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Using the embedded atom method (EAM) we compute the energies of principal steps, kinks, and single-layer clusters of 

adatoms (islands) and of vacancies for Ag{lOO) and Ag(ll1). The energies are semiquantitatively consistent with experiments. 

Comparisons are frequently made with estimates based on nearest-neighbor bond counting. On Ag{lll) and Pt(ll1) the ratio of 

the energies of the two close-packed steps is closer to unity than measured in experiments on Pt. The energies of clusters arc 

essentially proportional to their perimeter, providing an easy way to estimate the binding energy of clusters to step edges. 

Adatom-vacancy symmetry is a good approximation except for single-site defects. Our calculations of barriers for single-atom 

diffusion near steps, compared to across terraces, are consistent with the fractal-like fingered growth of islands experimentally 

observed on (111) but not seen on (100). Computed spring constants of surface atoms suggest small changes in perpendicular 

vibration frequencies near step edges. 

1. Introduction 

Given the many recent experimental investiga- 
tions of vicinal surfaces, it is of particular timeli- 
ness and interest to compute the microscopic 
energies which characterize such systems: the en- 
ergies of steps, kinks on the steps, clusters of 
adatoms or vacancies on terraces, interactions 
between kinks or between steps, etc. Such ener- 
gies are useful to check one’s understanding, to 
guide the choice of material to achieve certain 
properties, and to parametrize general models. In 
the latter context, statistical mechanics models of 
vicinal surfaces invariably make simplifying as- 
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sumptions about the energetics; many of these 
assumptions have never been systematically 
tested. 

Because of the low symmetry of these prob- 
lems, it is very difficult, if not impossible, at this 
time to compute these energies from first princi- 
ples. For late transition and noble metals, the 
semiempirical embedded atom method (EAM) [ 11 
has provided an approximate way to calculate 
total energies from a local standpoint. The scheme 
has successfully accounted for a number of sur- 
face properties including surface phonons [2-41, 
surface diffusion [5-81, shapes of adsorbed clus- 
ters [9], and reconstruction [lO,lll. While its as- 
sumptions become less reliable when the coordi- 
nation of atoms is much lower than in the bulk, it 
has generally proved to be a tenable approach, 
particularly for late transition or noble metals, 
and accordingly has won great popularity. 
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Specifically, in EAM one computes the total 
energy of a system of metal atoms using the 
Ansatz 

Here pf is the spherically averaged atomic den- 
sity of the jth atom (obtained from a parametri- 
cally weighted sum of s-type and p-type Hartree- 
Fock wave functions), Fi is the embedding func- 
tion of atom i in the linear superposition of the 
tails of its neighbors, and (p is the Coulomb 
interaction between electronic cores. Except 
where stated otherwise, we took our Fi’s from 
Foiles, Baskes, and Daw’s “Universal 3” set 
(FBD-U3) [12J. Our computations used the en- 
ergy minimization portion of the “DYNAMO” 
code (version 7.6) to compute energies at zero 
temperature. A major weakness in using standard 
EAM for this sort of problem is the neglect of the 
large gradient in the charge density near the 
surface. (The procedure to include gradient cor- 
rections has been derived formally 1141 and im- 
plemented computationally for Au{1 101 [I 11.1 All 
in all, our results should be regarded as semi- 
quantitative: better than “ballpark estimates” but 
not reliable within say 10% of actual energies; 
inclusion of gradient corrections would probably 
improve the estimates but not affect general 
trends. However, trends characterized by energy 
differences between configurations of less than 
say 5% may well be questionable. (In fact, in our 

analysis of the trends in the energetics of pat- 
terned growth of vacancy and adatom clusters in 
section 4, we often ignore such small differences 
between similar steps and characterize a family of 
such steps by their average change in energy.) 

In the present study we apply EAM to Ag 
surfaces vicinal to the {lOO} and { 111) planes 
(with occasional digressions to Pt). After dis- 
cussing formal definitions (section 2.1) and com- 
putational approaches (2.2), we present the ener- 
gies of steps (2.3 and 2.4) and kinks (2.5), col- 
lected for convenience in table 1. We proceed to 
consider the shapes of Pt islands (2.6) and the 
possible propensity to step doubling (2.7). In 
studies of clusters of adatoms or vacancies on 
such surfaces (section 3), we find that their ener- 
gies, at least in the EAM framework, depend on 
the perimeter of the cluster, almost exclusively on 
its length and marginaily on its shape and orien- 
tation; a nearest-neighbor bond picture accounts 
quite well for most of the properties of these 
structures, as well as the step and kink energies 
mentioned above. Our results are consistent with 
the independent findings of Wolf [151, who pa- 
rameterized the contributions of nearest and 
next-nearest neighbor energies to the surface en- 
ergies of 85 different free surfaces of Au. With a 
bond energy u = 10’ meV, the bond-counting 
idea provides a good first estimate. On the other 
hand, the bond energy that best reproduces the 
precise @AM) energies depends somewhat on 
the face and/or the average coordination in the 
problem. (Moreover, it is widely recognized [16,17] 
that the bulk cohesive energy is severely underes- 

Table 1 
The step energies and kink energies calculated for the five common steps on AgWO] and Ag{lllI surfaces, using EAM 
“Universal-3” (FBD-U3f functions [12] 

Terrace Microfacet Name Step axis Step energy, /3 Kink energy, c (meV) 

(100) a) 1111) Straight [oiii 10% 105 [u ] meV/a 1 102 [ul 

000) Jagged [OOll 201[2u] meV/(a,&) 
{Ill] bf {loo] A, straight 10111 188 (222) [2u] meV/at 102 [VI 

IllI] {ill] B, straight [ii01 190 (226) (201 meV/q 991ul 
Ill11 Simplest jagged fizi] 191[2u] meV/ta,vrj/2) 

Parenthetical values were computed using Voter-Chen functions [13,22]. Values in brackets are the energies in a nearest-neighbor 
bond picture, with u the nearest-neighbor bond energy. The nearest-neighbor spacing, a,, is 4.09 A/ fi = 2.89 d;. 
a) (lOO)fO =flm = 366 (459) [4u] meV/at (ref. [71). 
b, {lll]f, -fr,r = 279 (419) 13~1 meV/(a@/2) (ref. [7]). 
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timated by the bond energy appropriate to sur- 
face problems.) In several of the tables of EAM 
results, we also include the estimates based on 
bond-counting. As an intermediate between the 
simplest bond-counting picture and the full calcu- 
lation for clusters, we developed sets of rules 
which can be applied to predict the energy of a 
randomly selected adatom or vacancy configura- 
tions. We discuss implications for describing the 
statistical mechanics of these metals with lattice- 
gas models (section 3.5) and for estimating the 
binding of islands to steps (3.6). Again, a particu- 
larly intriguing problem, for which bond-counting 
is inadequate, is the ratio of the energies of the 
two kinds of straight steps, called A and B, on a 
(111) surface (2.6). On Pt B is preferred over A 
decidedly in experiment and marginally in EAM; 
for Ag, EAM favors A marginally. 

The final portion of the study concerns poten- 
tial barriers to diffusion of adatoms and vacancies 
on Ag{lOO} and Ag{lll} (section 4) and calcula- 
tions of the ratios between spring constants of 

adatoms vibrating perpendicularly to terraces 
near and far away from steps (section 5). We 
compare our potential barrier results to those 
from Voter’s dynamical simulations [131. We study 
how diffusion across terraces compares with dif- 
fusion near steps. In considering vibrations we 
used only static models and thus computed only 
theoretical spring constants for adatom motion 
normal to the surface; nonetheless, the ratios of 
these constants are useful for comparison with 
other calculations and possible observations. In 
the final section (61, we offer some closing re- 
marks about our findings and open issues. 

2. Steps and kinks 

2.1. Formal background 

As we shall see shortly, the precise meaning of 
step energy is not so unambiguous as it seems for 
simple surfaces. Thus, we begin with some formal 

Fig. 1. Portion of a (3, 2, 16) surface, vicinal to an fee (OOl), to illustrate the formal discussion in sections 2a and 2b. The 

vicinal-surface and terrace normals are ri = (3, - 2, 16)/ \/269 and A, = (0, 0, 0, respectively. The polar angle 6 (with respect to 
the (001) direction) is cos-‘(16/m), while azimuthal angle 0, indicating how much ri is rotated around G,, away from the 

vertical border on which 4a is marked, is clearly arctan(l/5); tan c#+ = tan C$ cos 0. Since h is a /a, where a, is the 

nearest-neighbor spacing, the mean distance ! (in a terrace plane) between steps is a,/(6 tan 4) = 8 2/13a, = 3.138a,. While e 
the average distance from one step to the next along a principal, (110) direction looks like 3.5a,, it is in fact a,/(& tan &,,) = 3.2a,. 

The “projected area” of this surface segment, used to compute the surface free energy f, is the size of an (001) layer: 

20a, x 17a, = 340a:; the width W is 20a,. 
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definitions, which we illustrate in fig. 1. For vici- 
nal surfaces, tilted by an angle # from a Iow-in- 
dex face, we consider the surface free energy per 
unit projected area f(f#+ T) (the projection being 
onto the low-index plane of the terraces); in 
particular, f(q5, T) can be expanded with respect 
to the (average) density of steps [18,191 

+g(T)ltan bj13. (2-l) 

In this equation the first term is the surface free 
energy per unit area of the terrace orientation. 
The average density of steps (i.e. the inverse of 
their mean separation) is I tan 4 I/h, where h is 
the step height. In the second term /3(T) is the 
free energy per unit length of step formation. The 
third term is a step interaction term, about which 
we shall say little in this paper. We emphasize 
that in order for p to be well defined, one must 
specify clearly what constitutes the step and so, at 
least implicitly, specify the orientation of the ter- 
races between the steps, i.e. the orientation onto 
which areas are to be projected. To highlight this 
assertion, we consider the (311) face of an fee 
crystal. This surface can be viewed as vicinal to 
either (111) or (100) [20], with the terrace for one 
orientation being the riser for the other, and vice 
versa. We find that what we call p is almost twice 
as large when the surface i$viewed as vicinal with 
respect to (111): a6 meV/A with respect to (111) 
versus 40 meV/A with respect to (100). 

Vicinal surfaces whose steps have periodic 
kinks can be produced by certain combinations of 
polar and azimuthal rotations, as shown in fig. 1. 
Such individual kinks are the lowest-order excita- 
tion of the stepped surface and lead via the 
wandering (diffusivity) of the step to the decrease 
in its free energy at finite temperature. (See 
section 2.6 for an appli~ation.~ At zero tempera- 
ture, the energy of the surface becomes 

f(+,, e) =fo + y( p(0) + i tan 0). 
(2.2) 

Here 0 is the azimuthal angle between a periodi- 
cally kinked step and a principal axis, & the tilt 
angle about this direction, and b is the spacing 
between rows of the surface perpendicular to the 
step edge, so that the mean (1 -d) density of 
kinks along a step edge is b-r tan 6; E is the 
additional energy contributed by an individual 
kink. It is, of course, more usual to express f in 
terms of the polar angle (b between the surface 
normal and the terrace normal; then 

f(+, 0) =fa+ y[p(O) cos f?+ i sin 01, 

(2.2’) 

the bracketed term being reminiscent of Kossel 
crystals (i.e., just nearest-neighbor interactions) 
[21]. In the general case the “side” of the kink, 
i.e. the excursion away from the step direction, is 
not perpendicular to this direction. 

2.2, Computational approach 

In an actual computation, we first consider a 
thick flat rectangular slab consisting of .&‘a = NL 
atoms, with two opposing faces oriented in a 
high-symmetry direction {viz. {100} or { 111)). Each 
face, and each of the L - 2 interior layers, con- 
tains N atoms. Periodic boundary conditions are 
applied in the other two directions, and some of 
the central layers may be frozen in bulk positions 
relative to each other. From the total energy of 
this flat slab gr,, we calculate the surface energy 
per area, fO, using 

gfl - NflEbuk = 2A,f0, (2.3) 
where Ebuik is the bulk energy, specifically 
-2.8&Y eV for Ag, and A, is the area of each 
side of the flat slab, i.e. N times the area of a 
unit cell on the surface. (While the driving pack- 
age lists automatically the embedding energy of 
each atom, it is the totai energy that is the most 
important physically as well as the least depen- 
dent on user choices, Nonetheless, these energies 
of individual sites can sometimes prove helpful in 
checking physical ideas.) 

To compute the step energy, we next consider 
either slabs having high-MilIer-index planes top 
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Fig. 2. Example of a groove on a {loo) surface, used to 

compute the energy of straight steps. The right side has an 

added indentation, used to compute the associated kink en- 

ergy. The top layer is a lighter shade to improve clarity; all 

atoms are the same. Note that the projected area of this 

surface is identical to the corresponding flat (ungrooved) 

surface; likewise, the projected length of both steps is the 

same. 

and bottom, with periodic arrays of steps relative 
to the closer-packed terrace planes, or the earlier 
slab with wide, single-layer height grooves of 
atoms removed to create step and “antistep” 
pairs on one side, as illustrated in fig. 2. (Typi- 
cally the opposing, ungrooved surface and a few 
layers in from it are “frozen” in their bulk config- 
uration in this case. The distance over which the 
atoms are frozen need not exceed the cut-off 
distance for interatomic interactions.) 

For most theoretical calculations of statistical 
properties of vicinal surfaces, the {loo} simple 
cubic lattice is chosen. Also, this lattice surface is 
almost always used in illustrations of stepped, 
kinked, or rough surfaces; accordingly, its special 
simple properties color much of our thinking. For 
this simple case, it is relatively easy to find the 
step energy, since the riser does not affect the 
projected area. Then the step energy per unit 
length /3 is just the excess energy of the stepped 
slab &YSt compared to 8a of the corresponding 
“flat” one, divided by the total number of steps 
%, and by the length of one of these steps, 
typically the width W of the slab. To estimate p, 
one could take the surface free energy per area 
of a plane with the orientation of the riser and 

multiply by the distance d across the riser, where 
here d is just h, the step height. Corrections 
would come from the upper and lower right-angle 
“creases” and relaxations near the step. 

In general the step riser planes connecting 
atoms at the top and bottom “creases” of a step, 
i.e. the microfacets associated with the step, will 
not be perpendicular to the terraces. Neglecting 
contributions from the creases and relaxation, the 
step energy can again be readily estimated. Again 
one starts with the free energy per area of the 
microfacet of the riser, multiplied by d. Reminis- 
cent of an awning shading a smaller area beneath 
it, the step removes some of the lower terrace 
plane, so one must subtract the free energy asso- 
ciate with this lost area along the terrace, i.e. the 
free energy per area of the terrace plane times 
the projection of d onto the terrace plane, i.e. 

m. For example, consider a step in a 
square-lattice principal direction on a (100) fee 
crystal. (Cf. the straight parts of the steps in fig. 
1.) The riser is a (1 ll} microfacet. Denoting the 
nearest-neighbor spacing aI, we see in this case 
that d = a,(6/2) and h = a,t6/2>, so that the 
projection of d is ;a,. Then 

(2.4) 

where ho and h are the f,)‘s for {loo) and 
(111) planes, respectively. In the example of the 
(311) surface cited above, both the contribution 
from the microfacet and the subtracted contribu- 
tion from its projected area times the terrace 
energy differ depending on which plane is chosen 
as the terrace, i.e. to which orientation it is vici- 
nal. 

Another common, natural way of discussing 
the energy of a step is to focus on the net change 
in number of nearest-neighbor bonds due to its 
presence. This “changed-coordination” energy is 
independent of the choice of terrace orientation. 
In this bond-atom perspective the terrace depen- 
dence comes from an additional term due to the 
need to treat more atoms as being surface atoms, 
so that there is an “excess surface area”. This 
approach is applied below to account for the 
principal step energies. (For estimating energies 
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and gaining insight, the preceding “awning” 
method is more straightforward and usually more 
accurate.) 

To compare with a flat slab, it is simplest to 
use a stepped surface, vicinal or grooved, with the 
same projected area; then no adjustment is 
needed to normalize the area of 8’s’,t relative to 
gfl, so that 

(for A,,ri *A, =A,), (2.5) 

where it and li,, are the orientations of the vicinal 
surface and the terrace, respectively. (Cf. fig. 1.) 
The area of a face of the vicinal surface and the 
number of atoms in the associated slab are de- 
noted A,, and Cyst, respectively, with A,$ -A, 
the projected area. (For a grooved surface, the 
projected area is the same as the flat surface by 
construction.) The right-hand side of eq. (2.51, 
then, is the “excess energy” due to steps: the 
product of the total number, their energy per 
length, and the slab width. Notice that Ebulk 
serves as a sort of chemical potential for atoms. 
In the general case for unkinked steps, we first 
find f0 from eq. (2.3) and solve for p in 

qt - “G &“lk - 2f,A,,ri ’ ii, = Y&pw. (2.6) 

In computing the kink energy E, we encounter 
analogous subtleties to those discussed above for 
the step energy. Again we must assure that, when 
subtracting the energy of a stepped, kinked slab 
from one with straight steps, any differences in 
(projected) length along the step edge direction 
are multiplied by /3 and included in the differ- 
ence: the kink energy is the correction to the 
energy per projected length of the step. Again, 
these issues are minimized by working with a 
grooved surface, now with an indentation as in 
fig. 2 or a similar protrusion toward the center of 
the groove. 

For vicinal surfaces, the case of primary inter- 
est here is simple, unit (perpendicular excursion 
by b) kinks spaced regularly along an otherwise 
straight step of nearest-neighbor atoms. If the 
straight segments are ma, long (between the end 
of a simple kink and the start of the next), then 
because of the periodic boundary conditions the 

excess energy of the step will be an integer (viz. 
the number of segments) multiple of Cm + y)a,P 
+ E, where y is 0 for {lOO] and i for (111). Then 
the generalization of eq. (2.6) amounts to com- 
puting the left-hand side of this equation and 
dividing by the number of kinks on both sides; 
the result is Cm + -y)aI/3 + E, where p is taken 
from a calculation with unkinked steps. In this 
procedure the kinks should be sufficiently sepa- 
rated that their interactions do not contribute but 
close enough so that uncertainties in p from 
straight steps do not obscure the value of E. 
Finally, it is crucial that the slab has periodic 
boundary conditions in the two directions of the 
vicinal surface. For high-index orientations, this 
requirement necessitates slabs with large areas 
A,,. (E.g. the illustrative portion in fig. 1 fails this 
test: while casual inspection might suggest there 
are 5 steps, with 4 kinks per step, there actually 
are 21 kinks on this portion. The area of the 
minimum acceptable slab is nearly three times as 
large, with a 4 x 15 array of kink apexes. Also, its 
bottom side is parallel to the top, so stepped and 
kinked as well.) 

2.3. Steps on Ag{lOO} 

In the simplest approximation (Kossel crystal), 
the loss of 4 nearest neighbors relative to bulk for 
each atom on a (100) surface (and so 4 bonds, 
each with energy u> leads to the estimate of the 
surface energy per area floe as 4v/a:. In our 
computation for Ag{lOO] we find that the floe = 
366.5 meV/af = 366.5 meV/(4.09 A/ 6)’ = 43.8 
meV/A2 = 702 erg/cm2 = 0.702 J/m2. On this 
relaxed surface, the first layer spacing has de- 
creased 2% from the bulk value. For a truncated 
bulk lattice, this surface energy would be only 
0.7% larger: relaxation reduces fioo by less than 
l%! Our value of floe is identical to that (viz. 702 
erg/cm21 reported by Liu et al. [7] using AFW 
(Adams-Foiles-Wolfer [51) EAM functions quite 
similar to the FBD-U3 potentials we used (with 
which FBD [121 had computed 705 erg/cm2). 
With VC (Voter-Chen [13,221) functions, they [7] 
found floe to be 25% larger. The main difference 
between the Sandia functions (AFW and FBD- 
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U3) and the VC functions is that the latter in- 
clude experimental data for diatomic molecules 
in the fitting procedure [7], there is no reason to 
believe that they are better - or worse - for the 
present problem, and the disparity gives some 
feeling for the absolute errors in this sort of 
calculation. We do emphasize that both kinds of 
functions give the same semiquantitative trends 
and physics. Moreover, all the EAM values for 
surface energies are substantially lower than ex- 
perimental numbers; this well-known shortcom- 
ing can be ameliorated with gradient corrections 
[ll]. For purposes of comparison, note that Todd 
and Lynden-Bell [23], using the simpler Sutton- 
Chen model potentials [241, computed fro0 = 62 
meV/Az. 

In this study we consider two types of steps on 
Ag{lOO}. The straight steps proceed along - and 
can be formed by rotations of the (100) surface 
around - (Oil), the principal axes of the square 
surface net. The Miller indices for such surfaces 
are of the form (2n + 1, 1, k 11, where crests or 
bottoms of neighboring steps are ( = (n + 1/2)a, 
apart along the terrace direction [27,281, i.e. 

a,/[( n + 1 2 + 1 2 apart. The second is the / )* / I 
lowest-order jagged step on (100) whose axes of 
rotation are oriented at angles of 45” to the 
principal axes, with Miller indices (n + 1, 1, 0). 

To evaluate the step energy, it is easiest to use 
a {loo} slab from which a broad single-layer 
groove of atoms was removed, creating a step and 
an antistep, which in this case is identical to the 
step. (Cf. fig. 2 without the “indentation”.) He!e 
we found p to be 102.2 meV/a,, or 35.4 meV/A. 
From a calculation on a (711) slab, we deduce a 
step formation energy that is 2% greeter: p = 105 
meV/atomic spacing, or 36 meV/A. (With VC 
functions, we found p = 135 meV/a,.) This con- 
figuration is an example of the non-perpendicular 
risers discussed above. If we use the awning ap- 
proximation of eq. (2.41, referring to the next 
subsection for f, iI, we would estimate p to be 
v/al for the Kossel crystal and 96 meV/a, with 
our computed fO’s. 

From the bond-atom perspective, there is a 
net gain in surface coordination of the atoms at 
the step of + l/atom (compared to the coordina- 

tion of surface atoms, viz. 8); - 1 for the atom at 
the top of the step and t-2 for the atom at the 
bottom. If this were the only consideration, @a, 
would be -u! If we associate a square unit cell 
with each atom at the top and the bottom bend of 
the step, the squares from top and bottom would 
overlap a distance b minus the projection of d 
(see eq. (2.4)), i.e. ib = $a,. Next, we must choose 
a calculated quantity from which to evaluate u. 
Using the surface energy of the microfacet (so 
L: = 93 meV), we get 

(2.7) 

with a value of 90 meV/a ,. Had we chosen to 
evaluate u using the terrace free energy (so u = 
91.6 meV), we would have found /3100_str = 
f,ooa,/4 = 92 meV/a r. Either way, the awning 
viewpoint of eq. (2.4) gives a better estimate. The 
fact that the changed-coordination reduces p from 
183 meV/a, has the interpretation that the riser’s 
{ill} microfacet has lower surface energy than 
the terrace. 

From a (710) slab we found that the energy of 
the jagged step is p = + 201 meV/ (apex) atom, 
or 50 meV/A. This energy per length is essen- 
tially fi larger than for straight steps, consistent 
with the excess energy coming from links along 
the edge, with insignificant contributions from 
corners. There is a slight decrease in energy from 
strict counting of links: a 6 X 6 defect “island” 
has excess energy 2.4463 eV, while if the defect 
has a diagonal edge (21 missing atoms but the 
same perimeter), the excess energy is 2.4443 eV. 
Presumably this negligible difference is due to 
minor relaxation effects. We will later see that c 
is also + 102 meV for (loo}, to within small 
corrections which can be taken as the result of 
relaxations at the kink site. 

2.4. Steps on Ag{lll} 

The close-packed face of Ag is the most stable 
facet. With 3 lost bonds per surface atom, a 
Kossel crystal has f,,, = 3~~/[(fi/2)a*l. In our 
EAM calculation f,,, = 279 meV/[(&/Z)af] = 
39 meV/A’ = 617 erg/cm’. (This result is again 
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Fig. 3. View of an island (as in fig. 2, shown in a lighter shade 
strictly for clarity) on a {ill} surface. At the top and the 
bottom are the straight, close-packed A ((llO)/{lOO)) and B 
((llO)/{l 11)) steps, respectively. At both sides is the jagged 

step, consisting of alternating A and B links. 

consistent with earher calculations with FBD [12] 
and AFW [7] functions; with VC functions, f0 is 
30% larger [7]. Also, in the calctdation [23] using 
Sutton-Chen potentials, the energy decreased by 
7% from the {lOO} value, compared with our 11% 
decrease.) 

Since the second layer reduces the &fold sym- 
metry of the top layer to 3-fold symmetry, two 
types of straight steps can appear. Specifically, 
rotations around one of the three (Ol?) direc- 
tions produce steps of the type pictured at the 
upper island edge in fig. 3: atoms along the 
bottom of the step riser are located in positions 
directly opposite the atoms along the top of the 
step edge, with a (100) microfacet; accordingly, 
they have been labeled (llO>/{lOOf 1251 or sim- 
ply A [26]. The Miller indices of such surfaces 
have the form (n + 2, n, n) [27,28]. The distance 
e in the terrace plane between adjacent steps is 
(n + ~)a,(fi/2). (Note, however, that for n even, 
the surface is conventionally labelled (n/2 + 1, 
n/2, n/2).] For A steps, d =a,; since h = 

(fi/3)a,, we find the “awning” estimate (cf. eq. 
(2.4)) to be 

PA%3 f ( 100 
-Jsf 

3 111 al- 
l 

w-9 

For a Kossel crystal PA is then 2v/u,, while with 
our evaluations of the fo’s we could estimate PA 
as 180 meV/a,. Our caicu~ation shows the energy 
of this. type of step is + 188 meV/a,, or 65 
meV/A. (With VC functions, we find this step 
energy to be 222 meV/a,. With Sutton-Chen, it 
is 174 meV/a, [29].) 

From fig. 3, one can see that the ordination 
numbers of the atoms along the top and bottom 
edges are 7 and 10, respectively. Since the coordi- 
nation number of a terrace atom is 9, the step 
produces a net loss of one nearest-neighbor bond 
per atomic spacing, i.e. a contribution to p of 
u/al. Since the overlap distance is b/3, the “ex- 
cess projected area” per a, is (1/3Xfia,/2). 
Repeating the choices made in reaching eq. (2.71, 
we find 

PA= 
i 
~floo + Ef 

6 111 al, 1 
which leads to PA = 185 meV/a,, closer to the 
EAM value than the evaluation of eq. (2.8). Had 
we used the terrace energy to get U, we would 
have obtained flA =j filla,/v% --) 186 meV/a,. 

Finahy, note that in the introducto~ example 
of a {311] surface, the factor of nearly 2 is just the 
ratio of PA to p for straight steps on (lOO]. Both 
(311) step energies are greater than their coun- 
terparts above because repulsions between the 
steps become sizable at smaI1 e (and n is 1 for 
either terrace o~entation). With care one can 
sort out these effects to separate the effective B 
into its large-r value, such as discussed in sec- 
tions 2.3 and 2.4 and listed in table 1, and the 
interaction part associated with the last term in 
eq. (2.1). 

The second type of step is produced by rota- 
tion of AgQ 11) around (Oil), as occurs at the 
lower island edge in fig. 3. The Miller indices of 
such vicinal surfaces are (n + 1, n + 1, n - 11, 
e= (n f 1/3)a,(1/?;/2). The atoms aIong the bot- 
tom of the step edge are now interspaced with 
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the atoms along the top edge. Since the micro- 
facet structure of this close-packed riser is {llll, 
this step has been called (llO)/(lll) [25] or 
simply B [26]. In this case, a = (0/2)a,, so that 
in the awning approximation 

For a Kossel crystal Pn is then 2rj/a,, identical to 
PA. With our computed f,,,, eq. (2.10) leads to 
the estimate 186 meV/a, for Pu. In the full 
calculation PB is + 190 meV/a,. (With VC func- 
tions, Pn is 226 meV/a,.) 

Since the coordination numbers of the top and 
bottom edge atoms are 7 and 11, respectively, 
there is no net loss of nearest-neighbor bonds 
and so no contribution from changed coordina- 
tion. Since the overlap is twice as large as for A 
steps, so is the excess area contribution 

%&/2)f,,,, reproducing eq. (2.10)! Notice also 
that in the alternative to eq. (2.9), PA also is 
f,i,a,/ 6, a reason why we chose to get 1’ from 
the terrace. To assess the validity of the role of 
coordination, we examined the embedding ener- 
gies of individual atoms, supplied automatically 
by the driving program, DYNAMO. The atoms 
along the top edges of A and B steps have nearly 
the same cohesive energies (- 2.38 eV), while 
most of the difference between the energies of 
the two types of steps comes from the tighter 
binding of the atoms at the bottom of B steps 
( - 2.75 eV versus - 2.68 eV>. 

For assessing the accuracy of the energies given 
throughout the paper, the benchmark value of 
+ 95.4 meV/ nearest-neighbor bond compares as 
well as could be expected to the value obtained 
by Poensgen et al. [16] for the kink activation 
energy on Ag{lll} of E, = + 75.5 + 2.2 meV 
through analysis of scanning tunneling mi- 
croscopy scans. The basic conclusion is that the 
energies of the two straight steps on Agllll) are 
almost identical, with the A step slightly more 
favorable. 

A jagged step is formed by rotation around an 
axis which is oriented at 90” to any of the six 
previously described directions; the Miller indices 
for such a periodically stepped surface are (n + 

3, n + 1, n - 1). Identical zig-zag steps are formed 
for either direction of rotation. It consists of 
alternating units of A and B steps, each of intrin- 
sic length a, and so a, cos 30”, or 0.866~ ,, along 
the mean direction of the step edge. The energy 
per unit should be the average of the two step 
energies found above, if corners are insignificant 
(which we shall see shortly is a good approxima- 
tion for the cases in this paper). From a calcula- 
tion of a grooved surface, we find p is + 193 meV 
per unit length (fia,/2). The calculation for the 
vicinal surface illustrates how eq. (2.6) is actually 
used. Subtracting the bulk energy from the final 
EAM energy of a Ag(432) (i.e. (864)) block, then 
dividing by the projected area (area x cos 4) of 
both free surfaces, we get f(+, 01 = 47.3 meV/A2. 
Subtracting f, , , = 38.5 meV/A2 and multiplying 
the different: by the terrace width we find p = 
79.13 meV/A = + 191 meV/unit length. 

To make estimates, the awning method is not 
helpful since we do not know f. of the riser 
orientation. In the bond-atom method, note that 
alternate atoms (those step tips) have a coordina- 
tion number 6, while the atoms spaced back at 
the inner corner have coordination number 8. 
The corresponding atoms along the bottom of the 
step edge have coordination numbers 10 and 11, 
respectively. On average there is a net loss of half 
a nearest-neighbor bond for every atom along the 
jagged edge. The excess area is also the average, 
per link, of the A and B steps. Thus, 

(2.11) 

where we have obtained 11 from the terrace en- 
ergy; the value is 186 meV per unit length of 
(a/%,. 

Finally, we computed a Wulff plot for orienta- 
tions between [lo01 and [II 11, as displayed in 
fig. 4. There are evidently no intermediate cusps, 
so that only these two orientations are facets. 
When nearest-neighbor interactions dominate, 
the 3D polar plot of the surface free energy lies 
on a sphere passing through the origin [301. The 
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Fig. 4. Segment of the zero-temperature Wulff plot (surface 
energy computed with EAM versus orientation) along the 
azimuth connecting the (100) and (111) facets. The solid curve 
is an arc of the circle passing through the origin and through 
the two points representing these facets. If only nearest- 
neighbor interactions determine the surface tensions, the 
points should lie on this arc 1301. Evidentfy the EAM energies 

are well described by this approximation. 

curve in fig. 4 has the form of the ~ncomitant 
circular arc, consistent with Wolf’s finding El51 
for Au using EAM. He noted that allowing relax- 
ation actually improves the approximation of 
nearest-neighbor dominance. 

2.5. Kinks 

In striking contrast with semiconductor sur- 
faces, the kink energies for metals which are well 
described by near-neighbor models are rather 
simple to characterize since they are ipso facto 
ove~helmingly due to the step energy of the 
extra sides of the kink. For Ag{lOO}, the side of 
the kink is perpendicular to the direction of 
straight steps (consistent with the 4-fold symme- 
try of the surface). From calculations on grooved 
surfaces with rectangular notches we find that the 
energy of the kink is 102.2 eV, corresponding to 
an extra link of straight step. The corner energy is 
negligible. (For Si(lOO} [31], the corner energy 
was about three times the energy of a side link!) 

To corroborate this assi~ment of energies, we 
considered slabs for several periodically kinked 
vicinal surfaces. For high Miller index surfaces, 
the need for rectangular cells with periodic 
boundary conditions led us to very large systems. 
For example, to study Ag(12, 8, 71, illustrated in 
fig. 5, we used a slab with 6500 atoms. The area 
of the top of the large cluster is 6972.66 A*, ,so 
fi.fi,Z 0.9724, the projected area is 6780.08 A2. 
Half the difference of the total energy and the 
bulk energy of the same number of atoms gives a 
surface energy of 310.5445 eV for the top. Sub- 
tracting from this f0 times the projected area 
gives an excess of 49.4126 eV due to steps and 
kinks. Since this surface has 52 kinks, spaced 
43~2, apart along A steps (i.e. ltz, = 4, in the 
notation of ref. [28]), 4&3, + E should be 950.2 
meV. With PA = 188 meV/a,, this suggests E = 
104 meV, versus 102 meV derived earlier, excel- 
lent agreement for this sort of calculation. This 
discussion illustrates clearly that this method to 
compute E tends to be less accurate than using 
grooved slabs, since here any error in p is propa- 
gated into E with an au~entat~on factor 4&r,. If 
a surface is chosen with more closely spaced 
kinks, there are questions of kink-kink interac- 
tions. 

For the (111) surface, kinks are not perpendic- We also generated a 2800-atom slab having B 
ular to steps, so that one must be careful to steps, with kinks similarly spaced 4$z, apart along 

compare kinked and u&inked steps with the 
same projected length, i.e. length projected onto 
the direction of the u&inked step; if there is a 
difference, one must make adjustments analogous 
to those for non-perpendicular risers. By putting 
notches into the sides of single-layer-depth de- 
fects, we deduce kink energies of 102 meV for A 
steps and 99 meV for B steps. To explicate these 
kink energies, we note that the kink on an A step 
is a unit of B step, with energy 190 meV. How- 
ever, the kink eliminates &zi of A step, saving 
energy 94 meV. The fact that the kink energy is 
102 meV rather than 96 meV suggests that comer 
energies are still small but not completely negligi- 
ble. By similar arguments, one would predict that 
the kink on B would cost 188 - i X 190 = 93 meV, 
3 meV smaller that the 96 meV estimated for the 
A kink, mirroring the difference of 102 and 99 
meV in the actua1 calculation. 
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Fig. 5. Two views of a (12, 8, 7) surface, which has periodic 
kinks as well as steps. More accurate assessments of kink 
energies can usually be obtained from grooved surfaces such 
3s shown in fig. 2. The lower portion is on a large enough 
scale so that one can see the structure of the kinks and steps. 
This portion is not large enough to support screw-periadic 
boundary conditions; the minimum size needed for a calcula- 
tion has 4 kinks in one directions and 13 in the other, as 
depicted in the upper portion with atoms from few enough 
02, 8, 7) planes so that one can easily see this overall 

structure. 

the step edge, viz. Ag(21, 19, 11X In a similar 
computation, we find 4$2,& + E = 955.8 meV. 
With @a = 190 meV/a,, this suggests E = 101 
meV, versus 99 meV derived earlier, again close 
but slightly higher than the value from the grooved 
surface with kink pairs, where no subtraction of 
large numbers is needed. 

2.6. Shapes of Pt isiands 

Unfortunately, there is no experimental data 
for these Ag step energies; however, Michely and 
Comsa [25) in elegant STM explorations of the 
equilibrium shapes of islands and monolayer de- 
fects on Pt{lll} were able to determine that the 
I3 step had slightly Ecrwer free energy than the A 
step; the ratio @n/PA was 0.87 I 0.02. To check 
whether EAM could reproduce this ratio and so 
reliably predict such shapes for other surfaces, we 

evaluated using Pt FBD-U3 EAM functions the 
A and B step energies to be 344 meV/a, and 341 
meV/a,, respectively, for Pt(lll1. Using Voter- 
Chen functions, we found these energies to be 
3.59 and 357 meV,/a,, respectively. In either case, 
we see that the B step is now favored, in contrast 
to Ag, but that the ratio is much closer to unity 
than in experiment, 

The numbers we have computed are simply 
energies per length, while the experiment probes 
the frr?e energ) per length at about 700 K (i.e. 
h 60 meV). To leading order in exp( - e/kTI, the 
reduction of @ due to the entropy associated with 
“diffusional” step wandering is [19,321 

2kl 
P(T) =P(O> - - 

?I 
exp( - c/kT) (2.12) 

for geometries such that kinks and “antikinks” 
have identical energy e 1331, a condition satisfied 
by all the steps covered in table 1. Here p(O) is 
the energy per length of a (straight) kink-free 
step, such as computed in the preceding subsec- 
tions, and a,, is the distance between sites along 
the step, viz. a, for the straight steps. 

According to calculations on a grooved Pt sur- 
face using UniversaI-3 functions, the energies of 
kinks on A and B steps are 161 and 178 meV, 
respectively. (Since the kink on A is a B-like link, 
and vice versa, it is not surprising that the B kink 
has higher energy. These numbers are averages of 
outward and inward kinks: for A, these are 158 
and 164 meV, respectively; for I3 they are 176 and 
180 meV, respectively. As an added note, these 
kink energies are found to be 101 and 110 meV, 
respectiveiy, using a Sutton-Chen potential [343.? 
We find the A and B step free energies are 
reduced to 336 and 335 meV/a,, respectively, 
making the ratio even closer to one, as one would 
expe.ct from the parenthetical comments, 

It is not clear which of the approximations in 
EAM calculations results in the lack of quantita- 
tive accounting for the e~erimentally observed 
ratio, nor what precisely determines whether the 
A ar the B step has lower energy. It would be 
interesting to survey systematically the late transi- 
tion and nobIe metals experimentally to see 
whether at least the favorability of A or B is 



R.C. Nelson et al. / Energies of steps, kinks, and defects on Ag{lOO} and Ag{lll} 473 

accurately reproduced by EAM. We offer an “ap- 
petizer”: from approximate eqs. (2.8) and (2.101, 
we see &/PA = (~*~~/~~~~ - 11-l. Using tabu- 
lated Pt surface energies computed with FBD 
[12], AFW [7], and VC [7] functions, we find this 
ratio to be 1.02, 1.18, and l.OO-, respectively. (If 
instead we used eqs. (2.9) and (2.101, then &J 

PA= 2(~~~~/2~,~~ + 1)-t and the three ratios 
become 1.004, 1.041, and l.OOO.> Thus, the prefer- 
ence for B steps comes from more subtle crease 
and/or relaxation effects. Since these tables also 
list values for Cu, Ag, Au, Ni, and Pd, we com- 

puted (~~~~/~~~, - 1)-i for all three sets of 
functions. Only for Au was this number consis- 
tently less than unity (viz. 0.99 in all 3 cases). 
Except for the anomalous AFW value, Pt was the 
next smallest. Ni and Cu were consistently be- 
tween 1.12 and 1.15, Pd somewhat smaller, and 
Ag midway between Pd and Au. (With the alter- 
native ratio, the same trend emerges, but with 
ratios much closer to unity.) The trend is some- 
what reminiscent of Foiles’s finding [lo] that the 
propensity of (110) fee metals to reconstruct in- 
creased with increasing row number in the peri- 
odic table. That behavior was related to competi- 
tion in EAM between attractive two-body interac- 
tions and weak three-body repulsions. Since, 
again, we have not scrutinized the additional con- 
tributions, it is not clear how these trends will 
carry over to full EAM calculations or, perhaps 
more importantly, to actual experiments. This 
whole problem merits more careful investigation. 

2.7. Step interactions and doubling 

Interactions between steps on a vicinal surface 
are expected to be repulsive, decaying to leading 
order as the inverse square power of separation if 
the interactions are due to elastic or dipolar 
effects. This idea is implicit in the last term of eq. 
(2.1); such leading behavior, along with the “en- 
tropic repulsion” arising because steps cannot 
cross, contribute to B 1181. At short range it is not 
so simple to make analytic predictions. We stud- 
ied this repulsion briefly within the limits of the 
model by comparing with the previous results the 
energy of similar steps but with terrace widths of 

only two or three atoms. Since these calculations 
were performed [35], a more detailed EAM study 
of (001) steps on vicinal Au{l~} and Au(llO] 
found that the step-step repulsion followed the 
expected behavior from continuum elasticity the- 
ory - inverse square of separation - but with a 
prefactor l/2 to l/3 of what would be predicted 
from the elastic constants [36]. 

No~ithstanding these entropic and elastic re- 
pulsions, energetics sometimes favor the coales- 
cence of neighboring steps which make contact 
with each other. Depending on longer-range in- 
teractions, this effective local attraction can lead 
either to step-doubling [37] or to coalescence and 
formation of a low-index microfacet. Accordingly, 
we examine the energetic consequences of dou- 
bling the various types of single-height steps stud- 
ied above. We are especially interested in (100) 
and { 111) faceting on vicinal surfaces with straight 
steps. From the Wulff plot of fig. 4, reported 
earlier, we expect that these will be the only two 
stable facets along this azimuth, at least in the 
EAM approximation. We find that doubling is 
energetically favored when the faceting direction 
has higher surface density than the terrace direc- 
tion, and vice versa. When the microfacet has the 
same symmetry as the terrace, the doubling en- 
ergy is small in magnitude. 

The doubled A step on Ag(lll> leads naturally 
to a [loo] microfacet; the additional step energy 
associated with doubling is + 10.1 meV/a,. This 
number is about 5% of the step energy of the 
corresponding single-height straight step. Since 
this energy is positive, doubling of A steps is a 
barrier to formation of (100) microfacets on (111) 
surfaces. The B step on Ag{lll] tends - weakly - 

Fig. 6. DoubIing of the jagged, (123) step on a (111) surface. 
Note the formation of (311) microfacets. 
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to facet toward the [ill] direction (i.e. another 
close-packed direction) when doubling occurs; the 
doubling energy is - 1.3 meV/a ,. The doubling 
of these steps does not present a barrier to a 
change in direction of the growth of a Ag{lll] 
surface toward another close-packed plane. 

For the jagged step on Agllll], the microfacet 
is (311) oriented at an angle of 60” to the step 
edge. (Cf. fig. 6.) On this remarkable surface the 
“excess” step energy associated with doubling is 
-99.4 meV/exposed (edge) atom, i.e. - 114.8 
meV/a,. For the doubling of straight steps on 
Ag{lOO], the microfacet index is {ill] and the 
excess step energy is -38.1 meV/atom. The 
magnitude is much larger than in the case of the 
(lOO] step on Ag{l 11); doubling clearly lowers of 
the total energy as the surface facets to {ill], 
Finally, in the case of the jagged step on Ag(1001, 
there is microfaceting in the [llO] direction. As 
expected, the excess step energy of doubling is 
negative, viz. - 2.74 meV/ apex atom, i.e. - 1.94 

meV/a,. The results of these calculations of step 
doubling energies are summarized in table 2. 

3. Defects: adatom and vacancy clusters 

In this part of the paper, we begin by carefully 
analyzing the energetics of adatom and vacancy 
clusters, then apply the results to kinks and to 
clusters attached to steps. In all cases, we con- 
serve atoms: the defects come from or go to the 
bulk, with bulk atom energy -2.85 eV. Because 
of its high symmetry and negligible corner ener- 

gies, the Ag(100) surface is the simpler place to 
start. 

3.1. Vacancy clusters on Ag{lOO} 

To remarkable accuracy the energy, as calcu- 
lated in EAM, of a single-layer-deep cluster of 
vacancies is proportional to its perimeter, as mea- 
sured using (011) links. The number of these 
a,-long links is always even. Hence, this energy is 
some integer multiple of 205 meV, twice the step 
energy per a,. More generally, one can form a 

vacancy cluster from elementary square-plaquette 
units and assign an energy to each row. The 
resulting “simple rules” are catalogued in table 3, 
along with the even simpler “rule” to just find 
the perimeter (measured along the starting plane, 
i.e. the top edge of the step at the defect edge), 
projected onto the principal-axes directions. In 
only two listed cases are there notable deviations 
from the perimeter estimate, and these are essen- 
tially the same: the energy to remove a single 
atom from a flat {loo] surface is 402 meV, while 
the perimeter rule predicts 410 meV. Apparently 
the relaxation around an isolated vacancy is 
greater than around straight steps in a large 
structure: extracting one atom from the top layer 
of a frozen (relaxed) surface costs energy 416 
meV. The subsequent growth of a single vacancy 
into a chain can take place either along a close- 
packed direction or at 45” While growth along a 
close-packed direction costs 206 meV per addi- 
tional vacancy in the chain, growth at 45” costs 
about as much as isolated vacancies, 402 meV per 

Table 2 

The energetic consequences of step doubling on the five previously considered stepped Ag surfaces; generally, steps which facet to 

form higher (lower) symmetry planes have negative (positive) doubling energy; however, jagged steps which double to (31 I) and 
(110) have negative doubling energies 

Type 

(111) straight A 

(111) straight B 

(llljjagged 

(100) straight 

(100) jagged 

Initial Miller 

indices 

(433) 

(443) 

(432) 

(711) 

(810) 

Separation 

(a, units) 

10/a 

WJS 

3 

3+ 

46 

Step 
direction 

[oiil 
[ii01 
li2il 
[ii01 
loot1 

Faceting 
direction 

1tou1 
[I111 
[3111 

11111 

11101 

Doubling energy 

meV/a, 

+ 10.11 

- 1.30 

- 114.8 

-38.1 

- 1.94 
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Table 3 
The energies attributed to growth of vacancy clusters on 
Ag(100) by various types of additions 

sType of addition Additional Units CmeV) Adatom 

energy of 2pa, equivalent 
CmeV) 

Single vacancy 402 2 + 410 458 
Single at end of an 205 1 205 201,223 

(011) chain 
Single at 45” 402 2 410 449 
Row larger by two 614 3 615 = 

than adjacent row 
Row smaller by two 203 1 205 = 
Row larger by one 409 2 410 = 
Row smaller by one 205 1 205 = 
Row same size 205 1 205 = 
Row same size, 409 2 410 = 

offset one atom 

The numbers given are representative and may vary from row 
to row by about 1 or 2%, indicative of corrections due to 
slightly longer range effects than those produced by nearest 
neighbors. Entries “ =” in the last column indicate that the 
value is essentially the same as for vacancies. The energies 
depend essentially on the number of additional links of length 
a,. each having energy 2pa,, i.e. 2u in units of bond energies, 
or - 204 meV for steps on (100) surfaces (cf. table 1). 

vacancy, so that unless vacancies border on a 
common nearest-neighbor, they do not really be- 
long to the same cluster! 

As an illustration of the rules in table 3, we 
consider an isosceles triangle cluster of 16 vacan- 
cies, so with rows of 1, 3, 5, and 7, shown in fig. 7. 
The full EAM calculation gives an energy of 
2.245 eV. The perimeter has 22 links, so the 
simplest rule predicts an energy of 2.255 eV. 

Fig. 7. Vacancy triangle discussed in the text to illustrate the 
rules in table 3. 

From the rules in the table, going from apex 
down gives 2.244 eV while proceeding up from 
the base gives 2.241 eV. For another example, we 
consider a 5 x 5 square cleaved just to the side of 
a diagonal, so with rows of 1, 2, 3, 4, and 5 
vacancies. The full EAM calculation gives an 
energy of 2.041 eV, the perimeter rule for 20 
links gives 2.050 eV, and the table gives 2.038 eV. 

A corollary of the perimeter rule is that va- 
cancy clusters with the same (lattice) perimeter 
have the same energy, to lowest order, regardless 
of the number of missing atoms or the shape. We 
tested this idea on several configurations and 
found excellent agreement. This corollary could 
have important implications for mechanisms of 
cluster diffusion across surfaces. Specifically in 
this case, clusters of a given number of vacancies 
prefer square-like arrangements, both globally 
and locally. If one vacancy begins to diffuse 
around the periphery, there will be a tendency 
for others to follow just behind. 

3.2. Adatom clusters on AgilOO} 

All of the above calculations for vacancies 
were repeated for adatoms on Ag{lOOj. The dif- 
ferences are slight enough to require only a brief 
description. First, the energy of an isolated 
adatom is 458 meV, thus greater than the vacancy 
energy. (Cf. table 3.) Thus, single atom excita- 
tions violate the up-down or adatom-vacancy 
symmetry in most models of surfaces used in 
statistical mechanics, in particular the solid-on- 
solid model and variants thereof, as discussed in 
section 3.5. Second, the growth of an adatom 
chain in a close-packed direction involves the 
addition of 201 meV for the second atom and 223 
meV for each subsequent atom. Third, growth of 
adatom chains at 45” to close-packed directions 
costs 449 meV per additional atom, showing an 
attractive interaction of 9 meV between second- 
nearest-neighbor pairs on the surface. 

Once these differences are accounted for in 
the creation of an initial chain of adatoms on the 
surface, the previous rules of table 3 apply for the 
growth of the cluster, with one exception. Bring- 
ing a cluster to an apex by the addition of a single 
adatom costs the previously calculated 223 meV. 
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These results have important implications for 
the calculation of the energy of defects and de- 
fect clusters attached to steps, which will be dis- 
cussed in detail following the description of va- 
cancy and adatom clusters on Ag11113. 

3.3. Vacancy clusters on Ag{lll) 

A vacancy cluster on Ag{ 11 I.] has a more com- 
plicated symmetry than one on the Ag{lOO] sur- 
face due to the two kinds of straight steps. Since 
for this element, EAM suggests that the energies 
of these two straight steps with densely packed 
edges are nearly the same, we can again, to 
lowest order, just measure the perimeter (along 
the crest) in principal directions of the monolayer 
vacancy cluster and multiply by 189- meV. Again, 
we can be slightly more accurate by constructing 
the clusters row by row and by paying attention to 
whether A or B steps are exposed. The results 
are summarized in table 4. 

As an example, consider equilateral triangles 
of vacancies, for which all edges have the same 
type step. Again the elemental process is the 
formation of a vacancy chain. The energy of a 
single vacancy on Ag{lll] is 549 meV. Each 
additional hole added to the chain costs 377 
meV. Because of the inequality of the different 
directions of growth on Ag(lll], the counting 
scheme for calculating the energy of arbitrary 
clusters on Ag{lll} is more complicated than for 
AgIlOO]. Nevertheless, the results of the tabu- 

lated calculations represent a complete set of 
operations by which the EAM energy of any 
arbitrary cluster can be closely estimated: one 
simply finds an apex of the cluster and assigns it 
the energy of a single vacancy, then moves across 
the cluster, calculating and adding the energy of 
each row by the rules presented in the table. 

3.4. Adatoms on Ag{lllJ’ 

As in the case of Ag{lOO}, similar calculations 
were done with adatom clusters on Agtlll]. The 
results are similar; except for the formation of an 
initial triangle or two rows of adatoms, the growth 
of these clusters proceeds along the same ener- 
getic basis as the growth of vacancy clusters. They 
are almost entirely symmetric. 

Like for vacancies, the energy of an adatom 
triangle on the surface is independent of the 
orientation. In our EAM calculations the two 
possible orientations are the same, both + 1.221 
eV. A count of the total coordination of the 3 
adatoms and their 7 nearest neighbors in the 
original surface shows that the total coordination 
of the 10 atoms is 87 in either case [38]. From this 
perspective, the coordination number is the key 
to understanding EAM energies of localized de- 
fect systems of close-packed systems. 

The formation of an adatom chain on Ag(lll} 
costs 709 meV for the first adatom, 379 meV for 
the second, and 417 meV for each additional 
adatom. As stated before, the subsequent addi- 

Table 4 
The cost in surface energy of increasing the size of a vacancy cluster on clean Ag(lll) in a variety of different ways 

Type of addition to cluster Energy cost (meV) 2pa,-units (meV) Adatom 
equivalent 

Single vacancy 549 3 566 709 
Vacancy to a chain 377 2 -+ 377 379,417 
Row larger by one 562/568 3 566 ZC 
Row the same size 385 2 377 Z 

Row smaller by one 185/192 1 189 = 
Row larger by 1 + n 582/578 + 377n 3+2n 566 + 377n = 
Row smaller by any integer 197/202 1 189 = 

While the list does not exhaust the incremental changes which can be made, any vacancy cluster can be built up by a series of 
operations equivalent to the changes listed in this table. When two numbers are listed, with a “I” between them, the first refers to 
an A or [lOO]-microfacet step, while the second refers to a B or [ill]-microfacet step. Again, each unit of pa, teach increase of the 
perimeter by one) corresponds to two lost nearest-neighbor bonds and an energy of * 189 meV (cf. table 1). 
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tion of rows to an adatom cluster is very similar 
to the operations on a vacancy cluster, with all of 
the energies in table 5 incremented by correc- 
tions of around 50 meV. One exception is in the 
addition of the first row in the formation of a 
triangle by adding smaller rows. Once the initial 
vacancy chain is established, it costs virtually 
nothing to add the second, smaller row. Subse- 
quently, the cluster grows in the same way as a 
vacancy cluster. Interestingly, the energy recov- 
ered by the system because of the null cost of 
adding the second row is enough to make the 
total energy of large clusters nearly symmetric 
between vacancies and adatoms. For example, 
the energy of a system of two rows that are 4 and 
3 vacancies (adatoms) wide is + 1.871 (+ 1.920) 
eV. 

3.5. Symmetries and lattice models 

The adatom-vacancy symmetry that is implicit 
in most models of stepped surfaces, e.g. TSK and 
SOS, is generally well obeyed by the calculated 
energies. Isolated defects are the glaring excep- 
tion: adatom excitation requires 12% more en- 
ergy than vacancy excitation for Ag{lOO} and 29% 
more on AgUll). As indicated in tables 3 and 4, 
the adatom energies are much higher than pre- 
dicted from the perimetric bond-counting scheme, 
while the vacancy energies are a few percent 
lower. The asymmetry points up the crucial role 
that coordination number plays in EAM (pre- 
sumably reflecting the actual behavior in these 
metals) and underlines the many-body character 
of the EAM potentials. Without relaxation, the 
asymmetry would be even greater: on Ag{lll) the 
defect energy increases nearly half way to the 
bond-count value, while the adatom energy in- 
creases by roughly 100 meV. The adatom relaxes 
by drawing 0.2 A closer to the substrate, increas- 
ing the charge density at its center and so its 
embedding energy. For large defects, relatively 
small asymmetries appear in the comer energies. 
Overall, this discussion should be taken as more 
qualitative than most presented above, given the 
exceptional non-uniformity of the charge distribu- 
tion around an adatom. 

Table 5 
A comparison of calculated barriers to diffusion (in meV) in 
Voter’s dynamic simulations 1131, using Voter-Chen embed- 
ding functions, and in our simpler static models, using FEID-U3 
functions 

Hop Adatom Vacancy 

Voter Static Voter Static 
H31 [131 

(al O “03 O 
0000 

0000 

(bl “.“& O 
0000 
0000 

(cl O “05 O 
OoOoOoO 
0000 

(d) “o”.~ O 
OOO.OOO 
0000 

49lQ 479 465 

774 721 509 

257 257 478 

504 543 513 

(el O.O.O.OoO 
O.O.OKO O 457 

O.O O O O 
00000 

473 

494 

517 

543 

457 

In the sketch, open circles indicate topmost complete layer of 
atoms; the filled circles indicate adatoms for the left columns 
and vacancies in an otherwise complete layer for the right 
columns. Agreement between Voter’s and our numbers should 
be best in (c), where we can freeze the adatom in the 
direction parallel to the step edge and allow it to relax into 
the saddle point of the potential in both other directions. In 
(d) and (e), only one calculation was done for each structure, 
because of the symmetry between vacancy and adatom sys- 
tems with these configurations. 
a) The activation energy was later computed to be 480 meV 

with APW or VC potentials 171. Analogous calculations 
[46], both the classical barrier and with dynamic simula- 
tions, using DePristo’s corrected effective medium theory 
gave this energy as about 240 meV, with the remark that 
Ag adatoms have anomalously low barriers compared to 
other late transition and noble species. 

For Ag{lll) the Boltzmann weights at room 
temperature associated with isolated adatoms and 
vacancies are 5 X lo-l3 and 3 X lo-“, respec- 



47x R.C. Nelson et al. / Energies of steps, kinks, and defects on Ag{lOO} and Ag(lll) 

tively. These small probabilities suggest that any 
isolated defects found on Ag at room tempera- 
ture are unlikely to come from equilibrium fluctu- 
ations. While adatoms have not generally been 
seen in STM experiments [16], the rapid step 
fluctuations do suggest highly mobile adatoms, as 
discussed below. Around 1200 K, the respective 
weights become 8 X 10e4 and 4 X lo-‘, which 
would be observable with STM. (This discussion 
neglects the contribution of entropy, both config- 
urational and vibrational [39], which will consid- 
erably influence the probability of observing these 
defects.) The prediction then would be that nearly 
an order of magnitude more vacancies than 
adatoms should be found. 

The implication of this asymmetry for statisti- 
cal mechanics is that in detailed attempts to 
model metal surfaces, simple spin Hamiltonians 
must be augmented by three-site terms to ac- 
count for the adatom-defect asymmetry. Such 
terms can have important effects at preroughen- 
ing (but not roughening) transitions [40]. More 
generally, their neglect will distort estimates of 
pair energies [41]. 

A more serious caution is that the nearest- 
neighbor bond picture is not an adequate approx- 
imation for all systems for which EAM is a viable 
technique. Specifically, Wright et al. [42] calcu- 
lated energetics of clusters of Pt, Pd, and Ni on 
Pt(001). For all three adspecies, viewed as two-di- 
mensional lattice gases with a frozen substrate, 
the nearest-neighbor interaction is attractive, the 
second-neighbor interaction is repulsive, and the 
leading trio interaction is attractive. However, for 
Ni the nearest-neighbor attraction is unusually 
small (and the others relatively large), with the 
consequence that the energetics favor clusters of 
Ni adatoms forming chains rather than compact 
islands. When the substrate is allowed to relax, 
they find that Pd trimers and Pt trimers and 
pentamers also prefer linear configurations, al- 
though other sizes still are compact. While such 
behavior has been observed for Pt using FIM [9], 
the more drastic behavior of Ni/Pt(OOl) has not, 
perhaps because the Ni exchanges with substrate 
Pt [42,43]. Apparently when the relaxation is 
strong enough to produce chains, it also leads to 
diffusion by an exchange mechanism [42]. 

On the close-packed Pt(ll1) surface, compact 
clusters, at least those of Pt, are stable for all 
sizes [44]. (Studies of these clusters described 
their energies in terms of lateral interactions that 
depended on distance from the edge [44]. These 
effects could presumably also be explained in 
terms of multi-site interactions [41].) In summary, 
unconventional behavior is most likely to occur in 
bimetallic systems with smaller adatoms on an 
open substrate plane with larger atoms. Then the 
direct interaction between neighboring adatoms 
may be anomalously weak, causing much of the 
interaction to be indirect and so much smaller 
and rather unpredictable in sign [4S]. 

3.6. Vacancy and adatom clusters at steps 

Using these results for local defect systems, we 
can assess the energies of pairs of kinks such as 
might be excited thermally in regular step struc- 
tures. The energies we have calculated for these 
defects are in the thermal range, and the preced- 
ing calculations on flat Ag can be applied without 
modification to stepped structures. From the 
point of view of an atom on the terrace of a 
regularly stepped surface, the step and adjoining 
terrace in the uphill direction is a large adatom 
cluster which goes off to infinity in two directions. 
The terrace in the downhill direction is similarly 
a large vacancy cluster. We argue that adding 
vacancies or adatoms to these two extensive clus- 
ters is precisely the same, within the limitations 
of EAM, as the calculations we have already 
done. Again, from the simplest viewpoint, the 
attachment of a cluster to a step is a reduction in 
perimeter by twice the length of contact, since 
both cluster and step decrease their boundary. 
(Of course, the actual binding energy should in- 
crease if the step edge after dislodging a cluster 
has many kinks and decrease if the cluster takes 
on a more compact configuration than it had 
when attached.) Two sample calculations on 
Agllll] adequately corroborate the viability of 
estimation based on the perimeter. 

First we introduced a chain of vacancies along 
a step edge. We repeated this calculation for 
several chain lengths and on both kinds of close- 
packed steps on Ag{ 11 l]. The results show that 
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Table 6 
The potential barriers (in meV) to diffusion of adatoms and 
vacancies on clean stepped Ag(111) 

Hop Adatoms Vacancies 
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the energy of the kink/anti-kink pair formed by 
the chain is independent of the length of the 
chain, even for the removal of a single atom, and 
that the total energy of the defect system is equal 
to the energy given in table 4 for the energy of 
adding a row to a vacancy cluster that is smaller 
than the previous row by 2 or more atoms, 202 or 
197 meV for a surface with a (100) or close- 
packed step, respectively. From this point the 
energy of any wandering step that eventually 
comes back to its low temperature equilibrium 
location can be calculated by simply applying the 
operations in table 6. To check this assertion, a 
randomly selected excitation of 28 vacancies with 
irregular geometry was introduced onto a (100) 
step. The estimated EAM energy of the defect 
system was + 1.542 eV. The result of the actual 
EAM run was + 1.572 eV, giving an error for the 
estimate of 2%. 

In the second test, we created a pair of defect 
systems in which one had an adatom cluster grow- 
ing onto the downhill terrace and the other had a 
vacancy cluster growing onto the uphill terrace 
with the same shape. The discussion above would 
indicate that the energy should be nearly the 
same. The adatom cluster was chosen to be of the 
same shape as the 28 atom vacancy cluster previ- 
ously calculated. The result was that the energy 
of the adatom cluster attached to the step was 
+ 1.583 eV, which is within 1% of the calculated 
value of the vacancy cluster energy. 

Notes to table 6: 
The notation for open and filled circles is the same as in table 
5. The behavior for adatoms in the first several cases is 
strikingly different from (loo), listed in table 5. Configuration 
(a) shows a very weak corrugation for single adatoms on clean 
1111). For other geometries the numbers are roughly similar 
to those on (100). 
a) Liu et al. [7] computed the activation energy to be 59 or 44 

meV with AFW or VC potentials, respectively. Rilling et al. 
[6] found 58 meV. 
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4. Barriers to diffusion 

In addition to estimating the energy of vacancy 
or adatom clusters on vicinal surfaces, EAM can 
also be used to investigate barriers to their diffu- 
sion across a surface. This section is patterned 
after Voter’s EAM-based molecular dynamics 
simulations [13] in which large (n > 50) vacancy 
and adatom clusters were allowed to diffuse across 
Ag{lOO}. He catalogued all the hopping transi- 
tions between configurations and carefully calcu- 
lated the barriers involved. We use Voter’s work 
as a benchmark for the accuracy of our simple 
static approach and extend the work to similar 
calculations for Agllll], where only adatom dif- 
fusion on flat surfaces has been previously con- 
sidered [7]. We also compare with other studies 
of diffusion on flat Ag surfaces [6,46]. 

Here, we straightforwardly constructed the 
surface prior to the transition and calculated the 
energy, then moved the adatom or vacancy in 
question to the geometric saddle point between 
the positions before and after the diffusive hop 
and recalculated the energy [47]. The difference 
is reported as the barrier to diffusion. In cases 
where the geometric saddle point is not obviously 
the saddle point of the interatomic potential, we 
fixed the adatom in one direction and allowed 
DYNAMO to find the actual saddle point of the 
potential by minimizing the energy. Our numbers 
agreed best with Voter’s when we could follow 
this procedure. In assessing agreement, we recall 
that Voter parameterized his EAM functions for 
these calculations. The results of our calculations 
for several geometries are given in table 5, along 
with Voter’s numbers. 

Some qualitative trends are evident from this 
table. We see that the diffusion barrier for adatom 
motion next to a straight step edge is much lower 
than that across a terrace, while for vacancies 
there is little change. In contrast, there is only a 
minor advantage to diffusing along a jagged step, 
suggesting that transport will be enhanced along 
straight steps and that dynamic processes will pile 
adatoms at the end of straight segments, promot- 
ing kinetically the growth of these “facets”. 

The results of similar calculations of diffusion 
barriers [48] on Ag{ ill} are given in table 6. 

There are some remarkable differences between 
the results for {ill] surfaces and for {loo] sur- 
faces. As also noted by others [6,71, on (111) the 
barrier for an isolated adatom to hop to an adja- 
cent threefold symmetry site is very small, about 
12% of the {loo) barrier. Thus, single adatoms 
can wander rather freely on the clean surface 
until it comes in contact with a step, another 
adatom, or a defect. On the other hand, the 
barrier to diffusion along either kind of straight 
step is several (roughly 4) times as large. Over 
some intermediate temperature range, then, 
adatoms can travel readily across flat regions but 
become essentially immobile after contacting 
other adatoms. This condition leads to diffusion- 
limited aggregation (DLA) [491, i.e. the growth of 
dendritic islands with fractal boundaries rather 
than compact clusters. Such islands in fact have 
been observed with STM for Au atoms on 
Ru(0001) [50] at room temperature and for Pt 
islands on Pt{l ll} [51] at 205 K, as well as many 
other examples of late-transition-metal atoms on 
the close-packed face (but with counterexamples 
such as Co adsorption) [52]. At higher tempera- 
tures, the edges of the islands become smoother 
and their structure more compact. For vacancies, 
the barrier for motion across terraces is much 
higher, and closer to that for vacancy motion near 
step edges. Hence, in an evaporation experiment, 
any tendency to form non-compact islands would 
be far weaker. 

Another trend consistent with experiment is 
the lower barrier for diffusion along A steps (row 
(d) of table 6) than B steps (row cc>> at low 
temperature. Such behavior was clearly seen by 
Wang and Ehrlich [53] in FIM measurements of 
diffusion of Ir atoms around Ir,, islands on 
Ir(lll]; they found this behavior consistent with 
expectations because along A steps the periph- 
eral atom stays closer to the other atoms as it 
moves. From STM measurements of island shapes 
of Pt on Pt{ 111) Michely et al. [54] deduced 
greater diffusion along A steps. In earlier FIM 
experiments it was likewise found that the activa- 
tion energy for diffusion on (331) surfaces (pre- 
sumably along B steps) is larger than on (311) 
surfaces (a limiting case of A steps) of Ni, Rh, 
and Pt [55]. It is noteworthy that at higher tem- 
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peratures, diffusion along B steps eventually ex- event in which the adatom replaces a step edge 
ceeds that along A steps, with remarkable conse- atom and the edge atom moves onto the terrace 
quences [54). as an adatom. 

On both 1100) and (111) we see that the bar- 
rier for an adatom near an edge nearly doubles 
when the adatom starts with a neighbor at one 
side. This common result suggests that it is sub- 
stantially more difficult for an adatom to “sep- 
arate from a kink” (i.e. for the kink to retreat one 
spacing) than for an adatom to move along the 
edge. Pairs of adatoms tend to provide growth 
centers, since there is an added energy for them 
to separate into monomers; in contrast, the bar- 
rier for the separation of pairs of vacancies is 
comparable to the barrier for monomer diffusion. 

5. Spring constants for adatom vibrations 

It is not clear how to interpret the remarkable 
frizzled nature of steps observed on Ag{lll) 1161. 
While this behavior is characterized by high kink 
mobility, rapid adatom motion along the edges 
would seem inconsistent with the results just de- 
scribed for DLA-like islands. Perhaps the behav- 
ior results from rapid attachment and detach- 
ment of adatoms to the step edges. The dynamics 
associated with the two kinds of mechanisms 
should be readily distinguishable [56] at lower 
temperatures. 

Finally we investigate the vibrations of adatoms 
on vicinal surfaces, particularly those with straight 
steps, in a quasi-static approach. The purpose of 
these calculations is to assess how much these 
vibration frequencies change as adatoms ap- 
proach a step from an open terrace. Specifically, 
we moved adatoms toward and away from the 
surfaces incrementally, froze them in the dis- 
placed positions and calculated the change in the 
potential energy while letting the substrate relax. 
We only investigated vibrations perpendicular to 
the terrace, both for calculational reasons and 
because of the experimental ability to measure 
such vibrations using IR spectroscopy. 

We recall from tables 3 and 4 that the differ- 
ence between the (111) and (100) surfaces is also 
rather large, with adatoms on the (100) surface 
bound somewhat more strongly to their positions 
than vacancies. Of course, an adatom or vacancy 
on {lOO) has the same number of nearest neigh- 
bors, while a vacancy on { 111) has twice as many 
nearest neighbors as an adatom. The wide dispar- 
ity between the barrier heights disappears after 
the clusters on (111) build to a reasonable size. 
Vacancies have barrier heights for single defects 
of the same order of magnitude as larger vacancy 
systems, such as the step terrace systems in (cl 
through (h) of table 6. 

We fit the energies from points along the 
trajectory, at 0.1 A intervals up to 1 A away from 
the equilibrium height, to polynomials initially up 
to 4th order. We then removed the anharmonicity 
by truncating the data sets until a simple quadratic 
polynomial sufficed in the fit, as measured by a 
scatter plot of the difference between the num- 
bers and the fitted curves. By restricting the height 
range to kO.6 A from equilibrium, still quite 
sizable, we obtained good quadratic fits, with no 
discernable anharmonic character. 

Our tables do not consider alternate modes of 
diffusion. Liu et al. [7) demonstrated that con- 
certed substitution of adatoms [571 (exchange with 
substrate atoms) is the dominant diffusion mode 
on flat (100) surfaces of Pd, Pt, and Au (but not 
Ni, Cu [58], or Ag). Tian and Rahman [8) also 
found evidence that on vicinal Cu{lOO) the down- 
step diffusion of adatoms is aided by a concerted 

The results of the calculations are reported in 
table 7 as the spring constant K for a particular 
vibration, in eV/A* [59]. We see that on a (111) 
terrace, K decreases by nearly 10% when the 
adatom is adjacent to either of the close-packed 
steps. In contrast, on a (100) terrace, where K is 
20% lower than on a {ill), it increases by 5% 
near a straight step. Such trends should be ob- 
servable experimentally. 

In a brief attempt to assess transverse modes, 
we searched for energetically favored directions 
for the motion by calculating the energy of the 
system for displacements of 0.5 A at all multiples 
of 5” from the vertical for the case of an adatom 
adjacent to an A step on a (111). The energy 
decreased monotonically as the displacement di- 
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Table 7 

Computed effective harmonic spring constants for adatoms 

vibrating normal to the low-index Ag facets 

Adatom position K (eV/A2) 

On flat (111) 2.39 
Adjacent to A ((1 lO)/{lOO)) step 2.22 
Adjacent to B ((llO)/(lll) step 2.21 
On flat (100) 1.98 
Adjacent to straight step 2.10 

Polynomials were fit to energies evaluated at 0.1 A intervals 

from the equilibrium height. By restricting the height range to 

+0.6 A from equilibrium, still quite sizable, we could obtain 

good fits to quadratics, with no discernable anharmonic char- 

acter. 

Typically, X,? = 1.3 for fitted curves, aad all the computed 

energies in our truncated (1 AZ I 5 0.6 A) sets lie within one 

standard deviation of the fitted cmve. 

Evidently the perpendicular oscillation frequency changes by 

no more than 10% when the atom is near a step edge. 

rection approached horizontal. From a chemical 
viewpoint, we implicitly assume that since the 
bonds between the adatom and the step are per- 
pendicular to the motion, they are stretched only 
slightly and so contribute little to the energy 
compared to the vertically stretched bonds be- 
tween the adatom and its three nearest neighbors 
on the terrace. Then we may also suppose that 
the 5-10% difference between the spring con- 
stants associated with the adatom being near and 
far from a step gives a measure of the effect of 
these perpendicular bonds to the vertical modes. 

For comparison, we mention more thorough 
EAM studies by Tian and Black [60] of phonon 
spectra and mean-square displacements of the 
substrate atoms of straight-stepped surfaces vici- 
nal to Cu{lOO]. They find that normal vibration 
frequencies for atoms of the step edge are lower 
than those of terrace atoms. Correspondingly, the 
perpendicular (to the terrace plane) room-tem- 
perature mean-square displacements increase by 
up to 5% and slightly less for the penultimate 
terrace atom. The transverse displacement for 
the edge atom increases far more. 

6. Conclusions 

We have illustrated how EAM can be used to This work was supported in part by NSF-MRG 
estimate properties of interest for vicinal Ag{ lOO} grant DMR 91-03031. R.C.N. acknowledges sup- 

and {ill), especially step and kink energies. As 
anticipated by simple statistical mechanical mod- 
els, we can rather accurately account for these 
tabulated properties using a nearest-neighbor 
bond approximation with bond energy - lo2 meV 
(a much smaller value than obtained by fitting the 
(bulk) cohesive energy in the same approxima- 
tion). Also in accord with these models, adatom- 
vacancy symmetry is a good approximation, ex- 
cept, however, for single defects. Simple bond 
counting again leads to good estimates of cluster 
energies and their binding to step edges. Some of 
our results can be compared with experiments. 
The ratio of the two kinds of straight steps on 
Pt{lll] in EAM is much closer to unity than 
measured, but at least, in contrast to Ag, B steps 
are favored. It would be interesting to find exper- 
imentally whether A steps are actually preferred 
on Ag. (Furthermore, it would be worthwhile to 
test the conjecture that A steps are (more 
strongly) favored on Ni and Cu. The situation on 
Au{lll} (B steps favored?) is clouded by its re- 
construction [61].) Another open question is what 
the step and kink energies are on Ag{l lo}, a 
system of recent interest [62]. Presumably a calcu- 
lation including gradient corrections [11,14] could 
remove the spurious reconstruction [lo] to allow 
consideration of the needed configurations. 

Our results have implications for surface mor- 
phology: step doubling is favored in many cases 
and can be described in terms of microfacet for- 
mation. As might be expected, we find that diffu- 
sion on (111) is quite different from that on {loo], 
and proximity to steps alters barriers significantly, 
increasing them, surprisingly, on (ill}. Other 
general features are also consistent with experi- 
ment. The thermal dependence of these proper- 
ties will require more sophisticated investigation, 
presumably using molecular dynamics. Finally, 
steps are found to modify modestly (but of mea- 
surable size) the spring constant for vibrations 
normal to terraces, increasing it on {loo), de- 
creasing it on (111). 
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Table 8 
Displacements of atoms on an g-atom wide Ag{lll) terrace 
bounded by B steps 

Terrace row Azis (AI Ax,,,+1 (A) 

Top edge - 0.0660 - 0.0380 
Row 1 - 0.0347 - 0.0068 
Row 2 - 0.0344 - 0.0055 
Row 3 - 0.0338 - 0.0040 
Row 4 - 0.0336 -0.0031 
Row 5 - 0.0359 - 0.0012 
Row 6 - 0.0340 - 0.0012 
Bottom edge - 0.0066 

The displacements in the x-direction compress the terrace 
and stretch the step tread. The displacements of the top and 
bottom atoms at the step also stretch the step, when com- 
pared to the displacements of the flat surface. 
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Appendix. Atomic relaxations near a step 

In this appendix we illustrate the atomic relax- 
ations of first-layer atoms near a step. As a repre- 
sentative example, we choose the B step on the 
Ag(ll1) surface. The numbers given in table 8 
are relaxations from unreconstructed bulk lattice 
spacings and may be compared to the first-layer 
relaxation of the flat I1111 surface of AZ,,= 
-0.0319 A and the row spacing of the (111) 
surface of x,, = 2.4842 A. 
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