (1990) 
assessed the ability of EAM to predict lateral interactions. The origin of the 
interaction in this framework comes from the change in the argument of the 
embedding functions of the atoms in the cluster of atoms in the vicinity of the 
adatoms. Presuming the overlap of the adatoms is negligible and their atomic 
density decays fairly rapidly, the primary contribution to the interaction, in the 
EAM formulation, comes from substrate atoms "touching" both adatoms. Specifi­
cally, by expanding the embedding functions, we focus attention on the effect of a 
small increase in density due to a second adatom adding density to a substrate site 
(Foiles, 1985): 

2 

t1Ernh =SL, [r; (p;) pj(R;) + F"; (p;) \pJ(Ru)) J (11.33) 

To lowest order, the positive curvature of F(p) leads EAM to predict repulsive 
interactions, with their magnitude proportional to the number of shared substrate 
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nearest-neighbors (except at the shortest separations, when direct interactions can 
overwhelm the physics). We will find a similar result below in a second-moment, 
tight-binding picture (cf. Eq. (11.37)). In first-principles calculations Feibelman 
( l 988b, l 989a) found such a repulsion for Al-S and Al-Te dimers on Al ( 100) and 
for H-S on Rh(OOI). 

Furthermore, for trio interactions, EAM is rather insensitive to the configuration 
of the trimer: because the charge densities are spherical, the only dependence of the 
trio interaction on the angle (as opposed to the length of the legs) of the trimer 
comes from substrate relaxations. Such relaxations are particularly small for close­
packed (111) fee surfaces (cf. Wright et al. (1990), discussed near the end of § 
11.3.5, for evidence that a ( 100) fee surface can be expected to have significant 
relaxations.) Thus, for ( 11 l) fee surfaces, in EAM one can to good approximation 
replace explicit treatment of trios (and higher-order multi-atom terms) by pair 
energies which depend on coordination (Fallis et al., 1995). While this approxima­
tion may be reasonable for the systems for which EAM works well, viz. late 
transition and noble metals, it is unlikely to be viable for most refractory transition­
metal systems (even their closest-packed (110) bee faces), since angle-dependent 
bonding is important; cf. § 11.3.5. On the other hand, when viable it can be very 
helpful when doing simulations, and it highlights the idea that high-coordination 
atoms bind less strongly to another atom than low-coordination atoms. In the 
bond-saturation model (BSM), one posits that the cohesive energy of each atom 
depends only on its (nearest-neighbor) coordination. For the particular case of 
Pt( 111 ), Fallis et al. ( 1995) report that the bonding of adatoms can be characterized 
simply by a quadratic expression A + Bz + Cz2

• Here z, the coordination number 
within the adlayer, ranges from I to 6, A= -961.423 meV, B = 97.5456 meV, and 
C = -4.86116 meV. The positive value of Bis a reflection of the positive curvature 
of the embedding function in EAM. The strength of the interaction between two 
adatoms with coordinations z1 and z2 is then the average A + B(z 1 + z2)/2 + 
C(z~ + z;)/2. The same tactic can be applied more generally to problems in growth, 
where the total coordination rather than just that in the overlayer is considered. The 
dependence of bond strength on coordination was already discussed early in this 
section in the context of EMT and is reconsidered in§ 11.3.6. 

For Ni( 111 )-H only the first-, second-, and third-nearest neighbors are above 
I meV, since only these involve shared substrate atoms. Their magnitudes are 
comparable to those found by Muscat (1984b, I 985b, 1986) but all are positive, 
consistent with behavior deduced from Monte Carlo fits of the phase diagram 
(Roelofs et al., 1986 ). We find a tiny attractive trio interaction for the smallest 
equilateral triangle of adatoms in the same kind of three-fold site, comparable in 
size to that found by Muscat but of the opposite sign. Overall, the signs of the 
interactions seem more reliable than Muscat's, and there are no anomalous attrac­
tions, but since the second-neighbor repulsion is less than 3/2 of the third, a p(2x l) 
overlayer is predicted instead of the observed graphitic (2x2) (or (2x2)-2H) 
(Christmann et al., 1979). Truong et al. (1989) extend EAM to a procedure called 
EDIM (embedded diatomics-in-molecules); they obtain magnitudes for the lateral 
interactions more consistent with expectations from experiment, but with the same 
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sign as we found. There are a number of modifications, with no commentary on the 
effect of each. A likely possibility is the allowance, for Ni's in the top layer, of a 
different number of s-electrons from the bulk value. 

Since EAM successfully treated alloying at surfaces and phase transitions of one 
noble metal on another (Foiles 1987), we expected (Einstein et al., 1990) that late 
transition metals adsorbed on each other would be more accurately described in 
EAM. Wright et al. (1990)' s studies of Pt, Pd, and Ni on Pt(l 00) bear out this belief. 
We defer this discussion, as well as comparisons between EAM and tight-binding 
results, until the end of§ 11.3.5. 

Another issue of concern for adsorbates is the large charge gradient near 
surfaces. For the reconstruction of Au(l 10), EAM predicts (Foiles 1987) a (1 x3) 
pattern rather than the observed (I x2). To rectify this problem, Roelofs et al. ( 1990) 
include the leading correction from such gradients, using Daw's ( 1989) modifica­
tion of EAM formalism. Moreover, to treat this system with Monte Carlo simula­
tions, they decompose the interactions of Au atoms in the top layer, finding that not 
only are trios significant, so are "quartos" (i.e. the interaction energy of four surface 
atoms minus the constituent pairs and trios); even the close-packed "hexto" inter­
action has a strength -3.4 meV. To assess the role of the gradient contribution, I 
quote some numbers for pair interactions I computed in an early stage of this project 
before the corrections were implemented: for adatoms on neighboring rows, at the 
same position along the row or shifted by one unit (so somewhat diagonal), the 
interactions are -I 0and+17.6 me V, respectively, without the gradient term vs. -2.6 
and + 12.3 me V with corrections. In short, the gradient corrections do not change 
the qualitative results but are important for quantitative assessments. 

More recently, Haftel (1993) proposed that many of the problems in applying 
EAM to surfaces could be cured by increasing the curvature of the embedding 
functions F(p), particularly on the low-density side of the bulk value. The impact 
of this procedure on pair interactions has not yet been explored. 

11 .3.4. Empirical schemes 

To illustrate why EAM and related calculations are called semi-empirical rather 
than empirical, in spite of the several adjustable parameters, we present an example of 
a truly empirical scheme. To take advantage of the success of computationally intensive 
schemes such as FLAPW (Wimmer et al., 1981) to compute details of monolayer 
adsorption, Gollisch (1986) constructed an effective potential U;. a generalization 
of the Morse form, with several parameters to be fit to the numerical "data": 

U; = L bu [Qu(r;1)]'µ'-,, -{L, au [Qu(ru)]\}µ 
I~} t'#.j 

( 11.34) 

The two global parameters s and µ, on which the quality of the potential depends 
sensitively, adjust the exponents of competing terms. Three more parameters, a, b, 
and A, adjust the scale and exponent of a separation-dependent interaction function 
Q, here a sum of two exponentials, introducing four more parameters. These seven 
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parameters, computed from bulk properties, are tabulated for each element of 
interest. The off-diagonal a, b, and A (i.e. those for differing atoms) are computed 
as the geometric mean of those values for the two constituents. 

As a test of the accuracy of the numbers produced by this scheme, Roelofs and 
Bellon ( 1989) compute the resultant phase diagrams, using transfer-matrix finite­
size scaling, for Cu and Au on W(l I 0). In both cases the pair interactions for the 
three shortest separations are all attractive, indicating the formation at low tempera­
tures of coexistence between a low-coverage lattice "gas" and a high-coverage 
lattice "liquid", both with (Ix I) symmetry. Accepting Gollisch' s pair values, they 
try to fit the experimentally determined phase boundary by tuning the multisite 
interactions. For W(I 10)-Cu the "quarto" interaction is negligible while they 
estimate that the (repulsive) trios underestimate the actual values by about a factor 
of two. For W( 110)-Au they find that if they include the repulsive trio interactions 
computed by Gollisch (as well as the attractive pairs) then to fit the temperature­
coverage phase boundary would require a repulsive rather than the computed 
attractive quarto (with a magnitude at least a third smaller). 

11.3.5. Field-ion microscopy, modern tight-binding, and more on semiempiricism 

While field ion microscopy (FIM) has long been arguably the most direct and 
convincing way to see atoms on surfaces, only in the last decade or so have 
technological advances made it possible to accumulate enough data to contribute 
detailed quantitative information about the interaction between adsorbates. In the 
earlier years of this work, it was necessary to azimuthally average data in order to 
obtain tolerable statistics (Tsang, 1973). Casanova and Tsong ( 1980, 1982) plotted 
the pair interaction energy of Ir-Ir, of Ir-W, and of Si-Si on W( 110) as a function 
solely of separation; hence the oscillating curve added to guide the eye actually 
misleads it: this plotting strategy might be satisfactory for physisorbed atoms 
(which are not amenable to FIM), but it obscures the anisotropy that we have seen 
to be ubiquitous and significant. Moreover, Watanabe and Ehrlich ( 1991) comment 
that such a plotting scheme could mislead one into thinking that a diffusing adatom 
could get trapped between two radial barriers in the potential, when in fact the adatom 
can skirt the repulsive sites because of the strong anisotropy of the interactions. 

In recent years it has become possible to accumulate enough data to assess 
interactions between pairs of adatoms at dozens of distinct separations, as best 
illustrated by an intensive set of experiments by Watanabe and Ehrlich ( 1989, 1991, 
1992), Ehrlich and Watanabe (1991). This process can be eased by using two 
different atoms, one of which bonds more strongly than the other, so that one can 
study equilibration at a temperature at which only the more weakly bonded atom is 
mobile.' An additional advantage is that the stationary atom can be set near the 

This idea dates back at least to 1977, when Cowan and Tsang (1977) studied the interaction between a 
W adatom and a substitutional Re atom on W( 110). Without benefit of a PC image digitizer, they found 
strong deviations in the site distribution from random (viz. the same measurement with no Re atom 
substituted). 
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center of a facet, minimizing the number of "snapshots" with an adatom near the 
edge of the terrace, where fringe fields make the data questionable. Accordingly, 
Watanabe and Ehrlich (I 989, I 991) fix a W or a Re atom near the center of a W( I I 0) 
plane on a FIM tip and monitored the distribution of a mobile Pd atom. They observe 
that Pd is most frequently found at the nearest-neighbor position of the fixed adatom, 
but the nearby second and third neighbor sites are not populated. From I 638 observa­
tions of a Re-Pd pair equilibrated at 205 K, they deduce £ 1 = -36.8 ± 1.0 meV, 
E2 ;:;:: 45 meV, £ 3 ;:;:: 45 meV; from 1288 observations of a W-Pd pair equilibrated at 
225 K, they find, rather similarly, £ 1 = -50.4 ± 8.0 meV, £ 2 ;:;:: 40 meV, £ 3 ;:;:: 40 
meV. (Actually, these are free energies rather than energies; we neglect the distinc­
tion in quoting numbers. See § I I .4.2 for more comments on the analysis.) Along 
the close-packed [IT I] the interactions are attractive out to - I 0 A. The decay in 
strength is monotonic except for the second site (£4), which is considerably smaller, 
giving an oscillatory appearance to the decay_vs. R. Along the [001] direction the 
interactions tend to be repulsive, along the [I IO] beyond one spacing, they tend to 
be weakly attractive, in both cases with some exceptions. Overall, then, the inter­
action is highly anisotropic and oscillatory in sign, extending to large separations, 
with no simple pattern, i.e. consistent with the general picture presented in§ I I .2.2. 

With further work they were able to observe pairs of identical adatoms, Ir-Ir 
(Watanabe and Ehrlich, 1989, 1992) and Re-Re (Watanabe and Ehrlich 1992) on 
W( 110). From 2232 observations of the Ir pair equilibrated at 375 K, they find 
qualitatively similar behavior to the two heteropairs: £ 1 = -86 ± 2 meV, £ 2, E3 = 70 
± 30 meV. In all directions there are oscillations in sign and non-monotonic decay 
in amplitude (see Fig. 11.6). From 3145 observations of the Re pair equilibrated at 
390 K, they find different behavior in that the interaction is repulsive at all close 
spacings: £ 1 =+21.5±9.3 meV, £ 2, E3 > 70 meV. At larger R, the interactions again 
become attractive and are dependent on the orientation of the pair on the surface; 
the interaction is oscillatory and anisotropic. Watanabe and Ehrlich ( 1992) also try 
to assess the trio interaction. It is not feasible to measure this interaction directly 
because at the temperatures at which trimers dissociate, the liberated adatoms 
quickly move to the edge. From an Arrhenius plot of lifetimes of linear (straight) 
trimers, they deduce a dissociation energy, from which they subtract the diffusion 
barrier EJ to find the trimer binding energy. From this they subtract the pair energies 
of the three legs of the trimer to obtain an attractive trio interaction of -130 ± 70 
meV for the linear (L) configuration. On (110) bee surfaces there are two other 
trimer configurations with two nearest-neighbor pairs (i.e. legs in the [ 111] direc­
tion): nearly equilateral (P for "pointed"), and H20-like (0 for "open" or bent). For 
Re the trio interaction is even more dramatic, stabilizing Land 0 trimers in spite of 
the short-range repulsions, with energies of -240 meV and -210 meV, respectively 
(Fink and Ehrlich I 984b), suggesting trio attractions of -340 me V and at least -380 
meV, respectively; the P trimer is unstable, so has a quite different trio energy. In 
both cases the adatoms are at neighboring sites and are comparable in size to the 
substrate atoms, so that direct interactions undoubtedly play a dominant role in 
these interactions, which are much stronger (relative to the constituent pairs) than 
expected from § 11.2.3.1. 
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Fig. 11.6. (a) Distribution of separations between two Ir atoms on W(l 10) at 375 K. Observations 
over the entire surface have been folded into a quadrant, and distant separations not plotted. (Along 
the bounding axes the number of observations is doubled.) (b) Distribution of separations between 
two noninteracting identical atoms on W( 110). (c) From the ratio of these two distributions, the (free) 
energy of interaction between the Ir pair is computed and plotted as bars vs. R. Gray bars indicate repulsions, 
black bars attractions. Standard errors are shown at a few locations, based on statistical uncertainty. From 

Watanabe and Ehrlich (1992), with permission. 
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Unfortunately, many kinds of atoms cannot be probed with FIM: FIM is largely 
limited to refractory transition metals. Scanning tunneling microscopy (STM) does 
not share this restriction; it has been used to examine a breathtaking range of 
systems (Giintherodt and Wiesendanger, 1992). On the other hand, one cannot 
quench a whole (STM) sample nearly so quickly as one can an FIM tip 1 to get 
"snapshots" of rapidly evolving configurations, even if one has a low-temperature 
STM. If the STM scan time is not fast compared to the hop rate of the adatoms, the 
analysis is considerably more difficult. (Cf. Giesen-Seibert et al., 1993.) 

Much of the theoretical work in the 1980s on pair interactions was spurred by 
earlier FIM measurements of transition metals on (other) transition metals. In 
examining the dimer attraction for the 5-d series on W(l 10), Bassett (1975) 
measured a striking minimum for Re, with a rapid linear increase in attraction for 
lower Z and a slower increase for heavier Z. This observation was particularly 
intriguing because the adsorption energy and activation energies where largest in 
the middle of the series and so motivated Desjonqueres and Spanjaard (1993) and 
coworkers to undertake several theoretical studies. Bourdin et al. (1985) propose a 
very simple analytical model. They claim that Burke's excessively large energies 
were due to his neglect of both core-core repulsions and electronic correlations (but 
cf. § 11.2.4), which they compute to second order in Ulw, where U is the Hubbard­
like intraatomic Coulomb repulsion and w the bandwidth. Bourdin et al. consider 
linear trimers at nearest-neighbor separation. They make several simplifying as­
sumptions: ( 1) The substrate is rigid and the adatoms sit exactly at high-symmetry 
sites. (2) The core-core repulsion is the same for all the adsorbates. (3) The 
one-electron, "band" contribution comes solely from broadening of the adsorbate 
levels. Thus, the dominant interaction is directly between adsorbates rather than 
through the substrate. This ansatz is only reasonable at short spacings. (ES explic­
itly neglected these direct effects in their tight-binding calculations.) (4) The local 
density of states increases with coordination number (as one would expect from 
tight-binding theory) and is taken to be constant over an energy range (as for a 20 
band). (5) The Coulomb integral U is the same for adatom, dimer, or trimer and 
independent of N", the number of d-electrons on the adatom. The band contribution 
to the dimer interaction energy £ 1 is 

(11.35) 

where w 1 - w~ is the increase in the width of the rectangular local density of states 
due to bringing the adatoms to neighboring sites. This contribution alone would 
produce the expected but incorrect result of maximum binding at N" = 5. The 
additional contribution from correlation, 

(11.36) 

Watanabe and Ehrlich ( 1991) note that FIM tips can be cooled from a high equilibration temperature of 
350 K to the imaging temperature of 80 K in under 5 seconds. 
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is positive and tends to destabilize the dimer. They also consider trimer energies, 
adjusting U first to produce the experimental dimer pair energy. The estimated trio 
energies are (with a small exception) attractive and range from the same magnitude 
as the pair energy down to below an order of magnitude smaller. Oles et al. ( 1988) 
consider the magnetic contribution, which they find to be repulsive by a similar 
amount because the magnetic moment on the Re atoms decreases considerably 
when the dimer forms. Bourdin et al. (I 987) find that on more open bee surfaces 
(viz. W(21 I) and Ta(211)), on which the adatoms can increase their coordination 
number by additional bonding to subsurface atoms, the repulsive contributions 
decrease or disappear, and the maximum bonding of 5d dimers occurs near half 
filling. In this study the local density of states for the calculation of the band 
contribution comes from a continued-fraction expansion of the Green's function. 
Desjonqueres et al. ( 1988) also apply their approach to compute potential energy 
curves for adsorption of gas dimers on bee substrates. 

Desjonqueres and Spanjaard (I 993) present an appealing, simple argument 
stemming from this work that predicts that a repulsive interaction between adatoms 
close enough to share N common substrate bonding partners but too far apart to 
interact directly. When the (z-coordinated) adatoms are far apart, there are 2z 
substrate atoms which gain an extra bond to an adatom; their band energy is 
proportional to-(µ + ~2 ) 112, where µ is the centered second moment of the density 
of states of an atom on the clean surface and ~ ex: V. When adatoms share N host 
atoms, their band energy ex: -(µ + 2~2) 112 while the energy of the other 2(z-N) 
substrate atoms is unchanged. Finally, at close range only 2z-N surface atoms are 
coupled to adatoms, N fewer than at large separation. Hence, in this second-moment 
picture, the pair energy E(NJ 

E(N) oc - N.Yµ + 2~2 
- 2(z- N) ~ - N{i + 2z .Yµ + p2 

( 11.37) 

ex: N(2.Yµ + ~2 
- .Yµ + 2p2 

- {µ) '2 0 

This generic result was noted above for EAM in conjunction with Eq. ( 11.31 ). 
In a more sophisticated study, Dreysse et al. (I 986) find similar results for 

W( 110)-Re. Also considering only d-electrons, they consider the same three con­
tributions, treating the one-electron energy using 5-fold degenerate tight-binding 
bands, the correlation energy using second-order perturbation theory (but with local 
atomic densities computed from their Green's functions), and the repulsion using 
Born-Mayer interactions. They also take some account of self-consistency by 
shifting atomic levels (cf. § 11.2.4.) They compute interaction energies for the three 
trimer configurations, L, P, and 0, as well as the six shortest-separation pairs. For 
the pairs, including correlation energy with intra-atomic Coulomb integral U = 1.6 
eV has a considerable effect, in most cases reversing the sign of the interaction; U 
is taken as just big enough to make the nearest-neighbor pair interaction repulsive, 
to reproduce experiment. Making use of an effective coordination number, they 
obtain for Re on W( 110) the nearest-neighbor pair interaction 
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(11.38) 

and for the L trimer interaction (lamentably called "trio"), i.e. trio plus 3 constituent 
pairs 

E(L) = - (2~2.8 + /;; + ~2.8 + 21;; - 5.04) E~~~k 1.i10.4 (11.39) 

Here 1;; is related to the square of the interadatom hopping. With no direct interac­
tions(/;;= 0), both energies vanish. With direct interactions(/;;= I), they estimate 
£ 1 = -1.5 e V and E(L) = -2. 9 e V. Additional correlation effects (since some are 
seemingly included in the total energies leaqing to the formulas) counteract these 
unphysically large numbers. The correlation contribution is about 10% of the band 
contribution and is most important for the half-filled band. If local charge neutrality 
is invoked (Bourdin et al., 1985), the P-trimer is favored, inconsistent with experi­
ment (Fink and Ehrlich I 984a,b). This configuration is destabilized by correlation 
energies computed in first-order perturbation theory, stemming from charge transfer. 

Very recently Xu and Adams (1994, 1995) have developed a semiempirical 
scheme for treating bee transition metals with minimal non-d bonding (i.e. with 
about half-filled ct-bands). In the spirit of the Finnis-Sinclair (1984) method dis­
cussed after Eq. ( 11.32), they seek to approximate a tight-binding model. However, 
rather than using just a second moment (so square root) approximation to describe 
the d-band width, they follow Carlsson' s ( 1991) approach and also include third and 
fourth moments to describe the band shape, in particular three- and four-site 
contributions. (Recall that the nth moment of a nearest-neighbor tight-binding 
model counts paths that return to the origin after n nearest-neighbor steps.) For each 
metal (W, Mo, and V were studied), the model contains I 0 adjustable parameters: 
one to weight each of three computed moment terms, five to characterize the pair 
potential (i.e. the U(R;) of Eq. (11.31 )), and a pair of radial cut-offs for the pair 
potential and for the moment terms. These are determined by fitting to 12 bulk 
properties, 2 calculated energy differences with other lattice structures and I 0 
measured properties: sublimation energy, lattice constant, relaxed vacancy forma­
tion energy, 3 elastic constants, and 4 zone-edge phonon frequencies. The model 
differs from a similar one by Foiles ( 1992) by including the third-moment term and 
by using different fitting criteria, demanding in particular that W( I 00) and Mo( I 00) 
reconstruct. To test the model, Xu and Adams compute surface properties. The 
relaxations agree well with experiments and larger-scale computations, and the 
surface energies do not suffer the great underestimation well known to occur for 
EAM. On the other hand, the calculations require two orders of magnitude more 
CPU time than EAM. 

Xu and Adams ( 1995) recently applied their model to the pair interaction 
between W atoms on W(l 10). As observed in some previous studies of bee (110) 
substrates (cf., e.g., Williams et al. ( 1978), Roelofs and Bellon ( 1989)), the pair of 
quasi-three-fold sites have lower energy (in this study by a mere 8.8 meV) than the 
bridge site between them, where the next layer would grow. The main findings are 
that the interactions are strongly anisotropic (consistent with the highly anisotropic 
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band structure) and oscillatory in any particular direction. At large separations, the 
interaction is slightly repulsive. The authors attribute this effect to strain fields, 
which might well mask electronic effects at large separations; this notion could be 
confirmed with a calculation of interactions with the strains prohibited by hand 
("frozen out"). In comparing with Watanabe and Ehrlich's (1989) data for Ir pairs 
on this surface, the authors find general agreement, particularly when one allows 
for the experimental error bars. A detailed comparison between calculated W pairs 
and measured Ir pairs seems risky, since Re pairs differ notably from Ir pairs on this 
substrate, and Re is closer to W on the periodic table. The authors fret that their 
computed interaction for nearest-neighbor W pairs along the (11 I) direction is too 
strongly attractive at -2.633 eV, while for Ir the measured attraction is just -0.082 
eV. Recalling Burke's (1976) result that the strong attraction between neighboring 
W's is due to direct interaction, one would expect the Ir attraction to be at least 
somewhat weaker since Ir atoms are smaller than W's. Xu and Adams present a 
discussion of the signs of short-range interactions in terms of bond coordination 
numbers and changes in bond strength with bond length (again, with no frozen-lat­
tice calculations to quantify the effects); such effects are discussed at length in the 
next subsection. 

For Pd(! 00)-H EAM calculations (Einstein et al., 1990) find that the minimum 
for H atoms to be slightly below the top Pd plane rather than slightly above. The 
magnitudes of the lateral interactions are more consistent with experiment, viz. 87 
[94], 54, and -9 meV for the first-, second-, and third-neighbor interactions, £ 1, £ 2, 

and £ 3, respectively. (The bracketed value for £ 1 is obtained from analysis of 
ordered overlayers. By symmetry, local distortions that plague the isolated pair are 
removed.) However, since £ 2 is more than £1> a p(2x 1) ordering is predicted rather 
than the c(2x2) observed by Behm et al. (I 980). (This problem as well as the 
too-low binding site may be due to use of rather primitive EAM functions which 
were readily available for Pd.) The smallest-area right-triangle configuration has a 
trio energy ERT=-25 meV; it plays no role in the balance between these two ordered 
states but does affect the phase diagram, as we will see shortly. It may not be a 
coincidence that the placing of H lower into the surface than in reality leads to more 
realistic binding energies: for Pd( 1 11 )-H (Felter et al., 1986; Daw et al., 1987) as 
noted above, the interactions producing the ordering come from the subsurface H's; 
those on top of the surface have little interaction, as for Ni( 111 ). 

For comparison, Stauffer et al. ( 1990) have used a state-of-the-art tight-binding 
approach to present a wealth of information on H atoms near Pd( l 00). The H atoms 
are only allowed to sit in lattice planes of the substrate lattice, so the results for the 
center site of the top layer are the ones of most interest. Then £ 1, £ 2, and £ 3 are+14, 
-182, and +41 meV, respectively. Removing the constituent pair interactions from 
their tabulated trimer energies, I find that ERT = -32 meV and the "linear-triangle" 
configuration ELT = -72 meV. It would be interesting to know how these numbers 
would change if the H's were moved slightly above the surface; since the depend­
ence on layer index is not monotonic, there is no obvious interpolation. In compari­
son with our EAM numbers, the tight-binding ERT is quite similar but ELT is much 
bigger than expected even in crude calculations and certainly in EAM. Moreover, 



Interactions between adsorbate particles 627 

the pair interactions are starkly different. While their pair energies do lead to the 
observed c(2x2) ordered phase, the enormous size of E/E1 would produce a broad 
coexistence region of c(2x2) +"gas" that persists to a temperature close to Tc of the 
pure c(2x2) phase (Roelofs et al., 1986). Binder and Landau ( 1981) had in fact 
conjectured such regions (of more modest size) on the basis of Monte Carlo 
simulations. Such a stable coexistence region would presumably have been ob­
served in experiment (Behm et al., 1980). It is my understanding that subsequent 
experimental investigation of the low-T, low-coverage region produced no evi­
dence of islands, and so nothing was published. On the other hand, it is conceivable 
that the islands could be the stable phase at so low a temperature that the adatoms 
cannot diffuse adequately to achieve the equilibrium configuration. 

Motivated by FIM measurements, Wright et al. (1990) applied EAM to Pt, Pd, 
and Ni on (center sites of unreconstructed) Pt(OO 1 ). Their main goal was to study 
whether, for small clusters of adatoms, linear chains or compact islands were more 
stable by computing the cluster binding energy, i.e. the difference between the total 
energy of the slab plus cluster of adatoms and the same number of adatoms isolated 
from each other. For Pt clusters, chains are preferable for clusters of 3 and 5 atoms; 
otherwise (up to 9 atoms) compact islands are favored, by a small but ever greater 
amount as size increases. These preferences are consistent with experiments by 
Schwoebel et al. ( 1989). For Pd the results are nearly the same (except for 5-atom 
clusters); in sharp contrast, for Ni the compact configurations of the clusters are 
usually not bound, so chains are favored by a considerable amount. (Presumably 
relatedly, Chen and Tsong ( 1991) find with FIM that Ir trimers form chains on 
Ir( l 00) but clusters on Ir( 111 ).) Wright et al. ( 1990) find that substrate relaxation 
is a key factor in these interactions. On a frozen slab, compact islands are always 
preferable for Pt and Pd, and by a more substantial margin for larger clusters; even 
for Ni, the compact shape is favored for several sizes. For each type of adatom and 
each size, the relaxation contribution (the difference between total energy and that 
with a rigid substrate) favors the island configuration. The essence of this difference 
is that most of the relaxation occurs in the top layer along the circumference of the 
cluster, which for given size is clearly longer for the chain shape. Specifically, 
around an isolated Pt adatom, the four substrates relax laterally outward by 0.18 A 
and upward by 0.08 A. For an atom next to the center of a 4-atom chain, these 
numbers roughly double to 0.39 A and 0.13 A, respectively, while for an atom at 
the side of a 4-atom square, they scarcely increase, rising to 0.23 A and 0.09 A, 
respectively. Furthermore, the substrate atom at the center of the square cannot (by 
symmetry) relax laterally and sinks inward by 0.21 A. There is no discussion of the 
heights of the adatoms when close together compared to when isolated. 

If one allows for these relaxations, it becomes difficult to define the sorts of 
lateral interactions we have been discussing. Nearest neighbors near the center of a 
chain will have a different £ 1 from those near the end; moreover, the size of these 
interactions will depend on the length of the chain. Except for Ni, the energies 
associated with the relaxations are smaller by a factor of about 1/2 or 1/4 than the 
energies for a frozen substrate. While the relaxation issue becomes crucial when we 
try to distinguish between configurations, it may not be paramount for other 
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properties such as phase boundaries. For frozen Pt (100), Wright et al. ( 1990) 
tabulate the E1 to be -299, -263, and -64 meV for Pt, Pd, and Ni adatoms; £ 2 to be 
+59, +4, and +97 meV, respectively, for the three kinds of adatoms; and ERT to be 
-76, -12, and -40 meV, respectively. Thus, the sign of the interaction does not 
depend on the kind of adatom. The small £ 1 attraction and large £ 2 repulsion for Ni 
are important factors in its preference for the chain configuration, in addition to the 
large relaxation difference between the two configurations. 

For weaker adsorbates than transition metals, the substrate relaxations should be 
less dramatic or important. For example, for H on Ni(l 11), discussed above, 
Einstein et al. (1990) found a negligible contribution from substrate relaxations: Ni 
atoms moved by roughly 0.01 A or less, and contributed 1/2 meV per adatom in a 
test calculation. Furthermore, when the adatoms are in the intermediate (and 
certainly in the asymptotic range), there should be little "cluster" shape dependence 
on the lateral energies or on the off-diagonal Green's function G0 n. On the other 
hand, presumably the local coupling parameter would need to be recalibrated to 
take such effects into account, unless it were obtained semi-empirical from fits to 
adsorption energies of low-density clusters. More generally, for stronger adsorbates 
one must worry seriously about this problem, as discussed at the end of§ 11.2.5. 

J l.3.6. Scattered-wave theory 

Fei belman (I 989a) notes that scattering-theory methods are designed to take advan­
tage of the rapid screening by metallic-substrate electrons of the potential associ­
ated with defects, specifically adatoms. Because of the screening, the 
wavefunctions related to the adatoms can be described as solutions to a scattering 
problem involving incident and scattered Bloch waves of the clean surface. If N 
basis orbitals are needed to describe the spatial region where the potential is 
unscreened, then one must numerically solve NxN sets of linear equations. This 
focus on orbitals in the adsorption region has philosophical similarities to the 
tight-binding picture explored at the outset: one isolates the changes due to adsorp­
tion from the otherwise perfect, semi-infinite substrate. However, here both the 
background substrate and the adsorption area are described with far greater sophis­
tication, without recourse to simple model parameters. To date, though, only pairs 
of adatoms in the near region have been investigated, and there is no attempt to 
focus on G0 n, i.e. a propagator between the adsorption sites. Both adatoms are part 
of the same cluster, and the heritage is from cluster methods. Here, though, the 
adsorbate region is not so much a cluster to be embedded into an indented substrate 
but a scattering zone that perturbs the substrate Bloch states. 

Specifically, this approach builds on the local-density-approximation (LDA) 
description of surface electronic structure (Lundqvist and March 1983), solving the 
Kohn-Sham ( 1965) energy-minimization problem, and uses state-of-the-art expres­
sions for exchange-correlation potentials and (norm-conserving) pseudopotentials. 
The equations are solved self-consistently: from a guessed scattering potential, the 
electronic density is obtained from Dyson' s equation, and an iteration-relaxation 
scheme (Johnson, 1988) is invoked. 
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Feibelman (1987 a,b, 1988a,b, l 989a, 1990) applied this self-consistent, matrix 
Green's-function (MGF) scattering theory (Williams et al., 1982; Feibelman, l 987a) 
extensively to adsorption on Al (001). Most of these papers involved single adatoms, 
but Feibelman ( 1987b, 1988a,b) discusses Al-Al, Al-S, and Al-Te dimers. For Al 
dimers, Feibelman ( l 987b) finds that because of the direct bond between the adatoms, 
their bonds to the substrate weaken, consistent with Pauling's (1960) bond-order­
bond-length correlation, and so they sit farther (by 0.16 A) from the substrate than 
a single Al. (The most dramatic consequence is that the diffusion barrier for dimers 
is lower than for monomers!) From naive counting of bonds, the strength of which 
are deduced from the bulk coherence energy, one might guess that £ 1 "'-0.556 eV. 
From the EAM work cited earlier, and more directly from our summary of Njijr­
skov' s (1993) discussion of cohesive energy vs. coordination number, we would 
already guess this estimate to be much too high. Careful calculation shows the 
interaction to be just -0.07 eV. In addition to the vertical relaxation, this result 
includes lateral relaxation of each Al toward each other by 0.05 A from the center 
site. If the separated Al adatoms are not allowed to relax back toward the substrate, 
their pair attraction would be -0.18 e V. Feibelman does not specify how much the 
attraction would decrease if the neighboring adatoms were fixed in the high-sym­
metry positions, with lateral relaxation forbidden. Note also that the relaxations are 
of the adatoms relative to their isolated-adsorption positions. There is no discussion 
of any distortion of the substrate neighbors on this fee ( 100) surface, which we just 
saw plays a major role in the EAM study of Ni, Pd, and Pt on Pt( 100). (However, 
since Feibelman ( 1990) later shows that AI diffuses by an exchange mechanism on 
Al(I 00), such distortions presumably do occur.) In later papers, perhaps to keep 
computations manageable, Feibelman ( l 988a, l 989a) fixes adatoms at their ideal 
"isolated" positions and just computes the force acting on each member of the 
dimer, in addition to the pair energy, to monitor the sort of corrections which would 
enter if the second-order relaxations were allowed. Recapping, Feibelman' s 
(I 987b, l 989a) key physical idea is that £ 1 is small because, as pairs of Al adatoms 
are separated, the rupturing of their direct interaction is partially compensated by 
an increase in their bonding to the substrate. This viewpoint provides a fuller picture 
than the usually reliable insight (Desjonqueres, 1980), cited in a footnote, that the 
(fractional) "disposition of adatoms toward lateral interaction" (i.e. IE./E.J, pre­
sumably) decreases as the strength of their bonds to the substrate increases. 

Stumpf ( 1993) finds rather similar results for Al( 111) using a different self-con­
sistent total-energy calculation. His slab is 5 layers thick, with the top two (and 
adatoms) allowed to relax. He finds for Al dimers on hep sites that £ 1 = -0.58 eV, 
attractive again because of the low coordination of the separated adatoms; the Al 
adatoms again relaxed toward each other. Similarly, if one Al is replaced by Si, £ 1 

= -0.56 e V. Motivated by the discovery of Na-induced vacancy structures (Schmalz 
et al., 1991 ), and bearing on the preadsorption problem, he finds that there is an 
attraction (-0.21 e V) between an Al adsorbate and an Na in a surface vacancy. On the 
other hand, if the Na were in a step vacancy, there is a repulsion of 0.06 e V; this change 
is attributed to the stronger binding of the Na and especially the Al at the step, so that 
they are more stable in their isolated configuration. 
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Motivated by evidence of surface poisoning by chalcogens, Feibelman ( 1988) 
next considers the interaction of an Al adatom with an S or Te adatom, again at 
adjacent center sites on Al(OO I). The £ 1 repulsions are 0.25 e V and 0.22 e V, 
respectively. From the force calculation, he finds that the pairs would relax outward 
as for Al dimers, but away from each other. (With such relaxations, the repulsions 
would decrease somewhat.) He shows that these interactions cannot come from 
hard-core or charge-transfer (dipolar) mechanisms and describes his numerical 
findings in terms of bond-order-bond-length ideas. Feibelman (1988, l 989a) fo­
cuses on the two substrate Al's to which both adatoms bind. The bond to each 
adatom weakens when the other adatom is adjacent. Feibelman asks how the 
electrons rehybridize to optimize their energy. The chalcogens, with valence two, 
can simply shift away and strengthen their bond with the two farther substrate 
atoms; the Al dimer, each with valence three, shift toward each other to form a 
direct bond, achieving an attraction rather than a repulsion. The situation is remi­
niscent of the simple argument sketched in the preceding section in Eq. ( 11.37), but 
the behavior of the Al dimer would require an extension to include the direct 
coupling. To distinguish these cases a priori, without the reliable numerical output, 
would be a formidable task. The simple chemical arguments are really compelling 
only when joined with solid numerical evidence, as Feibelman often remarks. 

Feibelman (1991) reports the first application to dimer (viz. H-H and H-S) adsorp­
tion on a transition-metal substrate, Rh(OOI ). The adatoms are placed in nearest-neigh­
bor center sites, sharing two Rh neighbors, at the positions they would take if widely 
separated. Since the H atoms sit close to the surface (0.65 A above the outer Rh plane), 
they are well screened and there is scant interaction between them. This result is 
consistent with the observation by Richter and Ho ( 1987) that the desorption energy of 
H from Rh(OO 1) is independent of coverage up to 0.8 monolayers. In contrast, the S sits 
much farther out (at 1.47 A) and so is less well screened. Consequently there is an H-S 
£ 1 repulsion of 0.17 e V, consistent with the observation by Brand et al. (1988) that H 
on Rh(OO 1) avoids regions where S has been preadsorbed. 

To make progress on surface problems, improved scattering theories are being 
developed. Feibelman ( 1992) notes that the MGF approach requires that the number 
of equations N that must be solved simultaneously is larger than one would suspect 
solely from the size of the scattering length, because the kinetic-energy component 
of the adsorption coupling is not limited by screening but depends of the choice of 
basis. Accordingly, Scheffler et al.(1991) have developed an alternative scheme in 
which they include the full kinetic energy in the initial description of the electronic 
wavefunctions, but must consequently perform a taxing real-space integration. 
Feibelman ( 1992), in turn, has found a way to simplify the MGF method, eliminat­
ing much of the extra computation due to the kinetic-energy matrix. 

It is now becoming possible to compute total energies using scattering theories 
to assess interactions. In the bulk, Dederichs et al. (1991) use a KKR approach to 
study vacancy-vacancy interactions at nearest neighbor, and in some cases next 
nearest neighbor, sites in Cu, Ni, Ag, and Pd. (Vacancy-vacancy interactions are 
essentially the same problem as adatom-adatom interactions, but with fewer pa­
rameters. Yaniv (1981) approached the problem using an approach identical to that 
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in ES. Feibelman ( 1989a) remarks that these are all examples of problems involving 
point defects.) The calculations are rather demanding, requiring, e.g., that they 
forgo the usual muffin tin description of charge density. This approach is being 
extended toward surface problems involving spin interactions (Dederichs et al., 1993). 
(Note that the indirect interaction between spin impurities via hyperfine coupling to the 
conduction electrons had earlier been considered: with an infinite-barrier jellium 
substrate, Gumbs and Glasser (1986) generalize the results of Lau and Kohn (1978). 
Zheng and Lin (1987) start from Kalkstein and Saven' s (1971) tight-binding 
substrate, similar to§ 11.2.2, and apply second-order perturbation theory.) 

11.4. Implications of pair interactions 

11.4.1. Ordered over/ayers and their phase boundaries 

As noted late in the introduction and discussed in more detail in Chapter 13, the 
lateral interactions we have been discussing can lead to the formation of ordered 
superlattices of adatoms. Such ordered structure can be measured readily by diffrac­
tion techniques, especially LEED, and much of a temperature vs. coverage phase 
diagram can be mapped out. There are typically problems at low temperatures due 
to slow equilibration and at high coverages due to breakdown of the lattice-gas 
approximation. Also it is not readily possible to measure the phase boundary 
between a pure phase and an adjacent island phase (e.g. a coexistence regime of the 
pure phase and the ( 1x1) gas phase). It is generally very difficult to deduce uniquely 
lateral interactions by fitting to phase diagrams. The typical approach is to choose 
the minimum number of interactions necessary to produce the correct topography 
of the phase diagram, and then to adjust their sizes to mimic optimally the available 
boundaries; such boundaries can be computed accurately using Metropolis (equi­
librium) Monte Carlo methods (Roelofs, 1980, 1982, 1995; Binder and Landau, 
1989) or transfer-matrix finite-size scaling (Kogut, 1979; Kinzel and Schick, 1981; 
Rikvold et al., 1984; Bartelt et al., 1986; Roelofs et al., 1986; Rikvold et al., 1988; 
Roelofs and Bellon, 1989; Nightingale, 1990; Myshlyavtsev and Zhdanov, 1993). 
Other methods, particularly mean field, but also quasi-chemical and cluster-vari­
ation, are ill suited for two-dimensional computations, for which fluctuations play 
a far greater role than in three-dimensional systems. 

In fitting a phase diagram, it is important to consider the entire range of 
coverages, not just the saturation coverage of the ordered structure. This point was 
illustrated for Ni(l 11)-H near the end of§ 11.3.2 and for Pd(IOO)-H in§ 11.3.3. 
In the simple case of a c(2x2) one can get some idea of the effect of additional 
interactions from the case study of Ag( l 00)-CI by Hwang et al. ( 1988). In an earlier 
paper Taylor et al. ( 1985) found that the phase diagram of this system is rather well 
approximated by the hard-square model: a square lattice gas with nearest-neighbor 
exclusion (£1 = +oo ). However, the critical coverage for ordering at 300 K was 
measured (by LEED) as 0.394 ± 0.007 ML, higher than the 0.368 ML of the simple 
hard-square model. They concluded that a second-neighbor repulsion E2 in the 
range 20-26 meV could account for the experimental result. Hwang et al. (1988) 
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found that this critical coverage ec did not change even if the sample temperature was 
increased to as much as 600 K. With only £ 2 (and infinite £ 1) there should be substantial 
variation in ec. The simplest explanation was an additional small £ 3 repulsion. A plot 
of possible values of E2 and £ 3 was produced: if 0.387 $ ec $ 0.401 ML, then £ 3 == 4 
meV if £ 2 == 20 meV, and £ 3 == 3.5 meV if E2 == 24 meV. lf0.386 =::; ec=::; -0.401 ML, the 
range of possible interactions more than doubles for both £ 2 and £ 3• 

Near the other limit of complexity are studies of ordering of multiple phases on 
close-packed surfaces, with adsorption in both kinds of center sites. Such models 
invoking up to 5 pair interactions, are applied to Ni(l 11 )-0 (Roelofs 1982), 
Ru(OOOI )-0 (Piercy et al., 1992), Ru(OOOl )-H (Sandhoff et al., 1993), and 
Ru(OOO 1)-S (Sandhoff, 1994 ). In the latter cases, trio energies are also included (3 
distinct ones for Ru-0!). Nonetheless, the fit of Ru-S is not fully satisfactory in 
that (I) the disordering temperature of the (13 x13) was comparable to that of the 
c(2x4), rather than nearly twice as high, the experimental result (Sokolowski and 
Pfntir, 1995); (2) no hint of the observed complex defect structure on the high-cover 
side of the (13 x13) is found. 

For the problem of catalytic poisoning on Pt(l 11 ), Collins et al. ( 1989) apply 
transfer-matrix and Monte Carlo techniques to a two-species (H and S) lattice gas 
model. They use successively more sophisticated models and are able to account 
for the dependence of the H coverage on S coverage for several temperatures. 

The role of trio interactions is included in a review of them not long ago by 
Einstein ( 1991 ); see also Roelofs (Chapter 13). The presence of such an interaction 
in a lattice gas Hamiltonian will break up-down symmetry in the associated Ising 
model. Accordingly, it is widely expected that such interactions will ipso facto 
produce gross asymmetries in the phase diagram. For a single trio interaction, this 
expectation is often misguided. The crucial aspect is not whether there is an 
asymmetry in the ground state energy but rather whether there is an asymmetry in 
the (lowest) excitation energy from the ground state, which leads to disordering and 
so determines the phase boundary. If there are several distinct trio interactions, 
however, asymmetry in the phase boundary is usually unavoidable. A second key 
idea is that if one wishes to gauge the size of the trio interaction from a fit to the 
skewed phase boundary, it is important that one include all such interactions of 
comparable magnitude in the fit, or else one is likely to strongly overestimate the 
physical size of this multisite interaction. This problem is discussed in the context 
of W( 110)-0 by Einstein (I 979b). 

I I .4.2. Local correlations and effects on chemical potential 

Until recently, most experimental probes of ordering on surfaces provided only 
statistical averages of correlation functions, convoluted with some instrument 
response function. In diffraction measurements, one can measure (subject to decon­
voluting this response function) the long-range order parameter below the transition 
and its fluctuations above it, or in a different limit, an ill-defined sum over 
short-range correlation functions (Bartelt et al., 1985). Vibrational probes similarly 
give information about long-range order parameter, but with a far shorter range 
instrument response. Only in the FIM experiments cited earlier is use made of a 
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sequence of real-space atomic-scale images. In those experiments, there are typi­
cally just two adatoms, so that it is not hard to find the degeneracy (or configura­
tional entropy) of each possible energy state and so to work backwards to the 
interaction energies, as noted by Meyer ( 1992). For STM "snapshots" there are too 
many adatoms for analytic insertion of degeneracies and regression to interaction 
energies. Instead, one must tune estimated values of these energies until the con­
figurations generated in Monte Carlo simulations adequately reproduce the STM 
images, as he illustrates for Cu( 110)-0 (Kuk et al., 1990); similarly, Schuster et al. 
( 1991) estimate values for seven distinct lateral interactions for Cu( 110)-K. 

The full power of STM and FIM as quantitative probes of atomic positions is 
that they allow experimental observation of specific (not just combinations of) 
short-range correlation functions. Meyer ( 1992) was the first to publish a way to 
exploit this potentiality by measuring correlation functions at two (or more) differ­
ent temperatures. As in most methods, one must still posit at the outset which 
interactions to include. Then, he shows how to extract directly from a large number 
of snapshots the interaction energy associated with a particular correlation; the error 
varies as C- 112

, where C is the adlayer specific heat. He further discusses how best 
to choose the difference between the two temperatures: too close and there will not 
be enough difference; too far apart, and there will be inadequate relationship 
between the two correlation functions. Meyer ( 1993) subsequently proposes a way 
to extract the interaction energy directly from a set of STM "snapshots" without 
collateral Monte Carlo simulations: the presumed energy (in terms of a model 
Hamiltonian) is evaluated for each configuration and for other configurations 
created by moving each adatom in turn according to allowed kinetics. The interac­
tion energies are obtained by best satisfying a steady-state criterion. Neither of 
these schemes have yet been applied to actual experimental data. 

Adsorption or desorption data is another more indirect way to look at lateral 
interactions. For example, Urbakh and Brodskii ( 1984, 1985) apply their ATA 
expression for Lip(E) (cf. § 11.2.3.2) to data for the isosteric heat of adsorption (and 
the change in work function) for Pt( 111 )-H, achieving good agreement with 
experiments (Christmann et al., 1976; Norton et al., 1982). Braun et al. ( 1980) 
compute these quantities for a system in which charge transfer dominates the 
interaction, W-C.s, and find good agreement with experiment (Bol'shov et al., 1977), 
at least until the coverage at which metallization occurs. More generally, the adsorp­
tion/desorption rate depends intimately on the overlayer chemical potentialµ, which in 
turn depends subtly on the interactions as the coverage varies. In considering the effect 
of lattice-gas repulsions on temperature-programmed desorption spectra, Payne et al. 
( 1991) consider just this issue. Starting with the relation 

s 2 aµ;kBTI q(8,D=2kBT+kBT ~ 
0 

(11.40) 

for the isosteric heat of adsorption q, they conclude that computations using transfer 
matrices do not show the anomalous behavior found in calculations using approximate 
techniques. In recent years Kevan's group has devoted considerable effort to trying 
to extract interaction energies from adsorption and desorption data, as reviewed by 
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Wei et al. (1994, 1995). While some of this work uses the virial expansion or the 
quasi-chemical method, they, too, recognize transfer matrices as the method of choice. 
For example, they consider the desorption of CO, measured by time-resolved EELS 
(electron energy loss spectroscopy), from the three principal facets of Cu. On Cu(l 00) 
Wei et al. (1995) find a strong repulsive £ 1, £ 2 =-2.8 meV, and £ 3 = +1.1 meV (or £ 2 

= -1.3 meV and £ 3 = --0.9 meV in their first report (Wei et al., 1994): £ 2 and £ 3 are 
correlated, and both pairs give comparable fits; both energies are much below k8 T, 
impeding greater precision). On the other two faces £ 1 is also strongly repulsive(>> 
k8T); on (110) £ 2 = -10.3 meV and £ 3 = +8.2 meV, while on (111) £ 2 = +9.2 meV, 
E4 = + 13 .4 me V, but, surprisingly, £ 3 > 69 me V. On Pt(l 11 ), the interactions 
between CO's (in atop sites) are purely repulsive, with £ 1 again effectively an 
exclusion and non-monotonic decay since £ 2 < £ 3 (Skelton et al., 1994 ). In order to 
produce sensible strengths, they must also include £ 4 ( < £ 3); they discuss conse­
quent difficulties in extracting three interactions from fits to isotherms and the 
inability to do transfer matrix computations that include all the £ 4 interactions. 

Applying the random-phase approximation (RPA) in a tight-binding formalism 
to EELS, Brenig (1993) shows that for high-symmetry, low-mass-adsorbate over­
layers the single-particle dispersion and the phonon dispersion decouple: one first 
determines the band structure of the excited vibrational states (assuming a local­
ized, zero-bandwidth ground state) and then finds the vibrational frequencies using 
standard lattice dynamics. The scattering intensity is proportional to the resulting 
RPA susceptibility. As a corollary, he notes that when indirect couplings are strong, 
then translation invariance of the interadatom interactions is likely to be lost, 
causing the zone-center wave vector to vary with adsorbate concentration. Apply­
ing this formalism to EELS data (Voigtlander et al., 1989) of high-coverage ( 1.5 
ML) H on Ni( 110), he analyzes the two low-lying optical modes with in-plane 
polarization using up to third-neighbor force constants. He finds that the lateral 
interaction between H atoms at the three shortest separations differs strongly from the 
"bare" [direct] interaction and has a [local] maximum near the H-H second-neighbor 
separation (viz. the Ni nearest-neighbor spacing). While he can deduce much informa­
tion about the interactions, e.g. evidence of multi-site interactions, he discusses the 
non-uniqueness of his fit and the consequences of various assumptions about the 
tight-binding-like force constants. Unfortunately (cf. first paragraph of§ I 1 .3.5), 
the potential - assumed to be isotropic - is plotted as a continuous function of R. 

Kang and Weinberg (1994) review the kinetic modeling of surface rate proc­
esses in terms of four levels of sophistication: (I) In the Langmuir picture of 
adsorption and desorption, adatoms are assumed to be randomly distributed. (2) 
Neglecting lateral interactions, one can approach precursor-mediated adsorption 
and desorption from kinetic and statistical perspectives. (3) Lateral interactions 
(typically just nearest neighbors) can be included in Langmuirian and precursor­
mediated processes using a quasi-chemical approximation. (4) For reliable results, 
one must, as noted repeatedly above, turn to a more exact method, in this case 
Monte Carlo simulations rather than transfer matrices; the review describes several 
applications, mostly with the generic lateral interactions as arbitrary input parameters. 

The effect of lateral interactions on diffusion has generated interest for quite 



Interactions between adsorbate particles 635 

some time (Bowker and King, 1978). Excellent reviews of adsorbate diffusion by 
Naumovets and Vedula (1985) and by Gomer (1990) provide a wealth of informa­
tion. The dependence of diffusion on these interactions also comes through the 
chemical potential; specifically, the ratio of the chemical diffusion coefficient 
D to the jump diffusion Di is the "thermodynamic driving force" (Gomer, 1994) 
a(µ/k7)/a81T, where Di is a complicated average that is essentially a frequency factor 
times an Arrhenius factor and is generally similar to the tracer diffusion D* of 
single adatoms. (Note that jump rates ought also to depend on lateral interactions, 
although this complication is typically neglected.) Using Monte Carlo simulations, 
Uebing and Gomer (1991) study the effects on the three diffusion constants of 
several generic sets of lateral interactions on a square lattice. Except for a case with 
£ 1 <0 and £ 2 > 0, the fluctuation method and the Kubo-Green approach give similar 
results. Using the transfer-matrix technique to calculate µ, Myshlyavtsev and 
Zhdanov ( 1993) consider similar problems on a rectangular lattice with anisotropic 
interactions. Tringides and Gomer (1992) show that lateral interactions could 
produce anomalous behavior in diffusion constants measured by laser-induced 
diffusion compared with those from fluctuations around equilibrium, in contrast to 
their similar behavior in the absence of such interactions. 

I 1.4.3. Surface states on vicinal and reconstructedfcc( I 10) surfaces 

The same mechanisms which underlie the interaction between atoms chemisorbed 
on flat surfaces should also play a role in the interactions between steps on vicinal 
surfaces. For most semiconductors the interaction potential between steps, U(l), is 
repulsive and decays as 1-2

, where l denotes the distance between steps, as reviewed 
by Bartelt and Williams (Chapter 2). This form describes energetic interactions 
expected from both dipole-dipole (Voronkov, 1968) and elastic effects (Marchenko 
and Parshin, 1980). As noted in § 11.2.5, this result can be argued from a very 
general Green's function perspective (Rickman and Srolovitz, 1993). Poon et al. 
( 1990) found such behavior in a study of steps on Si(lOO) using the Stillinger-We­
ber (1985) interatomic potential. Using EAM to study vicinal Au (100) and (110), 
Wolf and Jaszczak ( 1992) assess how well Marchenko and Parshin 's expression for 
two interacting steps (or another expression (Srolovitz and Hirth, 1991) for a 
periodic array of steps, which differs by just a numerical factor of order one) 
accounts for the computed step-step repulsion. They find first that the amplitude 
Ge, of the 1-2 decay, which depends on Poisson's ratio, Young's modulus, and 
components of the linear force densities or stress factors, is nearly independent of 
l for large l. The Ge1's for steps on the two surfaces are 50% and 70% of the value 
deduced directly from the orientational dependence of the surface free energy. The 
discrepancy is attributed to: (I) the fact that the expression for Ge1assumes isotropic 
continuum-elasticity theory, while the environment near the step is highly anisot­
ropic; (2) the bulk elastic moduli in the formula should be replaced by local 
responses near the surface, which have not been computed; (3) the treatment should 
be based on a fully relaxed flat surface with unrelaxed steps, i.e., doing the 
calculation correctly would require Gordian unraveling reminiscent of the com­
ments near the end of § 11.2.5. Extending EAM calculations to six of the late 
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transition/noble fee metals, Najafabadi and Srolovitz (1994) also found t 2 repul­
sions for L > 3a0 ; inclusion of a higher-order 1-3 term improved the X2 of the fit by 
over an order of magnitude. Simple continuum elastic theory is thus deemed to fail 
at small /because it neglects the discrete atomistic nature of steps and surfaces and 
because the elastic field of a step cannot be adequately described by a surface force 
dipole alone. Detailed comparison shows that modeling steps as in-surface-plane 
dipole line forces in an isotropic elastic medium predicts elastic fields qualitatively 
different from those simulated. In both studies, it is important to remember that the 
EAM calculations are incapable, ipso facto, of including long-range electronic 
interactions since there is no Fermi-surface singularity. 

Recently, microscopic probes of surface structure, particularly the scanning 
tunneling microscope (STM) and reflection electron microscope, have permitted 
detailed measurements of the configuration of steps on single crystal surfaces. 
Specifically, the terrace-width distribution function P(l) provides a sensitive probe 
of step-step interactions. The simple t 2potential describes inadequately the terrace­
width distributions which Frohn et al. (1991) have measured on vicinal Cu(IOO) 
surfaces: Although P(l) for Cu( 1, 1,7) has the shape expected for a simple repulsive 
potential, the width and asymmetry of P(l) for Cu( 1, 1, 19) suggests attractive 
interactions between steps. Similarly, Pai et al. (1994) have recently reported STM 
measurements of vicinal Ag( 110) surfaces in which steps appear noninteracting for 
(/) = 22 A, repulsive for(/)= 30 A, and attractive for(/)= 40 A. 

While attractive interactions may result from surface stress relaxation in the 
vicinity of steps (Jayaprakash et al., 1984) or from dipole-dipole interactions (Wolf 
and Villain, 1990) (if dominated by the in-plane orientation), the most likely 
explanation is an indirect interaction between steps mediated by substrate electron 
states which can produce attractions at some step separations (Frohn et al., 1991; 
Redfield and Zangwill, 1992). In terms of the formalism in § 11.2.2.2, we can 
imagine the relaxation of each atom along the step edge as producing a localized 
perturbation on the substrate analogous to the chemisorption bond. In this perspective, 
we view the t 2 repulsion as arising from a naive integration along one of the steps of 
an r-3 point-point repulsion, thereby approximating the steps as lines of independent 
points (Redfield and Zangwill, 1992), although the result is more general. 

At small separations, the r-dependence of indirect interactions is usually quite 
complicated; however, for the nearest-neighbor tight-binding model, the asymp­
totic regime for indirect interactions via bulk states is reached in -4 lattice spacings 
(Einstein, 1978). In this asymptotic limit, we saw in § 11.2.6 (cf. Eq. ( 11.27)) that 
the indirect interaction reduces to r-1'cos(2kFr), where kF is the Fermi wavevector 
with velocity pointing in the ~direction, p = 5 for mediation by bulk states near a 
surface, and we have assumed the phase factor cj> is negligible. The integration along 
the step edge is complicated by the oscillatory factor.' Redfield and Zangwill 
( 1992) point out that, given site-site interactions of the form r-Pcos(Kr), the interrow 

Redfield and Zangwill ( 1992) point out that this summation procedure is strictly valid only in the (weak) 
limit, when the local perturbation due to each site is independent of its neighbors. 
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interaction has the form r-mcos(Kr+8), with m = p - 112 and 8 = n/4. 1 For bulk 
electronic states, p = 5, so m = 9/2. As noted in § 11.2.6, when mediated by 
[2D-isotropic] surface states, Lau and Kohn (1978) showed that the interaction 
decays like r-2 1eading similarly to m = 3/2. 

To decide which case is appropriate for a particular substrate, one obviously 
must know something about the electronic structure of the surface. On the highly 
anisotropic {110) faces of noble metals, there apparently are surface states that are 
promising candidates to mediate interactions in the [001] direction. However, these 
states2 exist only (in a gap) near Y, (the intersection of the [001] direction and the 
surface Brillouin zone boundary), which would suggest m = 2 rather than m = 3/2. 
In Monte Carlo (MC) simulations relying on a terrace-step-kink (TSK) model of 
surface structure, Pai et al. (1994) use a rather ad hoc potential embodying these 
ideas: it contains an oscillatory term at l > 6 lattice spacings and a repulsive 1-2-Iike 
form at smaller step separations. While there is insufficient data to warrant confidence 
in the specific potential, it is nonetheless noteworthy that this potential, with reason­
able parameters, can account for the distributions measured at three different (/). 

In summary, vicinal Ag( 110) provides the first evidence of an indirect interac­
tion mediated by a surface state. It also illustrates that when such effects occur, the 
long-range interaction is by no means negligible. 

We also note that Xu et al. (1996) are applying their method using a modified 
fourth moment approximation to tight binding, discussed in the latter part of § 
11.3.5, to consider step interactions. They fit their results to the form of a monotonic 
inverse-square law repulsion plus an oscillatory term as discussed above, including 
<\>, and obtain a remarkably consistent, if curious, set of results. 

Very recently, Gumhalter and Brenig ( 1995) studied the screening properties of 
quasi-one-dimensional states, such as may arise in the troughs of reconstructed 
( 1 I 0) fee metals such as Ni and Cu (but not Ag) and considered how such states 
might mediate the indirect interaction between H atoms. They derive analytic 

The essence of the derivation is taking the leading term of J (x2 + /r"12 cos(tc...f x2 + /)dy to be 
() 

J x-" cos(K(x + /12x))dx = x-<"- 112
>/{ICX), where.flK,x) contains products of trigonometric functions and 

II 

Fresnel integrals but has a simple asymptotic limit oc cos ( ICX +~) 

2 One state has been observed often for (110) late-transition/noble fee metals, about 2 eV above EF 
(Bischler and Bertel, 1994 ). These states are probably too far from EF to play an important role. However, 
Liu et al. (1984) calculated on Au(l 10) a second surface state just below EF, over a narrower range near 
Y, and there is some calculational evidence of a similar state on Ag (K.-M. Ho, private communication). 
Courths et al. (1984) reported such a state in an angle-resolved photoemission (ARUPS) study of Ag: it 
was found to be dispersionless at 0.1 eV below EF and sharply peaked in intensity at Y, seemingly 
vanishing by 20% of the distance to r. While the effect of steps and disorder are unclear, it is plausible 
that this state could be broadened or shifted to cross EF in some small region near Y. 
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expressions for the consequent indirect interaction first from second-order pertur­
bation theory (as in Lau and Kohn (1978)) and then with non-linear screening as in 
§ 11.2.2, but with overlap included, both explicitly (Anderson and McMillan, 1967) 
and as a proportionality factor for the adatom-substrate eigenstate coupling (Gum­
halter and Zlatic, 1980). The proportionality constant for the adatom-substrate 
coupling and the adatom energy Ea are related by the Friedel sum rule (cf.§ 11.2.4). 
The surface states in question run along the localized chain states in the close­
packed troughs of (H-induced reconstructed) Ni and along the step edges of similar 
metals. When trying to parametrize the indirect interaction, the authors find that 
unless they assume a very slow decay corresponding to W 1 in Eq. (I 1.27), the 
coupling parameter is unreasonably large. However, the specific fit to the potential 
in Brenig (1993) (cf.§ 11.4.2) is unconvincing since that potential is: (I) repre­
sented as isotropic (while the interaction is manifestly highly anisotropic); (2) 
interpolated from interactions at three separations, all less than two lattice constants 
(and so far from the asymptotic regime); and (3) indicative of the total lateral 
interaction, including the direct contribution (which is likely non-negligible at the 
shortest separation). They and Bischler and Bertel (I 993) (also Bertel and Bischler 
( 1994)) suggest that this chain state is similar to the state seen in inverse photoemis­
sion by the latter pair. However, this particular state Sx is 6 eV above the Fermi 
energy, so presumably completely empty and hence inactive. 1 

11.5. Discussion and conclusions 

Two decades ago at a Nobel Symposium (Lundqvist and Lundqvist, 1973) 
papers were presented on both the Kondo problem and the pair interaction, both 
cloaked in the Anderson model. In the conference summary, Anderson quotes 
Harry Suhl as saying "Like South America, the Kondo problem will always have a 
great future." Not only are such statements no longer "politically correct", in the 
meantime the Kondo model was instrumental in the formulation of the renormali­
zation group (Wilson, 1975) and was solved exactly by Bethe ansatz methods 
(Andrei et al., 1983); even the two-impurity problem has been solved (Jones et al., 
1989; Affleck and Ludwig, 1992). 

In contrast, consider what we have learned about the pair interaction. The only 
exact results relate to the asymptotic regime. Until recent evidence on vicinal Ag 
(I I 0) of indirect interactions via surface states, these results proved of purely 
academic interest. There have also been exciting observations recently of standing 

The main import of Bertel and Bischler's (1994) work is to show that a one-dimensional sp-derived 
state can exist on the surface. It is curious that the dispersion of the state is flat in the direction (ink-space) 
parallel to the chain (where one would expect considerable dispersion); Bertel (private communication) 
points out that this behavior arises because the state is antibonding in the top layer of Ni but bonding in 
the second layer (cf. the LCAO discussion in Bertel (1994)). Unfortunately, experimental complications 
have so far prevented measurements in the perpendicular direction (along which the dispersion should 
be flat if the states are in fact quasi-one-dimensional along the close-packed direction). 
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waves on surfaces (Crommie et al., 1993; Hasegawa and Avouris, 1993); there may 
be some relationship between them and the propagator which transmits the indirect 
interaction. The Anderson picture developed earlier at length does provide a 
convenient way to conceptualize the physics of the interaction. The earlier model 
work gives a general feeling for the relative size of the interactions associated with 
adatoms in various configurations. On the other hand, it has been difficult to 
improve the model or to achieve quantitative accounting of actual experiments, 
although there certainly have been several attempts in this direction (Sulston et al., 
1986; Dai et al., 1987; Zhang et al., 1990; Cong, 1994; Sun et al., 1994). The model 
seems more limited in dealing with the adsorption of single adatoms than in the 
subsequent interactions between pairs. Perhaps if there were a compelling way to 
evaluate adjustable parameters for the single-adatom case, one might make progress 
in this direction. 

Models leave out many important pieces of physics which are particularly 
important in the "near" regime. Local distortions, changes in bond strength with 
coordination, and rehybridization subtleties have been seen to play a vital role in 
this regime. With scattering theory methods, compelling results have been obtained 
in a few simple cases. At present, progress seems to be computationally limited. It 
seems that in the foreseeable future, advances will come from improvements in the 
code rather than more powerful computers. In this regime, which is certainly the 
most important from a practical or chemical perspective, it is not necessary or 
perhaps even fruitful to concentrate on the Green's function carrying the distur­
bance produced by one adatom to the site of the second. Once the adatoms separate 
sufficiently so that they neither couple directly nor interact strongly with the same 
substrate atoms, the perspective stressing the propagation of disturbances should be 
the most appropriate. 

The pair interactions of remarkably few physical systems have been computed 
successfully. More strikingly, in many cases where two different methods have 
been applied, inconsistent results are found. The case of Pd(! 00)-H was discussed 
above. Consider now the case of Pt( 111 )-CO, not an ideal prototypical adsorbate 
from a theory viewpoint due to the two active orbitals of CO and the complicated 
adsorption mechanism. (It is also an intermediate case energetically, with a heat of 
adsorption of 1-1 1/2 e V (Toyoshima and Somorjai, 1979) so neither in the pertur­
bati ve regime nor in the strong-adsorption regime of, say, H, which has an adsorp­
tion bond strength l-2 eV greater (Christmann, 1988) and forms bonding and 
anti bonding states during adsorption (Einstein et al., 1980). Persson ( 1989) (also 
Persson et al. (1990)) assumes that pair interactions depend only on separation R. 
Explicitly, his pair interaction consists of a Pauli (hard-core) (contributing 262 me V 
to £ 1 an~ negli~ible for large~ R) and an in~irect term which is also repulsive and 
decays (1sotrop1cally and rapidly) monotonically: ( 1.3 eV) exp[-(0.8 A-1)-R]. The 
two constants are chosen so that (I) the binding energy at half coverage is 0.25 eV 
less than that at zero coverage, and (2) the frequency of the frustrated translation at 
the atop site (preferred by 60 meV over bridge) increases from 49 to 60 cm- 1

• With 
this model potential he performs (off-lattice) Monte Carlo simulations which 
apparently do well at accounting for the experimental phase diagram. Joyce et al. 
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( 1987) present a strikingly different picture, but also achieve good agreement with 
different experimental data! They separate the interactions into direct, indirect, and 
site (atop vs. bridge, high-symmetry positions only) contributions. The direct part 
is formulated in terms of gas-phase Lennard-Jones potentials. The indirect part is 
assumed to come from sp electrons and expressed in terms of the asymptotic form, 
even at short range! They believe that the adatom-substrate coupling occurs via the 
2n* orbital (3 eV above EF) rather than the 5cr orbital (7 eV below). Their interaction 
is not purely repulsive, but oscillates in sign. Nonetheless, the results apparently fit 
desorption energies at four different fractional coverages ranging from 1/3 to 213. 
Wong and Hoffmann (1991) applied extended Htickel theory to CO on Ni, Pd, and 
Pt(l 11). Unfortunately, they only report results for two coverages (1/3 and 1/2), so 
it is unclear what the size and the sign of the pair interactions are. Very recently 
Jennison et al. (1995b), using a promising technique described below, found that 
the CO-CO interaction on Pt( 111) is repulsive and decays monotonically (to at least 
3 lattice spacings), similar to Persson's ( 1989) result. However, their admolecules 
are placed only on bridge (not atop) sites (favored by -0. J eV); while the decay is 
sensibly less rapid, their repulsions are somewhat too strong: £ 3 = 25 meV vs. £ 3 = 
16 meV for Persson's experimentally-calibrated potential. Finally, both sets of 
interactions differ from the non-monotonic repulsive decay deduced by (Skelton et 
al., 1994) (cf.§ 11.4.2). 

Until pair interactions can be computed readily and reliably, our general picture 
and its evolution provide a useful template with which to confront indeterminate 
interactions needed to begin Monte Carlo simulations. We have a good idea of 
which configurations should have comparable size (Einstein, I 979b). We can use 
phase boundaries to estimate interactions. When subtleties exist (Bartelt et al., 
1989), they may provide particularly valuable insight into the size of small interac­
tions. In some cases semiempirical methods can help in gauging interactions, but 
these usually only give significant interactions in the near region and certainly fail 
by the asymptotic limit, since they lack Fermi surfaces; they are best for late-tran­
sition and noble metals. Generalized tight-binding models, including d-band degen­
eracy and correlation effects, have been useful for mid-transition metals. Very 
recently Cohen et al. ( 1994) proposed a general tight-binding total-energy scheme 
that improves on previous similar schemes by adjusting the arbitrary zero of energy 
to eliminate the need for pair potentials; like EAM, it is in a sense an elaborate 
interpolation scheme, since parameters are fit using first-principles calculations. It 
has many times as many fitting parameters as the fourth-moment approximation 
method discussed earlier (Xu and Adams, 1994). It has done better than EAM in 
accounting for surface energies of late-transition and noble metals. Perhaps it or a 
related method will allow calculation of far more accurate Green's functions and, 
ultimately, interaction energies. 

As this chapter was in its final stage, Jennison et al. ( 1995) communicated 
noteworthy advances in computational capabilities. With a new Gaussian-based 
local-density-approximation code for massively parallel computers that uses 
Feibelman's LCAO method discussed in § 11.3.6, they can treat systems (large 
clusters, molecules) and elements (transition metals, oxygen) that pose difficulties 
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for plane-wave methods. With a three-layer 91-atom cluster of Pt, they reproduce 
well the details of ammonia adsorption on a seven-layer slab of Pt(l 11 ). The top 
layer is a hexagon 7 atoms across. Like the CO molecules mentioned above, pairs 
of ammonia repel each other at the close and intermediate separations that can be 
computed on this cluster, decaying roughly like W3

; the magnitude is somewhat 
greater. Specifically, they find for a pair of NH3' s that £ 3 = 85 me V, which is much 
greater than the "through-space" dipolar repulsion, which they calculate to be 15 
me V for two isolated ammonias. Multisite terms are relatively small: by comparing 
a compact cluster of seven molecules to a hexagonal ring of six, they find the 
effective £ 1 drops to 75 meV, suggesting an attractive trio energy (for the associated 
equilateral triangles) of -10 meV. For the coadsorption case of CO at bridge sites 
and NO at hep sites, there is a weak attraction at the largest computable separations. 
For both CO-CO and CO-NO (but not NHrNH3) the LOA is expected to overes­
timate the adsorption energies and so the interactions, consistent with the above­
noted difference from Persson' s results; gradient corrections (Becke, 1988; Perdew 
et al., 1992) are expected (Jennison et al., I 995a) to temper this overestimate. 

All this work considers adatoms at or near stable sites in the holding potential. 
The effects of interactions on diffusion barriers, i.e. with one of the adatoms near a 
saddle point in the holding potential, has not yet been approached systematically. 
Typically some unconvincing assertion is made about this contribution, which in 
some cases may significantly affect the kinetics. 

The generic problem we have considered has broad ramifications. There are 
obvious extensions to defect interactions. Many analogous features occur in adsorp­
tion in electrochemical cells (Rikvold and Wieckowski, 1992). A more novel 
related situation is the oscillating interaction of magnetic sandwiches of varying 
thickness (Herman and Schrieffer, 1992; Stiles, 1993). Hopefully synergistic progress, 
lacking to date, will permit results from one of these problems to impact on others. 

In summary, there has been decent progress in understanding the general prin­
ciples of lateral interactions but limited progress in achieving detailed quantitative 
understanding. Interest has been rekindled recently in looking for long-range 
effects mediated by surface or even quasi-one-dimensional states. After a decade's 
work, issues of correlations and self-consistency that seemed particularly trouble­
some earlier (Einstein, 1979a) can be dealt with, at least in simple systems in the 
near regime (Feibelman, 1989a). The major issue today is the role of local relaxa­
tions and hybridizing effects. In the near regime, we may well be on the verge of 
significant progress. In contrast, it seems that advances in treatment of the interme­
diate regime will require some imaginative way to incorporate the results of careful 
calculations of the clean-surface (for the propagator) and single-adatom (for the 
coupling) problems into a general framework that recognizes that the interaction 
will perturb the single-adatom solution weakly at most. 
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