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Abstract 

To interpret recent experiments on the dynamics of step doubling, we have studied a simple model of this phase 
transition. With Monte Carlo, we compute the time-dependence of the order parameter in the limit of rapid diffusion across 
terraces. Analysis of the data shows that the limiting step is the time for adjacent steps to touch each other; subsequent 
"zipping" together happens rapidly. From this vantage we develop an analytic expression for short times that changes into a 
phenomenological one for later times. Using data from two physical systems, we compare this function and another based on 
naive assumptions with a third based on chemical rate theory. For the more recent data, our expression describes the data 
best. Finally, in the opposite limit in which atoms can only move along step edges, we show characteristic configurations 
and compute the structure factor. 

Keywords: Computer simulations; Ising models; Low energy electron diffraction (LEED); Models of non-equilibrium phenomena; Models 
of surface kinetics; Nickel; Non-equilibrium thermodynamics and statistical mechanics; Oxidation; Oxygen; Rhodium; Stepped single-crystal 
surfaces 

1. Introduct ion 

Reversible structural phase transitions on stepped 
metals and semiconductors have attracted increasing 
attention over recent years. In particular, there have 
been several studies of transitions from single-(or 
monatomic) height to double-height steps. Over two 
decades ago, Lang et al. [1] noted merging of 
single-height steps on Pt{554} (or [9(111)x (111)]) 
to form double-height steps after exposure to oxy- 
gen. (With carbon, the steps tripled!) Thapliyal and 
Blakely [2] observed stable double-height steps at 
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temperatures below 623 K and single-height steps at 
higher temperatures on Ni{332}, i.e. (l l l)-10°[l ' i0].  
They further found that by holding the surface at 
about 670 K, bulk carbon impurities precipitated to 
the surface, producing facets with {111} and {110} 
orientations. Evidently the step doubling is produced 
by carbon changing the surface free energy rather 
than by an entropy effect. (In contrast, in the sim- 
plest picture, as the temperature decreases the extra 
entropy of single-height steps becomes less impor- 
tant than the presumably lower energy of double- 
height steps.) Oxygen exposure was again found to 
lead to step doubling by Castner and Somorjai [3] for 
Rh{775} and Haase et al. [4] for Ni{771}. Step dou- 
bling without any impurity, just as a function of 
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temperature, was reported on vicinal Si{001}-(2 X 1) 
by Alerhand et al. [5] and on vicinal Ge{lll} by 
Jung et al. [6]. Recently, Chang and Blakely [7] also 
observed step doubling on Ni(111)-5°[11,2]. 

It has also been possible to study the dynamics of 
these step-doubling transitions. A decade ago Comsa 
et al. [8] reported the dynamics of the step doubling 
caused by oxygen on Pt{997}. Recently, there has 
been renewed interest in this subject. Niu et al. have 
measured the time rate of growth of double-height 
steps on Ni{977} when exposed to oxygen [9]. 
Hoogers and King [10] (henceforth referred to as 
HK) have reported similar measurements on 
oxygen-induced doubling on Rh{332}. 

Little theoretical work has been done to under- 
stand the dynamic processes governing these transi- 
tions. To gain insight into the key mechanisms, we 
performed Monte Carlo calculations of a simple 
model of step-doubling transitions. In computational 
models, it is easy to prepare a system in an arbitrary 
configuration and then to study the evolution. This 
procedure amounts to a thermal quench (or up-quench 
from zero temperature). By examining the results of 
these simulations, we find that the rate-limiting pro- 
cess is the time it takes for neighboring steps to 
make contact with each other at some point, due to 
their meandering. We produce an analytic expression 
for the evolution of the order parameter based on this 
perspective. We compare the results with recent 
experiments. In these experiments the surface is 
brought quickly into a regime where double-height 
steps are stabilized by dosage with oxygen, thereby 
changing essentially the chemical potential rather 
than the temperature. A major goal in this work is to 
gain greater insight into the way in which steps 
diffuse on surfaces, a problem that has been of 
considerable activity in recent years. Another ques- 
tion is the microscropic role of oxygen in these 
processes. Our approach will assume that it rather 
passively changes relative chemical potentials, acting 
like a thermodynamic field and so analogous to 
shifting the temperature, rather than participating 
actively in the diffusion by etching, pinning, etc. The 
role of these effects, not explicitly included, may 
well need to be added in future studies. Moreover, in 
assuming that the doubling arises from a sudden 
change in a thermodynamic field, we are neglecting 
kinetic factors such as deposition rates or transport 

asymmetries over steps [11], which might cause dou- 
bling during growth or evaporation. 

2. Simulation and results 

Using standard Monte Carlo methods with the 
Metropolis algorithm, we studied step-doubling dy- 
namics in a terrace-step-kink (TSK) model [12], in 
which step wandering is the only thermal excitation. 
We used a two-dimensional square lattice of dimen- 
sions L x X Ly, with screw-periodic boundary condi- 
tions in the 2 direction to create four steps. Various 
values of L x from 32 to 64 were used, so that the 
initial uniform interstep separation f was between 8 
and 16. Ly was always chosen to be 80, and periodic 
boundary conditions were applied in the ~ direction. 
In recent work we found that these sizes were large 
enough to show a distinct phase transition [13]. 
Moreover, the {977} surface, here of Ni, has terraces 
that are 7 rows wide, the step risers being {100} 
microfacets (i.e. A steps on the {111} terrace). The 
{332} surface (of Rh) has terraces 5 rows wide, the 
step risers being {111} microfacets (i.e. B steps) [14]. 

The energy of a double-height step per unit length 
was chosen to be equal to the energy • of a single- 
height step of same unit length. This Ansatz is the 
simplest way to have energetics favor the pairing of 
steps. Barring some rather pathological choice of 
relative kink energies on the two kinds of steps, 
entropy will favor having single-height steps rather 
than [half as many] double-height steps. Again for 
simplicity, we set the energy of a [single] kink (or 
anti-kink) on either kind (single height or double 
height) of step to have the same energy, e, neglect- 
ing comer energies as well as the structural differ- 
ence between the steps: The goal in this model is to 
reproduce the relevant physics with the minimum 
number of parameters. In the TSK approximation, 
overhangs of one step over another are forbidden, 
and there are no terrace defects (adatoms or vacan- 
cies). We take as our order parameter ~ the terrace 
areas at even heights minus the areas at odd heights, 
normalized by the total area [13]. Hence, in our 
simulations, if the two pairs of steps each join com- 
pletely to form two double-height steps, then I~1 is 
precisely unity. We formulate our discussion in terms 
of unnormalized intensity I cx I~ 12 in order to make 
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contact more readily with measured data. The model 
was studied under two conditions of the order pa- 
rameter: (a) not conserved, with - 1  < ~ <  1 and 
(b) conserved, with a/, = 0. 

In case (a), appropriate to evaporation/con- 
densation transport, the system was thought of as 
being connected to a reservoir of atoms. Each Monte 
Carlo time step (MCS) consisted of 4Ly random 
selections of sites along steps at which the step was 
either incremented or decremented by a unit length 
(at cost 2e for initially straight steps), or left un- 
changed (i.e. "Glauber dynamics"). This is the so- 
called evaporation/deposition, mode [15]. In the 
physical system the reservoir would be provided by a 
two-dimensional "gas"  of adatoms and/or  vacan- 
cies on the terraces diffusing rapidly compared to the 
attachment/detachment time. By using a reservoir as 
the intermediary, we have excluded any asymmetry 
in attachment of atoms arriving from above or below 
the step, thereby avoiding a kinetic prejudice of the 
steps toward or against merging [11]. Note that in the 
TSK model, there are no adatoms on the terraces. 
This simplification, which neglects details of the 
transport of atoms from step to step, greatly aids in 
acquiring adequate statistics in the Monte Carlo runs. 

The equilibrium properties of this model were 
studied previously by Einstein et al. [13]. Consistent 
with that work, we observed a step-doubling phase 
transition at a critical temperature Tc = 1.3~/kB, 
where k a is Boltzmann's constant. This transition 
was second order, in the Ising universality class, 
reflecting spontaneous breaking of symmetry be- 
tween even-height and odd-height terraces. If not 
preempted by a first-order transition, this behavior 
presumably occurs for the fcc metals Ni and Rh 
where these step doubling transitions have been ob- 
served, as well as on G e ( l l l )  [6,13]. (In contrast, on 
vicinal Si(001) surfaces miscut towards a [110] direc- 
tion, there is no spontaneous symmetry breaking 
between alternate terraces: symmetry has already 
been broken by the (2 X 1) reconstruction, which 
produces dimer rows which run alternatively parallel 
and perpendicular to the step edges on successive 
terraces separated by single-height steps [16].) 

Starting from an initial configuration with straight, 
uniformly spaced, single-height steps (so a/, = 0), we 
monitored the time dependence of the order parame- 
ter for different values of the temperature T. As 
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Fig. 1. ~/¢2  VS.  t at temperatures 1.404e/k a and 0 .624~/ks ,  
where e is the energy of a kink or, equivalently, a unit length of 
step. The dashed-dot line gives the results of Monte Carlo simula- 
tions, while the solid line is the best fit to the two-parameter 
functional form if, E= A [ 1 - e x p ( - t ~ - ~ 0  ]. The dashed line is 
the best fit to the functional form of Eq. (4). 

expected, below T~ the double-height steps domi- 
nated while above T c single-height steps were pre- 
ferred. Fig. 1 we plot the square of the order parame- 
ter as a function of the Monte Carlo time for two 
different temperatures, one above T c and one below 
L. 

In our picture of the dynamics, the rate-determin- 
ing process in step doubling is the wandering of 
single-height steps until neighboring steps touch at 
one point. Once the subsequent doubling is achieved 
at one point of the pair of steps, they relatively 
quickly " z ip "  together. The time evolution of ~ 2  
in a single Monte Carlo run is shown in Fig. 2. The 
steep rise in its value from 0 + to 1- supports this 
physical picture. 

As a first guess at a reasonable functional form 
for gr 2(t), we note that the order parameter increases 
rapidly at the outset and eventually appears to satu- 
rate at the equilibrium value associated with the final 
temperature. (See, however, comments at the end of 
Section 4.) At least qualitatively we can describe this 
behavior as an exponential approach to the asymp- 
totic limit. Since the rate-determining process is the 
increasing of meandering until the steps touch some- 
where, we naively sought to match the initial growth 
of the order parameter to the root mean square 
deviation of the step at early times. When the mean- 
dering is produced by the attachment and detachment 
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of adatoms a n d / o r  vacancies (rather than diffusion 
along the step), this deviation is proportional to the 
one-fourth power of  elapsed time [17]. Then the 
squared order parameter, and so the intensity, should 
grow initially as the square root of elapsed time. 
Combining this crude criterion with the exponential 
behavior leads to the trial fitting expression 

/ l ( t )  = A [ 1 -  exp(- t/v/t~o )] • (1) 

The corresponding fits are included in Fig. 1. 
To gain a more fundamental understanding of the 

doubling process, we studied the distribution of times 
t c until the order parameter rose steeply. For a run 
such as illustrated in Fig. 2, t c was taken as the time 
when ~ 2 reached 0.90. (This high threshold, rather 
than ~ 2 =  1 / 2 ,  was chosen to limit inclusion of 
doubling fluctuations in the data set.) The distribu- 
tion times t c obtained from 10 4 runs is displayed in 
Fig. 3. In the simplest approximation, positions on 
the step are viewed as random walkers in one dimen- 
sion (viz. the direction perpendicular to the mean 
step direction), and contact is made when the walker 
first travels a distance of o r d e r / .  In this perspective, 
our problem is to determine the first passage time of 
an unrestricted walker. Letting t 1 = f 2 / 2 D ,  where 
D is the effective diffusion constant of  the walker, 
we can write Feller 's [21] expression for the distribu- 
tion of first-passage times as 

f (  t ) = ( t l / ' r r t  ) 1/2 exp( - t l /  t ) . (2)  

7-> 1.0 . . . . . .  
t, 

0.8 

X 0 . 6  

0.4" 
0 

0.2" 
o 

0 -  

0 5 10 15 20 
time (10 ~ MCS) 

Fig. 2. 1/.,2 vs. t from a single Monte Carlo run at T = 0.624e/k B, 
showing the rapid "zipping together" of neighboring steps once 
they make contact. 
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Fig. 3. Distribution of the times at which the sudden rise in ~ 2 
occurs; an illustration of this rise for a sample run was given in 
Fig. 2. Solid curve: fit of early-time data to Eq. (2); dashed curve: 
fit of late-time data to the phenomenologically altered Eq. (2). The 
curves cross at 12. 

This expression is fit to the Monte Carlo data in Fig. 
3 by adjusting the vertical and horizontal " s ca l e s "  
so that the peak of the solid curve coincides with that 
of  the data. We see that this simple viewpoint ac- 
counts for the short-time behavior of  the data but 
predicts a slower decay beyond the peak of the 
distribution. Thus, for long times, the simple picture 
overestimates the chance that a single-height step 
can survive without making contact at some point 
with its neighbor. In this regime, the argument of  the 
exponent in Eq. (2) is large, so that the exponential 
is essentially unity; thus, f ( t )  is dominated by the 
power of  t, which apparently becomes larger than 
unity. By comparison with the numerical data, we 
find t -2 provides a reasonable description of the 
longtime decay of  f ( t ) .  The dashed curve in Fig. 3 is 
obtained by using an expression of the form of Eq. 
(2), but with the exponent of  t augmented to 2, again 
adjusted so that the peak coincides with that of  the 
data. We can then replicate the data by using the 
dashed curve below the peak and the dotted curve 
above it, giving a somewhat empirical f ( t ) .  

We have skirted the issue of which two steps 
determine  to: in our system there are four single- 
height steps initially. Close examination of configu- 
rations during several runs provides evidence that it 
is the touching of the second pair that is associated 
with the sharp rise in the order parameter. In retro- 
spect, we found small features related to the merging 



s. v. Khare et al. /Surface Science 339 (1995) 353-362 357 

of the first pair of steps, but this process provides at 
most a modest amount of ordering which may fade 
as the steps rearrange themselves. Thus, the charac- 
teristic length which enters the equation for t 1 should 
be larger than / ,  perhaps tending toward 2 /  in the 
limit of many steps. Since we have not attempted to 
interpret D microscopically, a small change in the 
characteristic length makes no difference in the pre- 
sent analysis. 

If we assume that the steps zip together instantly 
when they make first contact, we can write down the 
order parameter immediately using ~z2(t) (I 
fdf(t ')dt ' .  Then using Eq. (3) we see that 

~z2( t) (x F ( - ½ , t l / t ) ,  (3) 

where F ( a , x )  is an incomplete gamma function, at 
small t, while at high t it is proportional to 
F(1, t3/ t ) ,  where t 3 is a fitting parameter. For sim- 
plicity, we switch abruptly between the two func- 
tions at the time t 2 at which they intersect, deter- 
mined implicitly by F ( - 1  ~,t l / t2)  = F(1,t3/t2). 
Hence, the resulting functional form has three ad- 
justable parameters, A, tl, and t3: 

Iz( t )  = A [  F (  - 1 , t l / t ) i 9  ( t 2 - t) 

+ F ( 1 , t 3 / t )  
F ( - ½ , t l / t 2 )  

F(1 , t3 / t2 )  @(t- t2) 1 , 
(4) 

where @ is the unit step function. We defer, until 
after comparison with experimental data, a discus- 
sion of the implications of the approximations in- 
volved in producing this equation. 

As a third possibility, we also consider the ana- 
lytic form proposed by HK [10] in the context of 
trying to explain their experimental data, to be dis- 
cussed in the next section, in which the doubling is 
produced by changing the chemical potential (via 
oxidation) rather than the temperature (viz. quench- 
ing). HK's model is based on chemical kinetics 
rather than a microscopic model: the driving mecha- 
nism is similar to the one driving the chemical 
reaction kinetics of two atomic species in a fluid 

medium. HK propose the following specific func- 
tional form: 

IHr " = A  1 1 + ( t / t . K )  (5) 

where tH 1 in their discussion is a rate constant. 
Their derivation focuses on fractional occupancy by 
Rh atoms of single-height steps, double-height steps, 
and intermediate sites involved in transport. For each 
of these three quantities, a differential equation ex- 
presses its change in terms of the [average] value of 
the three; correlations are treated in the simplest 
approximation that they are products of densities. 
Implicitly, then, it seems that steps which are not 
nearest neighbors could pair. A one-dimensional 
model, it does not distinguish between two totally 
dissimilar step configurations that have the same 
value of ~ but should evolve in different ways. 
Since step fluctuations were shown above and in 
previous work by Bartelt et al. [17] to play an 
important role in how steps interact [18] and how 
they evolve toward equilibrium [19,20], a one-di- 
mensional model should have some problems ac- 
counting for the step-doubling process. In fact, HK 
do note that at lower temperatures, where mean-field 
approximations describe the correlations less well, 
the fit is improved if the exponent in Eq. (5) is 
reduced from 2. 

As shown in Fig. 4, all the times in our approxi- 
mants evidently satisfy the same scaling form: 

ti ~7 4 ,  i = O, 1, 2, 3. (6) 

The proportionality constants, of course, depend on 
the microscopic process in each case, e.g. on the 
overall rate of attachment or detachment of atoms at 
the steps for t 0. The exponent 4 of ?4 is consistent 
with previous results of Bartelt et al. [17] for step 
propagation by exchange with a reservoir. 

Note that, in broaching the first-passage-time 
problem, the Ansatz of a random walker in 1D 
neglects the important contribution of the step stiff- 
ness in reducing the fluctuations. From the definition 
of t 1 = / 2 / 2 D ,  we might expect t 1 or/2.  This power 
is inconsistent with that of Eq. (6). Evidently the 
stiffness of the steps restrains the fluctuations, lead- 
ing to the higher power. Ultimately, t 1 is determined 
by fluctuations not just of isolated positions of the 
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step but of large regions. In any case, we note that in 
the limit of infinite stiffness, the step problem be- 
comes one-dimensional again, with a characteristic 
time again ~ / 2 .  

The distinctions between the predictions of the 
three expressions for ~ 2 are clearest at early times. 
Because of the key role of thermal fluctuations of the 
step edges in the evolution toward doubling, the 
small time behavior (i.e., t << t 0) is, according to Eq. 
(1), ~12 ct ( t / to )1 /2  [17]. On the other hand, accord- 
ing to Eq. (3), ~ 2  cx t 3/2 e x p ( t l / t )  , a much smoother 
onset. These initial doldrums may be an artifact of 
the assumption that the steps are uniformly spaced at 
the outset, so that some time is needed for steps to 
move close to each other. In an experiment, some 
close approaches should exist before the quench. 
Finally, the HK expression gives an intermediate 
behavior: ~H2K Ct (t/tHK)2 at small t, consistent with 
the mean-field nature of this approximation. At the 
other extreme, 1/,2 approaches saturation like a com- 
pressed exponential and ~z 2 like t -E, just like ~ 2  K. 

4 

v 

c~3 
0 

.~t ~ IV ~ 

L.~S : f  . r~~ + 
+ 

+ 

.... + 
+ 

÷ 

+ 

+ 

0.80 0.90 1.00 1.10 1.20 1.30 
log(L) 

Fig. 4. Logarithm of the various time constants t vs. logarithm of 
the average distance / between single height steps (i.e., 1/tan(4,),  
where th is the misorientation angle), at T =  0 .624E/k a. The 
plus signs indicate the values of t o obtained by fitting Eq. (1) to 
our simulation results. The corresponding linear fit has a slope 
s = 4.36 + 0.06. The asterisks, triangles, and diamonds indicate the 
values of tl, t2, t3, respectively, obtained by fitting Eq. (4) to our 
simulation data. The corresponding best linear fits are shown. 
Their respective slopes are 3.37_+0.30, 3.62+0.25 and 4.03_+ 
0.25. This result and those of Bartelt et al. [17] suggest a relation 
of the form of Eq. (6). 

3. Comparison with experiment 

In this section we discuss experimental data by 
HK [10] and by Niu et al. [9], hereafter NKGKS, 
particularly checking how well the increase of the 
scattering intensity with time is fit by Eq. (1). 

Having put the three viewpoints in perspective, 
we now compare the results. Fig. 5 shows the time 
evolution of the intensity measured by HK for three 
different temperatures along with their model fits (to 
Eq. (5)) and the fits obtained from Eqs. (1) and (4). 
The fits from the naive model underlying Eq. (1) are 
marginally better than those of the HK model, while 
the fits using Eq. (4) are evidently poorer. The fits to 
the other three data sets from Fig. 5 of HK give 
similar results and hence are not shown here. (Note, 
however, that the approximant in Eq. (4) contains 
three adjustable parameters, one more than the other 
two cases; as discussed before Eq. (4), t 2 is not 
free.) In contrast, in Fig. 6 we show a sample trace 
from unpublished work by NKGKS. Here the situa- 
tion is reversed. The fit to Eq. (4) is best, that to Eq. 
(5) slightly worse, and that to Eq. (1) notably worse. 
Evidently the zipping model gives a better account 

of Niu et al.'s data than of HK's. It is not clear what 
underlies the difference between the two experimen- 
tal results. We do note that the vicinal surfaces have 
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Fig. 6. Fit of preliminary data, indicated by diamonds, from Niu et 
al. [9] for T = 550 K. Also plotted are fits to the expressions in 
Eq. (1): solid curve; to Eq. (5): dashed curve; and to Eq. (4): 
dash-dotted curve. 

different step-riser microstructures ({111} for HK, 
{100} for NKGKS), and the chemical activities are 
not the same. 

Unfortunately, in the very-early-time regime in 
which the theoretical predictions differ most clearly, 
the experimental data may often represent a poorly 
controlled situation, since the oxygen does not in- 
stantly adsorb to alter the surface energetics. Thus, 
the experimental data may show slower initial growth 
than if an "instant quench" were possible, leading 
to a artificially higher power of t in the best fit to 
data. In the late-time regime, the experimental ap- 
proach to saturation may be hindered by various 
kinds of surface defects. 

4. Discussion 

In this section we discuss in greater detail the 
approximations of the microscopic model, the ther- 
modynamic limit, and the relationship to the decay 
of one-dimensional profiles. 

As implied above, the approximation that the 
steps are initially straight will give a narrower distri- 
bution of first-passage times than occur in reality, 
where there is a distribution of spacings at equilib- 
rium [22], Gaussian if the energetic repulsions be- 
tween steps are significant, broader (approximately 
squared cosine) when only entropic repulsions enter, 
as in the model analyzed in this paper. Thus, at early 

times the actual order parameter should rise faster 
than in our approximation. However, we believe that 
the functional form will not change, just a prefactor, 
as was found for the autocorrelation function of 
perpendicular fluctuations of specified points along a 
step [17,23,24]. 

In a thermodynamic limit of very wide systems 
(large Ly), but with fixed mean step spacing, the 
"instant-zipping" approximation must eventually 
break down. Even initially, the equilibrium fluctua- 
tions of the steps must lead to contact between 
neighbors at some points along their "world lines." 
The doubling process becomes a sort of dewetting 
problem in which segments of pairs of single-height 
steps shrink away [25]. On lattices of the size used in 
this study, we have seen no evidence of such a 
wetting regime, and we do not believe it occurs in 
the experiments, either. 

The treatment of the later time period is obviously 
rather ad hoc. The more rapid decrease than expected 
from one-dimensional walkers seems to be an indica- 
tion of the two-dimensional nature of the problem: it 
would be more difficult for a portion of a step, tied 
to a long "string", to remain isolated from its 
counterparts on neighboring steps for exceptionally 
long times. The difficulty of formulating a simple 
expression may be a consequence of being in a 
complicated cross-over regime from the Ising-like 
step-doubling regime to the wetting regime just men- 
tioned. 

The subtleties of this problem are mirrored in the 
rather similar problem of the decay of one-dimen- 
sional profiles below the roughening temperature, 
i.e. surfaces with an initially periodic variation of the 
local orientation relative to a facet orientation, in one 
direction across a surface (2 in our notation) [with 
uniformity assumed in the other direction (our 9)]- 
There has been great activity on this problem, with 
conflicting results arising from differing perspec- 
tives, as nicely summarized by Bonzel and Preuss 
[26]. The viewpoint closest to that espoused here is 
proposed by Selke and Duxbury [27,28], who have 
carried out extensive Monte Carlo simulations on 
problems in this area. Their observation is that the 
rate-limiting step in the decay process is the annihila- 
tion of adjacent up and down steps near the peak or 
the trough of the periodic undulations. As in step 
doubling, there is a characteristic time until these 
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neighboring step and "antistep" pairs contact each 
other at some point. Then the area of annihilation 
must spread, much like the doubled step, although 
the microscopic features are presumably different. 

In one way the profile problem is simpler than the 
doubling problem. In the former, it is always clear 
which pair of steps (or, more accurately, step-anti- 
step pairs) are coming together. In the doubling 
problem there is always the possibility that the 
" w r o n g "  single steps will touch and zip. The time 
to anneal away this error would presumably be quite 
long compared to the time scales studied above. To 
simplify our analysis, we worked with a system 
having just four steps, eliminating this sort of event. 
Our belief is that the time to anneal out doublings 
inconsistent with the overall ordering will be longer 
than the time scales involved in the experiments. In 
other words, we expect the late-time limit of the 
order parameter in the experiments is lower than 
would be expected from an equilibrium analysis. 
Further Monte Carlo studies of larger systems are 
certainly warranted to check this viewpoint. 

5. Further simulations: hopping only along step 
edges 

In case (b), the order parameter remains constant 
in time: ~ = 0. Each Monte Carlo time step (MCS) 
consisted of choosing 4Ly random sites at which a 
step was either incremented or decremented by a unit 
spacing (in ~) or left unchanged, and correspond- 
ingly one of its immediate neighboring step sites 
along the same step was decremented or incremented 
or left unchanged, respectively. This Kawasaki-like 
formulation corresponds to the physical situation in 
which diffusion is only along the step edges and not 
across terraces. The study of this mechanism was 
motivated by the work of Poensgen et al. [29]. There, 
too, the steps meander considerably; however, since 
the order parameter is held fixed, they cannot com- 
pletely fuse together. This restriction creates a wavy 
pattern of steps as shown in Fig. 7, for the lower 
temperature of Fig. 1. Note that this figure is an 
average over many configurations rather than a snap- 
shot of one. At higher temperatures, such as the 
upper value of Fig. 1, the (time-averaged) steps are 
still wavy, but they do not touch each other. 
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o 2 0  

._(2 
" o  

c 0 

~ 10 ! I'~ -- I I I 

0 20 40 60 8O 
Direction olong the step edges (y) 

Fig. 7. Sample of a long time average of the step structure as 
viewed from a direction normal to the terraces. This simulation 
was done at T = 0.624e/kB, and atoms were only allowed to 
move along the step edge, implying thereby constant ~ (0 in this 
case). The four_steps were initially straight and uniformly spaced 
at a distance / =  8 apart. To help visualize the configuration, a 
fifth step is depicted here; it is just the first step, shifted by Lx, as 
dictated by the screw-periodic boundary conditions. 

Corresponding to the evident periodicity along the 
direction in Fig. 7, one expects distinctive features 

in the Fourier spectra. Specifically, we computed the 
structure factor S(ky) given by the formula: 

~--- m~=l Ly S(k) E d(m,n)(-1) m 
n=l 

× exp[(2nkTri)/Lr] 2, (7) 

where d(m,n) is the distance between the step edge 
at point (m,n) on the lattice and the next step edge at 
(m + 1,n). This S(ky) is the single-scattering ap- 
proximation of what one would measure in a high 
resolution LEED experiment. The result is displayed 
in Fig. 8. The arrow indicates the distinctive peak 
which is the signature of the meander of the steps 
seen in Fig. 7 .  On an absolute scale rather than the 
logarithmic scale used in the plot, this peak would be 
more pronounced and so readily observable in an 
experiment. However, it is essentially a finite-size 
effect in the # direction. In an experiment, the peak 
might indicate defect-free regions of a particular 
size, or could be produced by pinning centers of 
some sort. Thus, a direct measurement will generally 
be needed to understand what produces the peak. 
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Fig. 8. The logarithm of the structure factor S(k) given by Eq. (7) 
vs. ky, where # is along the mean direction of the steps for 
simulated data such as depicted in Fig. 7, at T = 0.624e/k B. The 
distinct periodicity along the step edges is evident from the 
satellite peak, indicated by an arrow. 

Moreover, it could be washed out entirely by a 
distribution of sizes, so that only real-space images 
such as Fig. 7 would reveal the conserved order 
parameter. 

6. Conclusions 

We studied a model of step doubling dynamics 
which shows a second-order, Ising-like step-doubling 
transition with temperature. A comparison with a 
recent kinetic experiment has been done. The results 
suggest that step fluctuations play a key role in the 
dynamic evolution of the experimental transitions. 
Step-doubling, from this perspective, is determined 
by the statistics of a rare event, the time until 
meandering adjacent steps make contact with each 
other, essentially a first-passage time. 

No effects of the introduction of adatoms like 02, 
which actually causes the doubling in the experi- 
ments considered above, have been investigated here. 
The assumption is that quenching into the step-dou- 
bled state by changing temperature (a thermody- 
namic field) or chemical potential (due to adsorp- 
tion) should have comparable effects. Unfortunately, 
in the experiment it is difficult to transform the 
sample rapidly from clean to adsorbed. Hence, the 
early-time data, which distinguishes most clearly 
between the different pictures, may often be affected 

by the adsorption time scale. It would, thus, be 
useful to do experiments on several different misori- 
entations of the same substance to check the e ~4 
scaling of the time constants. 

Our work is clearly a modest first step in under- 
standing this rich problem. In many physical sys- 
tems, there are significant energetic repulsions be- 
tween steps (in addition to the entropic repulsions 
stemming from the noncrossing of steps). We have 
not yet explored how they will alter the results 
presented above. The later-time analysis is blatantly 
ad hoc; further insight into the underlying mecha- 
nism might shed light on the profile problem as well. 

Doubling could also be produced by other micro- 
scopic mechanisms for which the first-passage time 
would not be a key concept. For example, instead of 
lowering the energy of double-height steps relative 
to single-height steps, oxygen could prefer to adsorb 
on wide terraces, producing an instability toward 
step bunching, with step doubling typically the most 
unstable mode. Analogous behavior was observed on 
Si during evaporation during DC resistive heating 
[30]. Thus, it would of considerable interest to gain a 
more thorough characterization (with, e.g., STM [31]) 
of the microscopic role of the oxygen adsorption in 
the experiments. Fortunately, it is now possible to 
perform quantitative studies on such systems using 
scanning tunneling microscopy STM. The resulting 
information would certainly assist in refining theoret- 
ical models to allow us to account better for the 
LEED observations. 

In our second model, in which atoms can diffuse 
only along step edges, we have found a characteristic 
LEED diffraction pattern which could be observed in 
future experiments. 
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