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Abstract 

To show how experiments probing the equilibrium fluctuations of steps can be used to explore the mechanisms of 
surface mass self-diffusion, we study the equilibrium fluctuations of vicinal surfaces in the solid-on-solid model using 
standard Monte Carlo kinetics with no special barriers to attachment at step edges. By examining the wavelength 
dependence of the time constants of the fluctuations, we find that in this simple model the step fluctuations are 
determined by how fast adatoms and vacancies can diffuse away from step edges. This result is contrasted with the 
case where step-edge attachment becomes the rate-limiting process. The result of the former case is used to 
understand how steps diffuse when their configuration is out of equilibrium. In particular, we compute how a bunch 
of steps breaks apart, due to the entropic repulsions between them, to form a uniform step array. Using the theory of 
Rettori and Villain, we show that the surface mass diffusion coefficient deduced from characterizing the step 
fluctuations accurately accounts for the evolution of the step bunch. 

1. Introduction step-edge position is far from its thermal equilib- 

The question we address in this paper is the 
relationship between the thermal fluctuations in 
step-edge positions and surface mass diffusion. 
Steps fluctuate (in time) because atoms are con- 
tinually attaching to and detaching from the step 

‘edges, or moving along them. The nature of the 
fluctuations depends on many details of the steps 
and the way in which adatoms and vacancies on 
the terraces interact with them. Ref. [l] catalogs 
the different ways steps can fluctuate, depending 
on the ways in which adatoms or vacancies are 
distributed and move across the surface. If the 

rium position, these fluctuations can eventually 
lead to a net motion of the overall position of the 
step edge. How the surface mass diffusion coeffi- 
cients, which are determined by this motion, are 
related to step properties has been discussed by 
many authors, mostly on the basis of heuristic 
arguments and in the context of the flattening of 
grooved surface profiles [2-41. Here we discuss 
the behavior of steps in a complete microscopic 
model, the solid-on-solid (SOS) model, with 
Monte Carlo kinetics. Our approach is first to 
study the equilibrium fluctuations of the steps 
(i.e., their “Brownian motion” 151) and then to 
use these fluctuations to try to understand the 
equilibration of step configurations which are ini- 
tially out of equilibrium. 
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Our primary motivation for looking at this 
problem is the advances in microscopy which 
make possible direct observation of step fluctua- 
tions (even at the atomic level!) [6-121. In this 
paper we show how an experimentalist might go 
about using these fluctuations to probe the atomic 
mechanism responsible for the flow of atoms 
which occurs during the evolution of surface mor- 
phology: we explicitly show how observations of 
step fluctuations can be used to deduce surface 
mass diffusion coefficients in one particular 
model, a simple solid-on-solid model in which 
atoms are constrained to move along the surface. 

For the simplest SOS kinetics, for which no 
special activation barriers to atomic motion are 
assigned to the step edge, we find that the adatom 
diffusion on the terraces controls how steps fluc- 
tuate and diffuse. This model certainly does not 
encompass all possibilities for surface diffusion. 
For example, if emission of atoms from the step 
edge is much slower than diffusion on the ter- 
races, the nature of the fluctuations of the step 
edge will be distinctly different. (This case is 
discussed in Refs. [1,13], and briefly below.) Thus, 
in a spirit very similar to experiments which de- 
termine mechanisms responsible for changes in 
surface morphology from examining the decay of 
sinusoidal surface groves [14], examination of step 
fluctuations can yield information about the 
mechanisms of step diffusion. The analysis of the 
special case presented in this paper gives an idea 
of what is possible from the careful interpretation 
of experimental data. 

2. The solid-on-solid model 

Fig. 1 depicts an SOS model [151 with a step. 
The energy of this system is defined by EC,, 1 hi 
- hj 1, where hi is the height of the surface at 
square-lattice site i, E is the nearest-neighbor 
bond energy, and the sum is over nearest-neigh- 
bor sites i and j. All of the present simulations 
were done at kT = 0.9~. This temperature was 
chosen so that the density of adatoms on the 
terraces is significant, yet well below the terrace 
roughening temperature (kT, = 1.2~). Periodic 
boundary conditions were used in the y direction. 

Fig. 1. A step in the SOS model at a temperature of kT = 0.9~. 
The concentration of vacancies and of adatoms on the ter- 

races is approximately 0.02/R. 

To introduce & steps, screw boundary conditions 
were used in the x direction: the height of the 
lattice at x = 0 was fixed to be N, sites above the 
surface at x = L,. All the surfaces considered 
had dimensions L, x L, = 60~ X 120~. 

The choice of kinetics is based on the desire to 
study processes dominated by surface diffusion. 
Accordingly, we assume that the energy barrier 
for an atom leaving the surface is much greater 
than the barriers associated with moving along 
the surface. Thus, we use the standard Metropo- 
lis Monte Carlo algorithm with the number of 
atoms conserved (i.e., with “Kawasaki dynamics”) 
[16]. The sites of the surface are chosen at ran- 
dom. At each iteration, a randomly chosen atom 
tries to hop to a random nearest-neighbor site. If 
the energy change of the lattice in making the 
hop is negative or zero, then the hop is made. If 
the hop increases the surface energy, the hop is 
made with the usual Boltzmann probability. All 
sites, including step edge sites, are treated equiv- 
alently. Thus, in the model being used, the activa- 
tion barriers for atomic diffusion are implicitly 
assumed to be the same for diffusion on the 
terraces and diffusion across and along the step 
edges. 

In what follows it is necessary to have some 
definition of the step-edge position x as a func- 
tion of y. Because of the possibility of overhangs 
along the step edges, this definition is not com- 
pletely trivial. The choice we make is analogous 
to the “Gibbs dividing surface” between two 

phases: for each value of y, the position of the 
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step separating a terrace of height na and a 
terrace of height (n + l>a is L, - N,+,(y)a, 
where N,, r(y) is the number of atoms (with 
specified y) of height equal to n + 1. At the 
temperature of the simulations, the resulting lo- 
cation of the step edge along column y is usually 
within a lattice constant or so of the position one 
would intuitively select. However, a difficulty with 
this approach is that a component of the step 
fluctuations is due to the fluctuations in the con- 
centration of adatoms on the terraces. Fortu- 
nately, as described below, this component is 
easily computed by considering the case with no 
steps. (Note, however, near and, of course, above 
the roughening temperature, when one does not 
really expect step positions to be accurately de- 
scribed by single-valued functions x(y), even this 
procedure breaks down.) These subtleties should 
not be important in analyzing experimental data: 
any other consistent choice of the location of the 
step edge would work as well [17]. 

3. The equilibrium fluctuations of a single step 
edge 

To characterize the fluctuations of the step 
edges, we follow Ref. [ll] and study the correla- 
tions in the spatial Fourier components of each 
step edge. Clearly, long-wavelength fluctuations 
of the step edge will decay much more slowly 
than small-wavelength fluctuations. The precise 
functional form of the dependence of decay time 
on wavelength provides a diagnostic of the nature 
of the processes important in determining the 
fluctuations, and ultimately the processes impor- 
tant for mass diffusion. 

The Fourier components x,(t) are defined by 

x(y, t) = Xx,(t) exp(iq). (1) 
4 

The correlation function we examine is 

G,(t-t’)=(lx,(t)--x,(t’)12)-G;(t-t’), 

(2) 

where Gi(t - t’) describes the fluctuations in the 
step-edge position caused by terrace fluctuations. 

Fig. 2 shows G,(t) for N, = 1 for several values of 
q, averaging over 10’ Monte Carlo steps per site 
(discarding the first lo6 for equilibration). On the 
basis of the analysis of the Langevin equations 
describing the extreme cases of completely ran- 
dom atom attachment and detachment at the 
step edge or completely random hops along the 
step edges, one expects G4 to saturate exponen- 
tially [13]: on time scales of more than a few 
changes, one should have 

G,(r) =A(q)[l - exp( - If l/T(s))]. (3) 

The dotted lines in Fig. 2 show least-squares fits 
to Eq. (3) with A(q) and dq) adjustable parame- 
ters for each q. Fig. 3 shows the A(q) and T(q) 
deduced from the fits (essentially identical results 
were obtained for N, as large as 5). The ampli- 
tudes A(q) depend only on the equilibrium fluc- 
tuations of the step edge. From general consider- 
ations 1181, one expects their size decreases with 
increasing step-edge stiffness 6 according to 

2kT 
A(q) = ___ 

L,Bq2 * 
(4) 

Fig. 3a shows the expected q2 dependence: from 
the amplitude we deduce that fi = 0.56kT/a. For 

Fig. 2. Time correlation function of the Fourier components 

of the step-edge position for a range of 4. As q increases, the 

initial slope (the inverse time constant T(q)) increases: the 
curve with the smallest initial slope has q = 87r/L,. On each 

subsequent curve, q increases by 2~/L,. 
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comparison, the terrace-step-kink (TSK) ap- 
proximation to the step-edge stiffness [19] is 

&SK = 
2kT 
-sinh’( e/2kT). 

a (5) 

At kT = 0.9~, /zfTSK = 0.68kT/a. Given that the 
TSK model neglects step-edge overhangs, ad- 
atoms, and vacancies, it is not surprising that it 
overestimates 6. (The more thermal excitations 
possible, the less stiff the step edge.) 

Fig. 3b shows the inverse time constant as a 
function of q for two different average terrace 
widths. If the step motion is governed by random 
attachment/detachment at the step edges, the 
time constant of the fluctuations T(q) should vary 

as 4 -2, for step-edge hopping T(q) should vary as 
qe4 [ll]. The extreme cases of q-’ and qe4 do 
not well describe the step-edge fluctuations! In- 
stead (as shown by the solid line) they are well- 
described by a qp3 law. 

4. The nature of step fluctuations when terrace 
dit3mion is slow 

We now discuss what the behavior of Fig. 3b, 
in particular the qe3 law, tells us about the 
mechanism of step motion. Motivated by the work 
of Mullins [20] and of Pimpinelli et al. [l], we 
suppose that the diffusion on the terraces is the 

Oi 
0.00 0.05 0.10 0.15 0.20 0.25 

W/2~ 

rate-limiting step in our model. This is reasonable 
because our model has no kinetic barriers to 
attachment at the step edge - the sticking coeffi- 
cient is large. 

To see what the consequences of terrace-diffu- 
sion-controlled step motion are, imagine a curved 
step in a uniform sea of adatoms, as schematically 
shown in Fig. 4a. Because of the positive bulge of 
the step edge, the step edge will emit adatoms (or 
absorb vacancies) so that it can become straighter 
and lower its free energy. If diffusion on the 
terraces is sufficiently rapid that the rate of emis- 
sion is not hindered by how fast the adatoms 
diffuse away, the step-edge curvature will quickly 
equilibrate, as described by the Langevin equa- 
tion discussed in Ref. [13], and as found [ll] to 
describe steps on Si(ll1) at 900°C. This process 
gives a relaxation time which varies as q-*, which, 
as mentioned above, is inconsistent with the 
Monte Carlo simulations. 

Suppose, however, that although the step edge 
can emit atoms or absorb vacancies very rapidly, 
atoms or vacancies can only slowly diffuse away 
from the step edge. In the situation of Fig. 4a, the 
concentration of adatoms near the step edge 
would increase, as seen in Fig. 4b, until the 
chemical potential change of an atom being emit- 
ted from the step edge is zero. From the Gibbs- 
Thomson equation, this occurs when cs, the con- 

Fig. 3. (a) The circles show the values of A(q) deduced from fits to the data in Fig. 2. The solid line shows the fits to Eq. (4), from 

which we deduce b = 0.56kT/a. (b) The dependence of the relaxation time r on wavenumber 4 for average terrace width 60a. The 
solid line is a fit to q3, As discussed in the text, the prefactor can be interpreted in terms of the diffusion coefficient D, for 

adatoms and vacancies on the terraces. The dashed and dot-dashed lines show fits to q* and q4, respectively. 
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Fig. 4. (a) A curved step in a uniform sea of adatoms will 
begin to straighten quickly by emission of adatoms. (b) If 
diffusion of adatoms on the terraces is slow, then the concen- 
tration of adatoms on the terraces will increase (as indicated 
by the darkened terraces) until the step nearly stops. Any 
subsequent motion of the step edge waits on the diffusion of 
adatoms away from the bulge. 

centration of adatoms near the step edge, reaches 
a value which depends on the local curvature of 
the step edge [20-221: 

c =c 
s 

__c .e!? 
0 0 kT ay* ’ (6) 

where co is the equilibrium concentration of 
adatoms, and 0 = a2 is the atomic area. (For 
vacancy concentrations, -0 replaces 0.1 

Any subsequent motion of the step edge is 
governed by the diffusion of the excess adatoms 
toward regions of lower chemical potential along 
or away from this edge. This problem was treated 
by Mullins [20,23] in the context of the decay of 
grooved surface profiles, and more recently by 
Bales and Zangwill[22] and Uwaha and Saito [24] 
in studies of step morphology during growth. Here 
we repeat these arguments, and then apply them 
to our results in Figs. 2 and 3. We should say at 
the outset that it is not obvious that an analysis 
based on macroscopic equations such as Eq. (6) 
should work well on the length scale of thermal 

fluctuations - comparisons with simulations of 
microscopic models are thus important. 

Imagine one started with a sinusoidal step 
profile: 

X(Y, f) =X&j cos(qY). (7) 

By Eq. (6), this form implies a concentration 
gradient of adatoms along and away from the 
step edge. We assume that local slopes of the 
step edge are always small, so that the concentra- 
tion field is essentially given by assuming that the 
concentration is co very far from the step edge 
and c,(y) along the line of the average step 
position (here taken to be at x = 0). Supposing 
the step edge to be the predominant source and 
sink of adatoms, V*c(x, y> = 0 away from the 
step edge. Because of Eq. (61, we have the bound- 
ary condition 

c(0, y) = co + coJ2;q*x, cos( qy). 

The solution to these equations for x > 0 is sim- 

PlY 

C( X, y) = co + cof2~qz~, ew( - I4 I x) 

xcos(qY). (9) 
The current of adatoms approaching the step 
edge is then 

2D,c,&2 
=- 

kT “’ 
Qq cos qy, (10) 

where Ds is the diffusion coefficient of adatoms 
on the terraces. The factor of two arises because 
the diffusion occurs away from both sides of the 
step edge. Thus, 

dx, 2 D,c,,&~ 
-=- 

dt kT 
1413x,. (11) 

This equation is completely deterministic, de- 
scribing the decay of existing fluctuations. How 
one adds (random) thermal fluctuations in the 
step-edge position is to a certain degree phe- 
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nomenological. We make a conventional choice 
which is mathematically simple and try to justify 
it in retrospect. First, we simply add a noise term 
Qt) to Eq. (11): 

dx,_ 2DSc,bf12 

dt - - kT 
Iq13Xq+r7Jt). (12) 

We assume that qQ(t) is random in the sense that 
it is uncorrelated in t and 4: 

b-lq(f)$‘(f’)) = ;mqt - V,,,~. (I31 
Y 

Given this choice for the form of the noise, the 
function f(q) is determined by the requirement 
that the equilibrium fluctuations are those speci- 
fied by equilibrium statistical mechanics. To be 
more precise, from Eqs. (12) and (13), it is 
straightforward to show [25] that 

<x&)x;@‘>> 

x ew)(T’+7) 
9 (14) 

where a(q) = 2D,c,@ I q I 3R2/kT. This is only 
consistent with the prefactor of Eq. (3) (which, 
again, is characteristic of the equilibrium struc- 
ture of the step edge) if 

f( 4) = 4D,c@’ I q I. (15) 

From Eq. (14) we recover Eq. (3), with the time 
constant [261 

kT 
7(q) =8(q) = 

2D,~,i2~p 1 q 1 3 ’ 
(16) 

The real-space Langevin equation associated 
with terrace-diffusion-controlled step motion, 
showing a “non-local” character of the rule- 
governing local step velocities, as well as the time 
correlations of the position of a single point on 
the step edge, is described in the Appendix. 

We are now in a position to interpret the fits 
of Fig. 3. If 7Mc is the Monte Carlo unit of time, 
then from the fits of 7-‘(q), we find 

2 DSc,R2b a3 
= 0.0070 - . 

kT 7MC 

(17) 

Using the estimate from Fig. 3a that /? = 
0.56kT/a, we thus conclude that 

0.0063 
c,D, = ___. 

‘MC 
(18) 

(Since the vacancies and adatoms are largely dif- 
fusing independently of each other because their 
density is low, c,, should be interpreted as the 
sum of the vacancy and adatom concentrations: 
by counting the number of defects on a step-free 
surface at our T = 0.9.s/k, we find that c0 = 
0.041/a2.) The accuracy of this estimate of the 
diffusion coefficient can be directly evaluated. 
For atoms hopping on a square lattice of sites, 
the diffusion coefficient is given by [271 D, = 
a2/4t,, where t, is the time between hops on the 
terraces. By observing that 2.4% of the surface 
atoms hop on a step-free surface during one 
Monte Carlo sweep (i.e., co/t, = 0.024/a2~,C), 
we thus deduce that Dsco = 0.0060/7,,. Given 
the many assumptions leading to Eq. (16), this 
level of agreement is satisfying! 

5. Case of fast terrace diffusion 

To provide some idea of the limits of the 
validity of Eq. (16), we now give an explicit exam- 
ple of its failure by modifying the kinetics of the 
Monte Carlo algorithm. A basic assumption lead- 
ing to Eq. (16) is that the rate at which fluctua- 
tions of the step-edge position decay (or are built 
up) is determined by the diffusion rate on the 
terraces. If the sticking coefficient for an atom to 
be incorporated into the step edge is sufficiently 
small, this will no longer be the case. If the 
thermal noise of attachments and detachments is 
uncorrelated, then it is easy to show [ll] that 

where 7, is the time between attachment/de- 
tachment events. 

To produce the crossover between Eq. (16) 
and (19) explicitly, we modified the Monte Carlo 
algorithm in the following manner: if a trial hop 
lowered the system energy, it was accepted with a 
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probability of l/10. Since an isolated adatom 
hopping onto the step edge typically lowers its 
energy, this makes the sticking coefficient s = 0.1 
[28]. To satisfy detailed balance, and thus not to 
change the equilibrium properties of the surface, 
the probabilities for hops which increased the 
surface energy (such as, for example, adatom 
emission from the step edge) were also divided by 
10. Trial atomic hops which did not change the 
surface energy were always accepted. Since most 
of the adatoms on the terraces do not change 
their energy during a hop, this means that one 
expects the diffusion constant D,c, not to be 
changed much - indeed, explicit computation on 
a step-free surface shows that D,c, has changed 
only from 0.0060/7,, to O.O056/r,c. The equi- 
librium averages have not, of course, changed at 
all with the change in kinetics: the amplitudes of 
the step fluctuations shown in Fig. 3a are identi- 
cal. 

To gauge the change in the nature of the step 
fluctuations with the change in sticking coeffi- 
cient, we define the step “mobility” by 

r, = +4(q)/2r(q). (20) 

For the case of diffusion limited by step-edge 
attachments (Eq. (19)), r, should be a3/r, inde- 
pendent of 9, while for the case of diffusion 
limited by atomic motion on the terraces (Eq. 
(16)) it should be linear in q. Fig. 5 compares the 
step mobility for the original and modified Monte 
Carlo algorithm. The dependence of r, on q has 
changed considerably: for the case with small 
sticking coefficient, r4 saturates to a constant 
value at large q. There are two points of quanti- 
tative interest in Fig. 5: 
(1) The saturated value of r, for the case s = 0.1 
is around 0.003a3/r,,. To check the consistency 
of this result with Eq. (19), we note that the time 
between changes in the step edge is twice the 
time between attachments, and the time between 
attachments is determined by the sticking coeffi- 
cient and the rate of collisions of adatoms and 
vacancies with the step. Thus, 

7,-r = 4sD,c,. (21) 

Using the directly determined values of D,c, and 
Eqs. (41, (191, and (201, Eq. (21) gives a value of 

0.00 0.10 0.20 

qo/2n 

0.30 0.40 

Fig. 5. The 4 dependence of the step mobility r, defined in 

Eq. (20). This dependence shows how the fundamental nature 

of step fluctuations changes when the rate-limiting process 

changes from terrace diffusion to step-edge attachment. The 

upper curve (circles) is for the diffusion-limited case of Fig. 

3b. The lower curve (crosses) is for the case when the sticking 

coefficient at the step edge is roughly l/10. As discussed in 

the text, the saturation at large 4 of the lower curve is 

characteristic of step-edge attachment-limited fluctuations. 

r, of 42Or,, and of r, of around 0.002a3/~,,, 
roughly consistent with Fig. 5. 
(2) For the small-sticking-coefficient case, I” only 
saturates when qa/2rr is greater than around 
0.1. This is roughly the q at which the fluctua- 
tions determined by the local attachments of Eq. 
(19) are slower than fluctuations determined by 
the diffusion field given by Eq. (16): equating the 
two time constants and using Eq. (21) gives the 
expected crossover wavenumber as q CTOSSOVCI a/277 
= (2/7r)s = 0.064 [29]. 

6. Simulations of step diffusion 

To probe surface mass diffusion, we used the 
simulation to study the following situation. We 
started with a non-equilibrium configuration of 5 
straight steps (N, = 5) with nearest-step separa- 
tion of 6 lattices spacings (Fig. 6a). Because L, is 
60 spacings, the equilibrium spacing is 12a. Thus, 
as time progresses the steps diffuse apart (see 
Figs. 6b and 6~). The jagged lines in Fig. 7 show 
the time dependence of the average step-edge 
positions (averaged over 20 distinct runs>. The 
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Fig. 6. Sample configurations of the surfaces used to study 
step motion. (a) The initial configuration of 5 steps separated 
by 6 lattice constants. (b) The surface after lo6 Monte Carlo 
steps per site. (c) The final configuration after 3~ 10h 
MCS/site. 

question is, can we understand this motion on the 
basis of the results of the preceding section? 

Since we have found that the fluctuations of 
the steps are limited by slow terrace diffusion, 
one might suspect that the theory of Rettori and 
Villain [2] for the evolution of surface morphol- 
ogy is appropriate. We thus work out the predic- 
tion of this theory for our case. 

Rettori and Villain make the assumption that 
a chemical potential can be associated with each 
step edge. This chemical potential is determined 
by the size of the neighboring terraces. If the 
chemical potentials are different for neighboring 
steps, that is if the surface is curved, there will be 
a flow of atoms across the intervening terrace. If 

this flow is determined by the diffusion rate of 
the atoms on the terraces, then Rettori and Vil- 
lain show that the current from the nth to the 
(n - 11th step is given by (in their notation) 

L, = -K(P,, - LJ/L (22) 
where 

D.. cn 
K= -2-Y 

kT . (23) 

and 1, is the width of the terrace between steps 
(n - I1 and II. (As an aside, it is perhaps worth 
repeating here that in the continuum limit this 
equation reduces to Mullins’ classical equation 
describing surface self-diffusion: 

D,c, Q 
j(x) = -FC. (24) 

Eq. (24) assumes that surface mass diffusion is 
limited by terrace diffusion - if there are large 
kinetic barriers associated with step-edge attach- 
ment/detachment, this equation will not be cor- 
rect [18,30], leading to values of D, which vary 
with the average terrace width (1).) 

Assuming the dependence of the projected 
surface free energy per unit area, f, on a surface 
with average terrace width (I > takes the usually 
assumed form for a vicinal surface [31]: 

P(T) g(T) 
f(T, (1)) =f”(T) + (I) + (1>3’ (25) 

20 40 60 
step position 

Fig. 7. The fluctuating lines show the time dependence of the 
average step position of the process shown in Fig. 6. The 
smooth lines show the predictions of the theory of Rettori and 
Villain [2]. 
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the chemical potential is 

(Again, in the continuum limit, this equation re- 
duces to the standard Gibbs-Thomson formula.) 
For our steps with only entropic and no energetic 
interactions between them, we expect 1317 

r2 (kT)’ g 
a----* 

6 6 

The velocity of each step edge is then 

(27) 

These equations can be easily integrated numeri- 
cally. Fig. 7 shows the result, choosing the value 
of Qc, to best fit our observations. The pre- 
dicted functional form agrees well with the simu- 
lations. The result 

Qc, = 0.006/r,, , (29) 

in excellent accord with what we deduced in Eq. 
(18)! Thus, aithough the do-dimensional fluctua- 
tions of the steps are essential to their motion, a 
one-dimensional calculation in which the driving 
force is the entropic interactions between steps is 
sufficient to describe their motion. 

7. Conclusions 

First, the fluctuations of the steps in the SOS 
model with Monte Carlo kinetics are governed by 
a different mechanism from the extreme cases of 
random adatom emission and of hopping along 
the step edges, discussed in Ref. Ill]. The wave- 
length dependence of the step fluctuations sug- 
gest that diffusion on the terraces dominates 
morphological changes. We have explicitly shown 
that the simple change of reducing the sticking 
coefficient at the step edges to l/10 (i.e. incorpo- 
rating a higher activation barrier for step-edge 
attachment than for terrace diffusion) changes 
the nature of step fluctuations qualitatively. 

The case considered here is perhaps the sim- 
plest in the sense that the kinetic properties of 
the steps do not play much of a role in the 
evolution of the surface morphology: the surface 
mass diffusion coefficient is simply the terrace 
adatom diffusion coefficient. It gives, however, a 
complete example of how mass diffusion coeffi- 
cients can be deduced from observations of step 
fluctuations and be used to predict the rate of 
changes in surface morphology. For instance, the 
situation described in Section 6 is directly rele- 
vant to the unfaceting of surfaces or to the decay 
of metastable (artificially prepared) structures on 
surfaces. As an example of the former, we men- 
tion recent scanning tunneling microscopy experi- 
ments on the unfaceting transformation of 
stepped Ag(ll0) [32]. When exposed to oxygen, 
these surfaces break up into regions of bunched 
steps and large (110) terraces. Examination of the 
terrace-width distribution of the unbunched steps 
suggests that, as in our model, the interaction 
between steps has a large entropic component 
[33]. Exposure of the surface to CO reverses the 
faceting by removing the oxygen: the entropy of 
step wandering presumably drives the steps back 
to fill the large (110) terraces. If the rate-limiting 
step in such processes is diffusion of Ag atoms 
across the terraces, then comparison with the 
results of Eq. (28) could directly yield estimates 
of diffusion constants, which could be compared 
with parallel observations of the attachment/de- 
tachment processes at the step edges. 
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Appendix 

For the sake of comparison with the equations 
in Ref. [13], we here: (1) write down the real-space 
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Langevin equation for the process described in 
Section 4, and (2) derive the equation governing 
the fluctuations of one point on the step edge. 

(1) Converting Eq. (12) to real space, we find 
that 

ax 4D,~,p"f2~ m a2x 

at=- kT 1 -I -may2 $j 

x b2-_(Y-YfJ2 
[b2+ (y _y,)21zdy’+?l(Y1 f), (30) 

where b is a convergence factor on the order of a 
lattice constant. Thus, the local velocity of the 
step edge depends on the curvature of the step 
edge over a range of y, a manifestation of the 
couplings in the vibrations in the step edge caused 
by the diffusion field of adatoms. The weighting 
function is strongly peaked at y = 0, becomes 
negative, and then becomes small as y becomes 
large. The form of this function reflects the fact 
that for attachments to occur to lower the step 
free energy, they must deplete the adjoining sea 
of adatoms, making motion of adjoining regions 
of the step edge more difficult. This process is 
also evident in the correlations of the noise im- 
plied by Eq. (13): 

(77(Y, t)q(Y’> t’)> 

= 8D,c,R2 
b*-(y-y’)2 

[h2 + (Y -Y,)*]26(f - l’). (31) 

(2) The expression for the mean square dis- 
placement of a single point on the step edge is 
obtained by summing (x,(t)x~(O)) over 4: in the 
limit of L, very large this sum leads to 

((.X(t) -x(o))*) 
LY x =- 
27T !-P(4) 

[l - exp( - It I/T(~))] dq. 

(32) 

13) and (161, this gives Substituting Eqs. f 

((x( t> -4W2) 

4 kT 2/3 

i i 

l/3 
= 

fir(1,3) p (2wof12t) . (33) 

This t’j3 divergence is intermediate between the 
t ‘I2 divergence expected for adatom-attachment- 
limited fluctuations and the slow t ‘I4 divergence 
associated with step-edge hopping 1121. 
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