Surface Science Letters

Simple formula for Miller indices of periodically kinked and stepped fcc surfaces

David R. Eisner and T.L. Einstein
Department of Physics, University of Maryland, College Park, MD 20742-4111, USA

Received 9 November 1992; accepted for publication 2 February 1993

Abstract

A periodically kinked and stepped surface can be characterized by two integers for each step and two more integers to translate one step to its neighbor. In terms of these four integers, we write a simple formula for the Miller indices for fcc surfaces vicinal to $\{100\}$ and to $\{111\}$ planes. These useful formulas are extensions of the work of Van Hove and Somorjai [Surf. Sci. 92 (1980) 489].

With the recent growth of interest in stepped and kinked surfaces, there is considerable interest in characterizing these surfaces. Van Hove and Somorjai [1], hereafter VHS, introduced and systematized widely accepted nomenclatures for such surfaces and showed how, from the Miller indices, one can deduce the configuration of the surface. For many purposes, particularly when constructing model surfaces to use in computing energetics [2], one wants to proceed in the reverse direction and find the Miller indices for a specified surface. Thus, our goal was to write down a simple formula for the Miller indices in terms of readily obtainable lengths characterizing a periodically stepped and kinked surface. Our results are fully consistent with and perhaps implicit in VHS; they might best be viewed as modest corollaries or extensions. Nonetheless, we believe it will be helpful to have explicit rather than implicit formulas. In this short paper we focus on surfaces vicinal to the high-symmetry $\{100\}$ and \{111\} faces of fcc crystals. Our approach could readily be generalized to other crystal structures and faces.

Because of its higher symmetry, the (100) face is somewhat easier to treat. Our nomenclature is illustrated in fig. 1. In general we describe the periodically kinked terrace edge by two integers, m_{1} and m_{2}, which multiply \boldsymbol{b}_{1} and \boldsymbol{b}_{2}, respec-
tively, two primitive vectors along the two principal directions of the close-packed step edges and with magnitude equalling the nearest-neighbor spacing. Both vectors have their origins at the "inner elbow" of the kink, i.e., at the site along the edge with the highest coordination. The vector b_{1} is directed along a ($11 \overline{1}$) microfacet step edge: it is perpendicular to both (100) and (111) and so is parallel to vector [011]. Similarly, \boldsymbol{b}_{2} is

Fig. 1. Nomenclature for surfaces vicinal to (100), in this example (163 $\overline{2}$). Here $m_{1}=5, m_{2}=1, n_{1}=3, n_{2}=2$.
directed ale ig a (111) microfacet step edge and is parallel to $14 \overline{1}]$. The integers m_{1} and m_{2} represent the l!igths of the (111) microfacet step edges and 111) microfacet step edges, respectively (in ur its of nearest neighbor distance). Then the vector $m_{1} b_{1}-m_{2} b_{2}$, called e in VHS, connects neigt looring kink "elbows" (or tips or any other commion feature) on the same terrace edge.

We gen rally assume either m_{1} or m_{2} is at most one, is that we have simple kinks or straight steps. (If $b:$ th were taken to be large, the resulting Miller index surface would probably partially fill in the : rge zig-zag of the terrace edge.) We next must caracterize the two-dimensional translation vecto' that would carry one terrace into the next. If we start from an atom in a lower terrace just beyons the tip of a kink in the adjoining upper tern: ce, then the vector is $n_{1} b_{1}+n_{2} b_{2}$, where n_{1} a ad n_{2} are integers. Less ambiguously, one can restate this idea by noting that comparable points an neighboring terraces are connected by a vector, called \boldsymbol{w} in VHS, the projection of which in the (100) plane is $\boldsymbol{w}_{\mathrm{p}}=\left(n_{1}+\frac{1}{2}\right) b_{1}+$ ($n_{2}+\frac{1}{2}$) b_{2}. Assuming m_{1} and m_{2} have no common factor;, the Miller indices for such surfaces are:

$$
\begin{align*}
& (h, k, l) \\
& \quad=\left(2 M \Lambda+m_{1}+m_{2}, m_{1}+m_{2}, m_{2}-m_{1}\right) \tag{1}
\end{align*}
$$

where $M i V \equiv m_{1} n_{2}+m_{2} n_{1}$. A derivation is sketched ir the appendix. If m_{1} and m_{2} are both odd, then $, l, k$, and l are all even and should be divided by 2.

There are a number of checks and observations we cen make about this expression. First, $\boldsymbol{w}_{\mathrm{p}}$ is not uniquely defined: the replacements
$n_{2} \rightarrow n_{2}+, m_{2}, n_{1} \rightarrow n_{1}-j m_{1} \quad$ (for any integer j)
lead to arother such translation vector. This comment follcws immediately from the observation that the V iller indices depend on n_{1} and n_{2} only through the product $M N \equiv m_{1} n_{2}+m_{2} n_{1}$. Second, in th s case only h in eq. (1) depends on $\boldsymbol{w}_{\mathrm{p}}$ or $M N$. Third, by exchanging indices 1 and 2 , one should generate essentially the same substrate. Specifically, we see that h and k are unchanged
while l reverses sign. The new surface is the original reflected through a (001) mirror plane. Fourth, we have constructed the Miller indices so that $h \geq k \geq l$. By using the lattice symmetries, here permutations, inversions, and reflections through principal directions, one can produce other sets of indices that correspond to physically identical substrates.

For straight steps, with edges in $\langle 011\rangle$ directions, either m_{1} or m_{2} vanish, and we get simply

$$
\begin{align*}
(h, k, l) & =[m(2 n+1), m, \pm m] \\
& \rightarrow(2 n+1,1, \pm 1) . \tag{3}
\end{align*}
$$

This result, as well as the others for unkinked steps mentioned below, are listed concisely in table 1 of VHS. For steps with simple kinks, either m_{1} or m_{2} is 1 ; supposing $m_{2}=1$ gives

$$
\begin{align*}
(h, k, l)= & {\left[m_{1}\left(2 n_{2}+1\right)+2 n_{1}+1\right.} \\
& \left.m_{1}+1,1-m_{1}\right], \quad\{100\} \tag{4}
\end{align*}
$$

which reduces to eq. (3) in the limit $m_{1} \rightarrow \infty$. Eq. (4) can be inverted to yield

$$
\begin{equation*}
m_{1}=(k-l) /(k+l) \quad\left(\text { for } m_{2}=1\right) . \tag{5a}
\end{equation*}
$$

(The quotient expression eliminates concerns about a common factor being removed from the indices.) With similar manipulating we can obtain $m_{1} n_{2}+n_{1}=(h-k) /(k+l)$. As emphasized in conjunction with eq. (2), n_{1} and n_{2} are not uniquely defined by the simply-periodic vicinal surface, so that an inversion formula can only be expected to produce n 's which are in the same family (via eq. (2)) as the originals. From eq. (2) we note that since $m_{2}=1$, every integer n_{2} is in this family. For any n_{2}, the corresponding n_{1} is $n_{1}=\frac{h-k}{k+l}-n_{2} \frac{k-l}{k+l} \quad\left(\right.$ for any integer $\left.n_{2}\right)$.

By direct substitution, it is easy to see that eqs. (5a) and (5b) satisfy eq. (4). Changing the value of n_{2} corresponds to changing the indexing parameter j in eq. (2).

The case of jagged step edges, in the <001〉 directions, with $m_{1}=m_{2}=1$, is just a special case of eq. (4):

$$
\begin{align*}
(h, k, l) & =\left[2\left(n_{1}+n_{2}+1\right), 2,0\right] \\
& \rightarrow\left(n_{1}+n_{2}+1,1,0\right) \tag{6}
\end{align*}
$$

The (111) surface has only 3 -fold, not 6 -fold symmetry. As illustrated in fig. 2, we take \hat{b}_{1} and \hat{b}_{2} along [011] and [1 $\left.\overline{1} 0\right]$, so that they are on the edges of (100) and (11 $\overline{1}$) microfacets, respectively. These steps have been called $\langle 110\rangle /\{100\}$ and $\langle 110\rangle /(111)$ [3], indicating their direction and microfacet orientation, or simply A and B, respectively [4]. Again, note that b_{1} and b_{2} are directed from an atom which has highest coordination to one of the neighboring atoms with lowest coordination. (Also, m_{1} now describes the length of the (100) microfacet steps, and m_{2} describes the length of the (111) microfacet steps.) Hence, $e=m_{1} b_{1}-m_{2} b_{2}$ again connects neighboring kink "elbows" (or tips) on the same terrace edge. Starting once more from an atom in a lower terrace just beyond the tip of a kink in the adjoining upper terrace, the vector to a kink apex on the neighboring edge on the lower terrace is $n_{1} b_{1}+n_{2} b_{2}$, where n_{1} and n_{2} are integers. Less ambiguously, again, comparable points on neighboring terraces are connected by a vector with component $\boldsymbol{w}_{\mathrm{p}}=\left(n_{1}+\frac{1}{3}\right) \boldsymbol{b}_{1}+\left(n_{2}-\frac{2}{3}\right) \boldsymbol{b}_{2}$ in the (111) plane. In the appendix we show, with the

Fig. 2. Nomenclature for surfaces vicinal to (111), in this example (14109). Here $m_{1}=4, m_{2}=1, n_{t}=3, n_{2}=4$. The bold lines outline the shaded (111) microfacet of a (14109) unit cell, in this example containing 19 unit cells, as discussed in the appendix.
same caveat as for eq. (1), that the Miller indices for such a surface are

$$
\begin{align*}
& (h, k, l) \\
& \quad=\left(M N+2 m_{1}+m_{2}, M N+m_{2}, M N-m_{2}\right) \\
& \quad M N \equiv m_{1} n_{2}+m_{2} n_{1} . \tag{7}
\end{align*}
$$

Of course, as before, if all three indices are even, we must divide by 2 .

In this case we see that all indices depend on the translation vector between terraces. Again, the replacements of eq. (1) leave the indices invariant, as must be true on physical grounds. Now, however, there is no symmetry involving interchange of subscripts 1 and 2. We also note that $(k-l) / 2=m_{2}$ and $(h-k) / 2=m_{1}$. Since the steps have unit height, these numbers are just the number of (111) and (100) microfacet unit cells, as in eq. (18) of VHS. The number of (111) unit cells is $m_{1} n_{2}+m_{2} n_{1}=k+l$, again agreeing with VHS. Again we have constructed the Miller indices so that $h \geq k \geq l$. A straight A or (100) step has $m_{2}=0$; hence,

$$
\begin{align*}
(h, k, l) & =\left[m_{2}\left(n_{2}+2\right), m_{1} n_{2}, m_{1} n_{2}\right] \\
& \rightarrow\left(n_{2}+2, n_{2}, n_{2}\right) . \tag{8}
\end{align*}
$$

A straight B or (111 $)$ step has $m_{1}=0$; hence,

$$
\begin{align*}
& (h, k, l) \\
& \quad=\left[m_{2}\left(n_{1}+1\right), m_{2}\left(n_{1}+1\right), m_{2}\left(n_{1}-1\right)\right] \\
& \quad \rightarrow\left(n_{1}+1, n_{1}+1, n_{2}-1\right) \tag{9}
\end{align*}
$$

A kinked A or (100) step has $m_{2}=1$; hence,

$$
\begin{align*}
(h, k, l)= & {\left[m_{1}\left(n_{2}+2\right)+n_{1}+1, m_{1} n_{2}+n_{1}+1\right.} \\
& \left.m_{1} n_{2}+n_{1}-1\right] . \quad\{\mathbf{1 1 1}\} \mathrm{A} . \tag{10}
\end{align*}
$$

Inverting, we find
$m_{1}=(h-k) /(k-l) \quad\left(\right.$ for $\left.m_{2}=1\right)$
and, thence, $m_{1} n_{2}+n_{1}=(k+l) /(k-l)$. From eq. (7) we see that, as in eq. (4), the n 's only enter the Miller indices via the product $M N$. With the same reasoning accompanying eq. (5b), we now find
$n_{1}=\frac{k+l}{k-l}-n_{2} \frac{h-k}{k-l} \quad\left(\right.$ for any integer $\left.n_{2}\right)$.

A kinked B or (111) step has $m_{1}=1$; hence,

$$
\begin{align*}
(h, k, l)= & {\left[n_{2}+m_{2}\left(n_{1}+1\right)+2,\right.} \\
& \left.n_{2}+m_{2}\left(n_{1}+1\right), n_{2}+m_{2}\left(n_{1}-1\right)\right] . \\
& \{\mathbf{1 1 1}\} \mathrm{B} . \tag{12}
\end{align*}
$$

Inverting gives
$m_{2}=(k-l) /(h-k) \quad\left(\right.$ for $\left.m_{1}=1\right)$
and $m_{2} n_{1}+n_{2}=(k+l) /(h-k)$. It is now n_{1} that can take on all integer values, so that
$n_{2}=\frac{k+l}{h-k}-n_{1} \frac{k-l}{h-k}$ (for any integer n_{1}).

For jagged step edges, $m_{1}=m_{2}=1$, and
$(h, k, l)=(N+3, N+1, N-1)$,
$N \equiv n_{1}+n_{2}$.
Similar results could be obtained for bec crystals. In that case, of course, the close-packed face is (110) rather than (111), since the stacking is $A B A B$ rather than $A B C A B C$, there is just one kind of step with close-packed spacing along the edge.

Acknowledgements

This work was supported by NSF Grant DMR $91-03031$, including an REU supplement for D.R.E. We benefited from conversations with R.C. Nelson, S.V. Khare, Dr. N.C. Bartelt, Dr. Th. Michely, Professor P.J. Rous and Professor E.D. Williams.

Appendix: Outline of derivation

A surface with Miller indices (hkl) can be decomposed into three types of microfacets, two if the edges are unkinked. If $h \geq k \geq l$, the decomposition is:

$$
\begin{align*}
(h k l)= & \frac{1}{2}(k+l)(111)+\frac{1}{2}(k-l)(11 \overline{1}) \\
& +(h-k)(100) \tag{A.1}
\end{align*}
$$

Following VHS, one can find the ratios of the
areas of each microfacet in terms of the number of unit cells in each microfacet. If

$$
\begin{equation*}
(h k l)=a(111)+b(11 \overline{1})+c(100) \tag{A.2}
\end{equation*}
$$

then, using VHS notation for microfacet surface area ratios:

$$
\begin{align*}
& n_{[h k]]}: n_{[11]}: n_{[1[]]}: n_{[100]} \\
& \quad=\left\{\begin{array}{l}
2: 4 a: 4 b: 2 c \text { if } h k l \text { not all odd, } \\
4: 4 a: 4 b: 2 c \text { if } h k l \text { are all odd. }
\end{array}\right. \tag{A.3}
\end{align*}
$$

For example,
$(14109)=\frac{19}{2}(111)+\frac{1}{2}(11 \overline{1})+4(100)$,
$n_{[14109]}: n_{\{111\}}: n_{[111]}: n_{\{1100]}=2: 38: 2: 8$

$$
=1: 19: 1: 4 .
$$

That is, in each (14109) unit cell there are 19 (111) unit cells, a (111) unit cell, and four (100) unit cells.

Consider steps vicinal to (111). Since the steps are of monatomic height, $n_{[11]}: n_{[100]}$ gives the ratio of the length of the (111) microfacet edge (or B edge) to the length of the (100) microfacet edge (or A edge). In the above example (cf. fig. 2) of a (14109) surface, $n_{[117]}: n_{[100]}=1: 4=m_{2}: m_{1}$. Next, $n_{[114]}$, the number of (111) unit cells, is given by $m_{2} n_{1}+m_{1} n_{2}$, here 19 . In summary,
$n_{[111]}: n_{[11 /]\}}: n_{[100]}=m_{2} n_{1}+m_{1} n_{2}: m_{2}: m_{1}$.
Using eq. (A3):
$m_{2} n_{1}+m_{1} n_{2}: m_{2}: m_{1}=4 a: 4 b: 2 c=a: b: c / 2$
and hence
$a=m_{2} n_{1}+m_{1} n_{2}, \quad b=m_{2}, \quad c=2 m_{1}$.
When inserted into eq. (A.2), eq. (A.6) leads directly to eq. (7).

Similarly, eq. (1) can be derived for surfaces vicinal to (100). In this case,

$$
\begin{align*}
n_{[11]}: n_{[1]]}: n_{[100]} & =m_{2}: m_{1}: m_{1} n_{2}+m_{2} n_{1} \\
& =a: b: c / 2, \tag{A.7}
\end{align*}
$$

so that one inserts into eq. (A2) the values
$a=m_{2}, \quad b=m_{1}, \quad c=2\left(m_{1} n_{2}+m_{2} n_{1}\right)$.

References

[1] M.A. Van Hove and G.A. Somorjai, Surf. Sci. 92 (1980) 489.
[2] D. Wolf, Surf. Sci. 226 (1991) 389;
Z.-J. Tian and T.S. Rahman, Bull. Am. Phys. Soc. 37 (1992) 57;
R.C. Nelson, T.L. Einstein and P.J. Rous, Bull. Am. Phys. Soc. 37 (1992) 56;
R.C. Nelson, T.L. Einstein, S.V. Khare and P.J. Rous, to be published.
[3] Th. Michely an G. Comsa, Surf. Sci. 256 (1991) 217.
[4] S.C. Wang and G. Ehrlich, Phys. Rev. Lett. 67 (1991) 2509.

