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A periodically kinked and stepped surface can be characterized by two integers for each step and two more integers to translate 

one step to its neighbor. In terms of these four integers, we write a simple formula for the Miller indices for fee surfaces vicinal to 

{lOO} and to (111) planes. These useful formulas are extensions of the work of Van Hove and Somorjai [Surf. Sci. 92 (1980) 4891. 

With the recent growth of interest in stepped 
and kinked surfaces, there is considerable inter- 
est in characterizing these surfaces. Van Hove 
and Somorjai [l], hereafter VHS, introduced and 
systematized widely accepted nomenclatures for 
such surfaces and showed how, from the Miller 
indices, one can deduce the configuration of the 
surface. For many purposes, particularly when 
constructing model surfaces to use in computing 
energetics [2], one wants to proceed in the re- 
verse direction and find the Miller indices for a 
specified surface. Thus, our goal was to write 
down a simple formula for the Miller indices in 
terms of readily obtainable lengths characterizing 
a periodically stepped and kinked surface. Our 
results are fully consistent with and perhaps im- 
plicit in VHS; they might best be viewed as mod- 
est corollaries or extensions. Nonetheless, we be- 
lieve it will be helpful to have explicit rather than 
implicit formulas. In this short paper we focus on 
surfaces vicinal to the high-symmetry 1100) and 
1111) faces of fee crystals. Our approach could 
readily be generalized to other crystal structures 
and faces. 

Because of its higher symmetry, the (100) face 
is somewhat easier to treat. Our nomenclature is 
illustrated in fig. 1. In general we describe the 
periodically kinked terrace edge by two integers, 
m, and m2, which multiply b1 and bl, respec- 

tively, two primitive vectors along the two princi- 
pal directions of the close-packed step edges and 
with magnitude equalling the nearest-neighbor 
spacing. Both vectors have their origins at the 
“inner elbow” of the kink, i.e., at the site along 
the edge with the highest coordination. The vec- 
tor b, is directed along a (lli) microfacet step 
edge: it is perpendicular to both (100) and (ll’i) 
and so is parallel to vector [Oil]. Similarly, b, is 

Fig. 1. Nomenclature for surfaces vicinal to (loo), in this 

example (163?). Here m, = 5, ma = 1, n, = 3, n2 = 2. 
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directed ah tg a (111) microfacet step edge and is 
parallel to 1 tli]. The integers m, and m2 repre- 
\cnt the 14: rgths of the (111) microfacet step 
edges and $111) microfacet step edges, respec- 
tively (in ur I [s of nearest neighbor distance). Then 
the vector /*zib, -m,b,, called e in VHS, con- 
nects neigl I boring kink “elbows” (or tips or any 
other comm m feature) on the same terrace edge. 

while I reverses sign. The new surface is the 
original reflected through a (001) mirror plane. 
Fourth, we have constructed the Miller indices so 
that h 2 k 2 1. By using the lattice symmetries, 
here permutations, inversions, and reflections 
through principal directions, one can produce 
other sets of indices that correspond to physically 
identical substrates. 

We gen: rally assume either m, or m2 is at 
most one, s( that we have simple kinks or straight 
steps. (If b: th were taken to be large, the result- 
ing Miller i tdex surface would probably partially 
fill in the ; rge zig-zag of the terrace edge.) We 
next must c’iaracterize the two-dimensional trans- 
lation vecto . that would carry one terrace into the 
next. If we ;tart from an atom in a lower terrace 
just beyonc the tip of a kink in the adjoining 
upper ten: ce, then the vector is n,b, +n,b,, 
where n, :I rd n2 are integers. Less ambiguously, 
one can ret tate this idea by noting that compara- 
ble points (a neighboring terraces are connected 
by a vector, called w in VHS, the projection of 
which in the (100) plane is wP = (n, + +)b, + 
(n, -i- +fbz. Assuming m, and m2 have no com- 
mon factor;, the Miller indices for such surfaces 
are: 

(h, k, i) 

= (2Mf\ + m, + m2, m, + m,, m2 -m,), 

(1) 

where kiJ = m1n2 + m2n,. A derivation is 
sketched ir the appendix. If m, and m2 are both 
odd, then z, k, and 1 are all even and should be 
divided by 2. 

There zre a number of checks and observa- 
tions we ci n make about this expression. First, wp 
is not uniquely defined: the replacements 

n, -+ n2 +Jm2, n, --, n, - jm, (for any integer j) 

(2) 

lead to ant jther such translation vector. This com- 
ment folh ws immediately from the observation 
that the FJ iller indices depend on n, and n2 only 
through t re product MN = mlnz + m2n,. Sec- 
ond, in th s case only h in eq. (1) depends on wP 
or MN. ‘Iluird, by exchanging indices 1 and 2, one 
should g~lnerate essentially the same substrate. 
Specifica’ily, we see that h and k are unchanged 

For straight steps, with edges in (011) direc- 
tions, either m, or m2 vanish, and we get simply 

(h, k, f) = [m(2n+ 1), m, km] 

-+ (2n + t, 1, _t 1). (3) 
This result, as well as the others for ~~k~~ke~ 
steps mentioned below, are listed concisely in 
tabIe 1 of VHS. For steps with simple kinks, 
either m, or mz is 1; supposing m2 = 1 gives 

(h, k, I) = [m1(2n,+ 1) +2n, + 1, 

ml + I,1 -m,], {IOO), (4) 
which reduces to eq. (3) in the limit m, + M. Eq. 
(4) can be inverted to yield 

m,=(k-l)/(k+l) (form,=l). @a) 
(The quotient expression eliminates concerns 
about a common factor being removed from the 
indices.) With similar manipulating we can obtain 
min2 + n, = (h - k)/(k + I>. As emphasized in 
conjunction with eq. (21, 12, and n2 are not 
uniquely defined by the simply-periodic vicinal 
surface, so that an inversion formula can only be 
expected to produce n’s which are in the same 
family (via eq. (2)) as the originals. From eq. (2) 
we note that since m2 = 1, every integer n2 is in 
this family. For any n,, the corresponding n, is 

h-k k-l 
- 

nl=--n~k+l k+t 
(for any integer rr2). 

(5b) 

By direct substitution, it is easy to see that eqs. 
(5a) and (5b) satisfy eq. (4). Changing the value of 
n2 corresponds to changing the indexing parame- 
ter j in eq. (2). 

The case of jagged step edges, in the (001) 
directions, with m, = m2 = 1, is just a special case 
of eq. (4): 

(h, k, I) = [2(n, +n,+ l), 2, O] 

-+ (n, Cn,+ 1, 1,O). (6) 
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The (111) surface has only 3-fold, not 6-fold 
symmet~. As illustrated in fig. 2, we take i, and 
$, along [Oli] and [liO], so that they are on the 
edges of (100) and (lli) microfacets, respectively. 
These steps have been called {llO)/{lOO} and 
(IIO)/~III} [31, indicating their direction and 
microfacet orientation, or simply A and B, re- 
spectively [4]. Again, note that bi and b, are 
directed from an atom which has highest coordi- 
nation to one of the neighboring atoms with 
lowest coordination. (Also, m, now describes the 
length of the (100) microfacet steps, and m2 
describes the length of the (II?) microfacet steps.) 
Hence, e = m,b, - m,b, again connects neigh- 
boring kink “elbows” (or tips) on the same ter- 
race edge. Starting once more from an atom in a 
lower terrace just beyond the tip of a kink in the 
adjoining upper terrace, the vector to a kink apex 
on the neighboring edge on the lower terrace is 
n,b, + n,b,, where n, and n2 are integers. Less 
ambiguously, again, comparable points on neigh- 
boring terraces are connected by a vector with 
component wP = (n, + $16, f (n, - f)b, in the 
(111) plane. In the appendix we show, with the 

same caveat as for eq. (l), that the Miller indices 
for such a surface are 

(h, k, E) 

= (MN+ 2m, +m,, MN+m,, MN-m,), 

MN~m~~~+m~n~. (7) 

Of course, as before, if all three indices are even, 
we must divide by 2. 

In this case we see that all indices depend on 
the translation vector between terraces. Again, 
the replacements of eq. (1) leave the indices 
invariant, as must be true on physical grounds. 
Now, however, there is no symmet~ involving 
interchange of subscripts 1 and 2. We also note 
that (k - 0/2 = m2 and (h - k)/2 = m,. Since 
the steps have unit height, these numbers are just 
the number of (111) and {100) microfacet unit 
cells, as in eq. (18) of VHS. The number of ill11 
unit cells is m1n2 + m2n, = k + I, again agreeing 
with VHS. Again we have constructed the Miller 
indices so that h r k 2 I. A straight A or (100) 
step has m2 = 0; hence, 

(h, k, I) = [m2(n2 + 2), m1n2, m,~1~] 

+(rr,+2, n2, na). (8) 

A straight B or (111) step has m, = 0; hence, 

(h, k, E) 

+-.n ’ 
l-2 

Fig. 2. Nomenclature for surfaces vi&al to (ill), in this 

example (14109). Here m, = 4, mz = 1, n, = 3, n2 = 4. The 

bold lines outline the shaded (111) microfacet of a (14109) 

unit cell, in this example containing 19 unit cells, as discussed 

in the appendix. 

= [m,(n, -t- I), m2(a1 + I), ~(n, - I)] 

-+ (n, + 1, n, + 1, n2 - 1). (9) 

A kinked A or (100) step has mz = 1; hence, 

(h,k,I)=[m,(n,+2)~n,fl,m,n,+n,3-1, 

mfnZ + n, - 31. { lll}A. (IO) 

Inverting, we find 

m,=(h-k)/(k-f) (form,=l) (Ila) 

and, thence, m,n2 + n1 = (k + Z),/(k - 1). From 
eq. (7) we see that, as in eq. (41, the HE’S only enter 
the Miller indices via the product MN. With the 
same reasoning accompanying eq. (5b), we now 
find 

k+E A - k 
n1 = - - n,k_l 

k-l 
(for any integer ~2~). 

(lib) 



{ lll}B. 

inverting gives 

M’= (k-l)/(h-k) 

and ~7t~ni +n, = (k -t 

(121 

(for ml = 1) 034 

El/(/2 - k). It is now IE~ 
that can take on all integer values, so that 

k-t1 k-l 
1x2= - -n,h_ 

h-k 
(for any integer ni). 

For jagged step edges, m, = m, = 1, and 

(h, k, I) = (N+ 3, N-t 1, N- l), 

N=:-rt, tn,. (14) 

Similar results could be obtairred for bee crys- 
tals. In that case, of course, the close-packed face 
is (1 IO) rather than (1 If); since the stacking is 
ABAB rather than ABCABC, there is just one 
kind of step with close-packed spacing along the 
e,dge. 
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Appendix: Outline of derivation 

A surface with Miller indices (hkl) can be 
decomposed into three types of microfacets, two 
if the edges are unkinked. If h 2 k r 1, the de- 
composition is: 

(jzkll = +fk + ~~(~1~) + ;(k - rjpii) 

+fh -k)(BXI). (A.11 

Following VHS, one can find the ratios of the 

areas of each microfacet in terms of the number 
of unit cells in each microfacet. If 

(hkE) ==a(lli) -+bb(lli) +c(loo) (A.21 

then, using VHS notation for microfacet surface 
area ratios: 

2 : 4a : 4b : 2c = 

t 
if hkE not all odd, 

4 : 4a : 4b : 2c if hkl are all odd. 
(A.31 

For example, 

(14109) = T(lil) + #ii) + 4(100), 

nil, 1091: LZf,,,j: t?[,,ij: tZ[,“q = 2 138 12 18 

= 1:19:1:4. 

That is, in each (14109) unit cell there are 39 
(111) unit cells, a (111) unit cell, and four (100) 
unit ceils. 

Consider steps vicinal to (122). Since the steps 
are of ~lonatomic height, nlU1l: ~~~~~*~ gives the 
ratio of the length of the (2211 microfacet edge 
(or B edge) to the length of the (1001 microfacet 
edge (or A edge). In the above example (cf. fig. 2) 
of a (14 1091 surface, ~x~,,T~: nllool = 1:4 = m2 : tn,. 

Next, ql I IIv the number of (111) unit cells, is 
given by m2n, + mln2, here 19. In summary, 

n[,,,l:n[llil:n,lol,)=m,rr, +m,n,:m,:m,. (A.41 

Using eq. (A31: 

m2n1 + mlnZ : m2. ~m,=4a:4b:2c=n:b:cJ2 

IA.3 

and hence 

a = mznl Jr m,n2, b =m,, c = 2tn,. (A.6) 

When inserted into eq. (A.21, eq. (A.61 leads 
directly to eq. (71. 

Similarly, eq. Cl1 can be derived for surfaces 
vicinal to (lOtl1. In this case, 

~ll~ll:~~~l~l:~f~~~f =m2:mi:mifi2 +m2r*i 

=a:h:c/2, (A.71 

so that one inserts into eq. (A2) the values 

a =mZ, b==m,, c = 2(m,n, + M12ul). fA.8) 
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