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The thermodynamic formalism needed to analyze the faceting of surfaces is presented in a format readily applicable to 
experimental observations. Statistical mechanical predictions for the relationship of step and kink energies to the variation of the 
surface tension with orientation are reviewed and combined with the thermodynamic formalism to illustrate the physical 
mechanisms which can cause equilibrium faceting. The results show that faceting may be initiated by any process (such as 
reconstruction or chemical adsorption) which changes surface free energies by amounts comparable to the small (meV/& energies 
of step-step interactions. The application of these methods is illustrated by analysis of our prior observations of faceting of stepped 
Siflll) surfaces, which is driven by the formation of the surface reconstruction. Using a nearest-neighbor square-lattice model with 
elastic step-step interactions to describe the surface, the only adjustable parameters are the kink energies and the step-step 
interaction energies. Given previous measurements of the magnitudes of the step-step interactions, we are able to reproduce 
quantitatively the three different phase diagrams which occur on different azimuths of vicinal Si(ll1). We extract from the fit to the 
data the variation in the difference of surface tension of the 7 X 7 and “1 X l”-(111) surface with temperature, and values for the 
anisotr?py in the step energy in the presence of the 7 x 7 reconstruction. We find that steps in the [jll] direction are at least 10 
meV/A more costly than steps on the unreconstructed surface, and steps in the [2ii] direction are approximately 5 meV/,& less 
costly than steps on the unreconstructed surface. We discuss the requirements for determining absolute energies for steps and 
kinks given thermodynamic observations. 

1. Introduction 

As surface characterization improves, it is in- 
creasingly evident that large scale changes in sur- 
face structure can occur in processes such as 
chemical reaction and growth [1,2]. A particularly 
dramatic example of the lability of surfaces is the 
phenomenon of faceting, in which the surface 
rearranges into a hill-and-valley structure of in- 
creased surface area [3-101. The basic thermody- 
namic principles governing faceting have been 
clear for a very long time [ll], and there is an 
extensive literature of observations of faceting 
[121. However, unambiguous identifications of 
equilibrium faceted surfaces, in sufficient detail 
for thermodynamic analyses to be applied, have 
appeared only recently [13-191. Such observa- 
tions provide an opportunity to obtain informa- 
tion about the anisotropy of the surface tension, 

and about how the anisotropy is influenced by 
adsorption, reconstruction, and temperature. 
Furthermore, when such thermodynamic observa- 
tions are combined with the results of direct 
imaging techniques, such as STM [20], LEEM 
[21], and REM [22], it becomes possible to under- 
stand faceting from an atomic point of view. 

We will describe in the following the general 
thermodynamic and statistical mechanical formal- 
ism which can be used to analyze experimental 
measurements of faceting or to predict the condi- 
tions under which faceting may be expected to 
occur. As an example, we will apply this formal- 
ism to measurements of the faceting of vicinal 
SXlll) surfaces, unifying observations made by 
our group over the past several years [14,15,23- 
311. The structure of one such faceted Si surface 
is illustrated in fig. 1 [32]. The faceting, which has 
increased the surface area by about one percent, 
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Fig. 1. A 2000 ,& x 2000 w scanning tunneling microscope image of the phase separation of a vicinal Si surface. At high 

temperature this surface consisted of a uniform density of steps. (The net surface orientation is 4” from (111) towards [%l].) The 

two “phases” which appear at low temperature are the (7 x 7) reconstructed (111) facets and the unreconstructed step bunches. 

There are 10 steps in each step bunch. The surface normal of the step bunches is temperature dependent [14,15,581. 

Fig. 2. Orientation phase diagrams of vicinal Si at 800°C (left panel) and 820°C (right panel), showing the form of the tie lines at 
various positions in density space. (Following eq. (81, this diagram is a polar plot of tan 4). The X’s mark the macroscopic 

orientations measured. The tie-bars terminate in the filled circles, which mark the observed boundaries of the coexistence regions. 
The shading indicates our estimated extrapolation of the phase boundaries to regions which have not been measured [311. 
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is driven by the formation of a surface recon- 
struction which lowers the surface tension of the 
low-index surface. Using LEED, we have charac- 
terized the orientational phase diagram for vici- 
nal Si surfaces with a range of macroscopic az- 
imuthal and polar angles with respect to the (111) 
orientation, as shown in fig. 2. These data tell us 
which surface orientations exist in phase equilib- 
rium as a function of temperature. Combining 
these data with our additional observations of the 
step structure on the vicinal surfaces using STM 
allows us to interpret the phase equilibrium in 
terms of a simple model of step energetics. The 
adequacy of the chosen model is assessed by its 
quantitative applicability to a number of observa- 
tions and by the physical significance of the ener- 
getic values deduced from the model. As we will 
show, it is possible to reconstruct a very complex 
set of phase transitions using a small set of ad- 
justable parameters. 

2. Thermodynamic methodology 

Gibbs [33] recognized that surfaces will spon- 
taneously rearrange to minimize their total sur- 
face tension, even if this involves an increase in 
surface area. Herring [ll] quantified the condi- 
tions for a surface to break up into a hill-and-val- 
ley, or faceted, structure in terms of the orienta- 
tional variation of the surface tension. For the 
case of a surface of an orientation fi,,, where fi is 
a unit surface normal, to phase separate to two 
new orientations fi, and fi, as illustrated for the 
two-dimensional case in fig. 3, the requirements 
are simply that net orientation is conserved, and 
that total surface tension is reduced: 

Aa& =A@, +A,&, (1) 

&?@I) >&+CJ +A,?+&), (2) 
where y is the surface tension and Ai is the area 
of the surface of orientation rii. One approach to 
evaluating the stability of surfaces based on these 
criteria is the construction of a Wulff plot to 
determine the equilibrium crystal shape [11,34- 
371. Surfaces which do not exist on the equilib- 
rium crystal shape are unstable with respect to 
faceting to orientations present on the equilib- 
rium shape. 

Fig. 3. A surface will be unstable with respect to faceting if 

the total surface tension decreases in going from the upper 

panel to the lower panel. Notice that the projected areas Ai 

are additive (analogous to volume in fluids, and in contrast to 

the total areas). The requirement of conservation of macro- 

scopic orientation, given by eq. Cl), is illustrated in the insert. 

Unfortunately, the relationship between the 
orientational variation of the surface tension and 
the surface stability is cumbersome to apply 
quantitatively. A more easily applied approach to 
evaluating the conditions for faceting is to define 
a free energy for which the standard convexity 
arguments familiar to phase separation in fluids 
apply [38-411. To make this analogy with phase 
separation we need to define a “specific free 
energy” f, an extensive parameter A’ (analogous 
to “volume”) related to the surface area, and a 
corresponding “density”, p. We will choose the 
definitions of these parameters such that the con- 
vexity requirement for phase separation in terms 
of these variables is: 

A; =A; +/I;, 

Abf(P,) >&R&J +A;,fPp,Y 

A;, Pa-PO _=_ 

A: PO-PIT’ 

(3) 

(4) 

(5) 
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Geometric considerations illustrated in fig. 3 im- 
mediately show that the definitions of the exten- 
sive “area” parameter and the “specific surface 
free” energy which satisfy eqs. (3) and (4) are the 
projections of the true area and the surface ten- 
sion into a reference plane of orientation 2, 

fi=E. 
I 

(7) 

We will refer to f as the reduced surface tension 
and A’ as the projected area. Chernov noted that 
the appropriate thermodynamic density should be 
the step density p = tan 4 [39]. When we define 
the surface orientation in spherical coordinates 
by defining a polar angle 4, illustrated in fig. 3, 
and an azimuthal angle 0, we find by manipulat- 
ing the vector components of eq. (1) that the step 
density is a vector, and that either of its two 
components can satisfy eq. (5): 

pi = tan +i cos 8,, (8a) 

or 

p; = tan 4i sin Bi, (8b) 

if we choose the reference plane as a low index 
surface for which the polar angle 4a is zero (such 
that Eii . ri = cost#~, and eqs. (6) and (7) have corre- 
spondingly simple forms). We thus can apply the 
convexity requirement to orientational phase sep- 
aration between two orientations ri, and fi, by 
considering the reduced surface tension as a 
function of the vector density defined by eq. (8) 
as illustrated in fig. 4. We can construct the 
tie-bars relating the phases in equilibrium accord- 
ing to the geometric requirement that the tie-bars 
be tangent to the reduced surface tension at the 
two points ri, and 2,. (This can be expressed 
equivalently as requirements on the equality of 
the intensive parameters conjugate to A’, px and 
p4. I421.l 

As illustrated in fig. 5, the magnitude of ther- 

modynamic density of eq. (8), p = ,/m = 
tan 4, can be interpreted physically as the step 
density on a vicinal surface. The two components 
are the step density projected onto the high sym- 
metry direction (x1 and an orthogonal direction 

r a 

Fig. 4. Orientational phase separation occurs when a “hill- 

and-valley” structure has a lower total surface tension than a 

flat surface, as in eqs. (2) and (4). This translates into a 

convexity requirement on the “reduced surface tension” 

(which is analogous to a Helmholtz free energy) versus either 

component (eq. (8)) of the step density, 6. The figure illus- 

trates a non-convex surface tension curve which would lead to 

faceting. The illustrated curve is schematic only: the form 

shown would occur physically only if there are attractive 

interactions between steps strong enough to overcome en- 

tropic and elastic interactions. The phase separation is indi- 

cated by the tie-bar connecting points a and b. For a macro- 

scopic orientation p^u the relative areas of the orientations p^, 

and bb are found from eq. (9, as illustrated in the figure with 

X, /Xh = (P, - PJ/(P” - PIJ = AL/A:. 

(y). The azimuthal angle 0 in this description is 
the angle between the average direction of the 
step edge and the direction perpendicular to a 
high symmetry reference direction on the facet. It 
is thus physically related to the density of kinks 
on the step edge [43]. This physical interpretation 
of the density components becomes particularly 
useful in interpreting observed orientational 
phase diagrams in terms of atomic models of the 
surface, as discussed in section 3. Statistical me- 
chanical descriptions of stepped surfaces use the 
step and kink densities as the fundamental units 
of the structure to predict how the surface ten- 
sion varies with orientation in terms of model sets 
of energetic parameters. By comparison with 
these predictions, it is possible to extract informa- 
tion about the energetics of stepped surfaces 
from experimental observations of orientational 
phase separation. We will illustrate this process 
below for surfaces with orientations near a low- 
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index plane. The statistical mechanical descrip- 
tion of the variation of the reduced surface ten- 
sion with orientation which we will use is [35]: 

f(4,@, T) =fOW + “: T) [tan 41 

+g(e, T)ltan +13, (9) 
where f’(T) =f(O, 0, T) is the surface tension of 
the reference plane, /3(0, T) is the free energy 
cost per unit length of creating an isolated step, h 
is the step height, and g(B, T)I tan 4 / 3 is the 
free energy cost per unit area due to step-step 
interactions. The variations of the step formation 
and step interaction terms with both temperature 
and azimuthal angle 8 are governed by the kink 
energy E. For temperatures well below the rough- 
ening transition of the low-index surface, specific 
functional forms for /3 and g can be derived for 
specific atomic models of the stepped surface, 

Fig. 5. A surface vicinal to a high index surface will be 
composed of a density of steps and kinks determined by the 
misorientation angles 0 and 4. The number density of steps is 
tan 4 = p = h/(l), where h = the step height and (I) = the 
distance between steps. When we define a reference direction 
in the reference surface for which the azimuthal angle 0 
equals zero, the number density of kinks is tan 0 = a,/(d), 
where a, is the kink depth and (d) is the average distance 
between kinks. In thermal equilibrium there will be a distribu- 
tion of step-step and kink-kink separations, leading to step 
wandering. Perfectly periodic spacings are shown in the figure 

simply for clarity. 

and used for quantitative analysis of experimental 
observations as discussed in section 3. 

An orientational instability may arise from the 
intrinsic variation of the surface tension with 
orientation, as is illustrated in fig. 4. However, 
real vicinal surfaces are most often observed to 
be stable with respect to faceting [7,44], so we can 
expect that a monotonic variation of free energy 
with angle, such as described by eq. (91, will 
usually be appropriate for clean surfaces. In con- 
trast, orientational instability (faceting) is fre- 
quently induced by chemical adsorption or by 
structural phase transitions. As proposed by Cahn 
[45], this can be understood by considering that 
the additional process completely alters the ori- 
entational variation of the reduced surface ten- 
sion, resulting in intersecting curves as shown in 
fig. 6. In this case the phase separation occurs not 
only between different orientations, but also be- 
tween different compositions (in the case of ad- 
sorption) or structures (in the case of phase tran- 
sitions). In the following, we will present an anal- 
ysis of the conditions governing phase separation 
in the case of such intersecting curves. In fig. 6, 
we illustrate three types of phase separation that 
might occur for a surface of arbitrary polar and 
azimuthal angle ($o, 0,) near to a low index 
orientation (4 = 0). The three cases are: (1) sepa- 
ration to two arbitrary orientations, 4,, ea and 
$I~, eb for which the reduced surface tension is 
smoothly varying (differentiable); (2) separation 
between an arbitrary orientation b,, 8, and an 
orientation &,, 8, = 0 where there is a singularity 
in the reduced surface tension for 8, = 0; and (3) 
finally separation between an orientation 4,, 8, 
= 8, and the orientation of the low index surface 
&, = 0 when there is a cusp in the reduced sur- 
face tension for the low-index surface. The pro- 
jection of the tie-bar into the tan 4-0 plane for 
each of the three cases, and the variation of the 
reduced surface tension of the two phases with 
appropriate components of the step density are 
shown in fig. 6. 

2.1. Case 1 

In order to have a tie-bar between points a 
and b when the reduced surface tension has no 
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cusps, there must be a plane which is tangent to 
the two reduced surface tension curves at both 
points a and b. This requirement results in three 
equations which specify that the two components 
of the slope must individually be equal, and that 

a plane of the overall slope actually intersects 
both points. If we define px and py axes, corre- 
sponding to 8 = 0” and 90”, respectively, as in fig. 
6a, three equations determined by these condi- 
tions are, first, that the slopes (which can be 

a 

a 
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viewed as the orientational chemical potentials or 
“torques” [46]) at the two points are the same: 

( lOa) 

(lob) 

Va( 4 7 4% ) 
+(P,“-PZ) apa 

x P: 

+ (Pi -PJ) 
?fd %I 3 4% 1 

apa * (11) 
Y P: 

When we have a specific expression for the varia- 
tion of the reduced surface tension with orienta- 
tion, we can evaluate these expressions explicitly. 
Using eq. (91, and the formalism outlined in the 
appendix, allows us to obtain the relationships: 

a.6 Pi 

apxp, I 
= h_COS 8, + 3gi tat124i COS ei 

i 

1 aPi agi 
- -~ 

hi a tan 8 + 
~ tan24i 
a tan 8 I 

tan ei 
X- 

i 1 cos 8, ’ 
(14 

afi Pi 
- = ksin ei + 3g, tan2+i sin ei 
ap, L PX 

i 

1 aPi 

+ -~ 

agi 

hi 3 tan 8 
+ ~ tan2& 

a tan 8 

1 
X- 

i 1 cos ei * 
(13) 

Combining eqs. (lo)-(131, with IZO assumptions 
about the forms of the parameters p and g, gives 
the general result: 

f,” -f,” = 2g,(e,, TIltan &I3 

- 2g,(e,, TIltan &13, (14) 

where the difference in the surface tension of the 
two phases at 4 = 0 is Af’(T) =f,” -f,“. This 
result shows that phase separation can occur for 
any process that changes the surface tension of 
the neighboring low-index surface by an amount 
comparable to the contribution of the step-inter- 
action energy to the surface tension. 

2.2. Case 2 

In the second type of phase separation, illus- 
trated in fig. 6b, we imagine that the reduced 
surface tension for one of the phases, fb, has a 
knife-edge singularity along the high symmetry 
direction, eb = 0. In this case we cannot require 
that the y-component of the tie-bar be tangent to 

Fig. 6. A change in surface composition (e.g. due to adsorption or segregation) or structure (e.g. due to a phase transition) can 
change the variation of the surface tension with orientation. If the curve for a “perturbed” surface, labeled b, intersects that of the 
“unperturbed” surface, labeled a, then the convexity requirement illustrated in fig. 4. will lead to orientational phase separation. 
The new surface orientations exposed will have the vector densities 6, and &. The surfaces of orientation 6, will have the 
composition or structure of the “unperturbed” phase, and those of orientation & will have the composition or structure of the 
“perturbed” phase. The figure illustrates schematically how intersecting free energy curves lead to faceting. In the left hand 
column are shown the variation of the projected surface tension with one component of the vector density, eq. (8). Because the 
intersecting curves lead to a projected surface tension curve which is not convex, there is a region of unstable orientations, leading 
to step rearrangement to form facets. The corresponding projections of the phase diagrams into the S-4 plane are shown in the 
right hand column. The three general types of tie lines one might expect from the faceting of vicinal surfaces: (a) No cusps are 
involved. The convexity requirement is applicable to the variation in reduced surface tension with both components pr and pY of 
the step density. (The variation with pX is shown.) Thus eqs. (lo)-(14) determine the misorientation angles of the two phases. (b) If 
there is a knife-edge cusp along a high symmetry direction, one of the ends of the tie line can intersect the cusp, removing one of 
the tangency requirement, and replacing it with the inequality of eq. (15). Cc) If there is a deep cusp in the surface tension at the 
low-index surface (c$ = O), one of the ends of the tie line can intersect the cusp, leading to phase separation in the polar angle, 
leaving the azimuthal angle fixed. In this case the convexity requirement on the free energy is expressed in terms of the magnitude 

of the step density, rather than its vector components, as in eq. (16). 
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the reduced surface tension curve at 8, = 0, and 
we lose the requirement of eq. (lob). However, 
for phase separation to 8, = 0 to occur, the slope 
of the reduced surface tension curve as it ap- 
proaches et, = 0 must be greater than the slope of 
the tie-line. Thus eq. (lob) can be replaced by an 
inequality corresponding to 

(15) 

Eq. (lOa) remains valid. Because the slope of the 
tie-bar must still match the tangent of free energy 
curve for phase a, the form of eq. (14), which 
describes the difference in the surface tension 
between the two phases, is also unchanged. The 
derivatives of the reduced surface tension of phase 
b, eqs. (12) and (13), are simplified in form as 
8, = 0. 

2.3. Case 3 

In the final type of phase separation, illus- 
trated in fig. 6c, we imagine that the reduced 
surface tension for one phase has a cusp-like 
singularity at +b = 0. In this case we have no 
information about the behavior of the system 
with azimuthal angle, so we are reduced to two 
independent equations describing the system, 
rather than three. Furthermore, because of the 
cusp, the requirement on the slope becomes an 
inequality which can be written most usefully as: 

Eq. (14) still remains valid because of the require- 
ment that the slope of the tie-bar matches the 
tangent to the free energy of curve a, but it is 
simpler in form since $b = 0: 

AfO =f,” -fz = 2g,(B,, T)]tan 4aj3. (17) 

3. Statistical mechanical methodology 

Extracting specific values for atomic energies 
from thermodynamic observations is always 

fraught with problems of uniqueness. For the 
particular case of stepped surfaces, the thermody- 
namic behavior is completely defined by the ten- 
dency of steps to wander, with the result that one 
can obtain unique information about the step 
“stiffness” (defined below) which characterizes 
step wandering [43]. To proceed from a value of 
the stiffness to a determination of the character- 
istic energies of the system, one must choose a 
reasonable microscopic model using either as- 
sumptions or additional information available 
about the system. It is sensible to begin this 
process by invoking the simplest possible micro- 
scopic model that can produce the phenomena of 
interest. One then uses the observations to fit the 
microscopic energies of this model. In evaluating 
how well the energies thus determined describe 
the true physical energies of the system, consis- 
tency of all observations with the model is neces- 
sary of course, but not sufficient. Our goal in the 
analysis of the Si(ll1) data will be to find the 
minimal parameter set sufficient to describe our 
observations, and to use it to extract estimates for 
the values of the step and kink energies. We will 
then discuss the extent to which these model-de- 
pendent values can be used to understand the 
physical step and kink energies. In the course of 
the analysis, we will also evaluate the general 
questions of what physical factors are important 
in determining faceting, and what the important 
energy scales are. 

In this spirit, we present specific predictions 
for the parameters of eq. (9) in terms of a near- 
est-neighbor square lattice model, with the addi- 
tion of a long-range repulsion between steps. 
There are three energetic parameters in this 
model: the energy cost p(0, 0) per unit length of 
creating a step at T = 0 in the high symmetry 
(0 = 0) direction, the energy E of creating a single 
kink of depth a, (depth is defined normal to the 
step edge), and the magnitude of the step-step 
repulsions. More complex models, including kink 
corner energies [43,47], non-linear variation of 
kink energy with kink size [43], kink-kink interac- 
tions [48], honeycomb symmetry, and different 
forms for the step-step interactions 149-511 can 
be considered with correspondingly more com- 
plex forms of the equations below. 
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The leading term in the expression for the 
surface tension as a function of orientation, eq. 
(91, is the linear variation of the surface tension 
with step density. The coefficient of this term, 
p(0, T), is the free energy per unit length of an 
isolated step. For arbitrary temperatures, the step 
free energy can be calculated using forms for the 
interface energy for the Ising model with both 
isotropic [52] and anisotropic [41] near-neighbor 
interactions. The use of isotropic interactions is 
equivalent to assuming a square lattice in which 
the zero-temperature energy cost of steps equals 
the kink energy per unit length, p(O, 0) = ~/a~, 
where ak is the length of the kink edge (a, 2 a,, 
with the equality occurring when the kink is per- 
pendicular to the step edge). The square-lattice 
model is a reasonable zeroth-order approach for 
the high-symmetry Si(ll1) surface which will be 
discussed in section 4. However, for a lower sym- 
metry surface, such as Si(100) [47,53], the kinks 
and steps have different bonding configurations, 
and thus a rectangular lattice model, for which 
one would use the anisotropic calculation, would 
be more appropriate. The results of the Ising 
model analogy give the step free energy for steps 
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in the high symmetry direction, 0 = 0, as 

~(0, T) =p(O, 0) - (ISa) 

where up is the minimum separation between 
kinks along the step edge. At low temperatures, 
this equation can be approximated by [31]: 

2kT 
p(O, T) =P(O> 0) - - 

UP 

( 18’3) 

Analytical expressions for the variation of 
/?(0, T) with tan 0 for all temperatures less than 
the Ising critical temperature (kT, = 1.13~) can 
be obtained for the symmetrical case with the 
substitution of E = 25 in the formulas given in 
ref. [52], and for the anisotropic case with the 
substitutions, p(O, 0) = 2./,/a, and E = 2J, in ref. 
[54]. The full isotropic formula, which we use in 
section 4 for analyzing the experimental observa- 
tions on Si(lll), is: 

$V’, T) = I cos Blsinh-l[~(e)jcos el] 

+Isin 8lsinh-‘[a(8)lsin 011, 

( I9a) 
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Fig. 7. The free energy per unit length of a step /3(t9, T) calculated for the square nearest-neighbor lattice model, using eq. (19). (a) 

Step energy versus temperature for several values of the net azimuthal angle. (b) Step energy versus tangent of the azimuthal angle 

for several values of the temperature. When the temperature is high relative to the kink energy E, step wandering lowers the step 

free energy and makes it relatively isotropic. When the temperature is low, there is a significant energy cost to changing the 

orientation away from the high-symmetry direction. 
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where 

a(e) = 2 
1 

1 -cc2 
i/2 

c 1 + (sin220 + c2 ~0~~20)“~ 1 ’ ( 19b) 
and 

2 sinh( &/kT) 

’ = cosh2(&/kT) ’ ( 19c) 

At T = 0, the step energy reduces to 

P(O, 0) = P(0, 0) cos 13 + c/sin el, (20) 
P 

where p(O, 0) = E/U~ in the isotropic case. The 
form of eq. (20) indicates a cusp in the step 
energy at 8 = 0. At any non-zero temperature the 
entropy contribution due to the random distribu- 
tion of kink sites removes the cusp at 0 = 0. 
However, differentiation of eq. (19) with respect 
to 8 shows that the transition from zero slope to 
a large positive slope occurs at extremely small 
values of 8 for values of &/kT 2 5. Thus, behav- 
ior which appears experimentally very much like 
the knife edge singularity discussed in section 2.2 
may be observed for large kink energies or low 
temperatures. The variation of the step free en- 
ergy with temperature and with kink density, 
tan 8, calculated using eq. (191, is shown in fig. 7. 
The slopes of the P-tan 8 curves, which are 
important in evaluating eqs. (12) and (13), are 
calculated numerically for the analysis of 
section 4. 

The final term in the expression for the step 
free energy is due to the interactions between 
steps. The form and magnitude of this term are 
determined by step wandering due to thermal 
excitation of kinks, as well as any energetic inter- 
actions between the steps such as elastic or dipo- 
lar repulsions. This wandering can be described 
by the “step diffusivity”, b2(0, T), which can be 
calculated as the mean-square displacement of 
the step edge when there are no kink-kink inter- 
actions [43]. Closed forms for the step diffusivity 
can be calculated for the case where no overhang- 
ing kinks exist, the unrestricted TSK (terrace- 
step-kink) model. For steps along the high-sym- 

metry direction 8 = 0, these equations are rea- 
sonably applied for kT < E, the kink energy. 
Within this approximation, the expression for the 
step diffusivity is easily shown to be [43]: 

b2(T) 22, 
-= 

a f (1 -zJ2’ 

where 

z0 = exp( - &/kT) . 

(21) 

For steps with a misorientation angle 0, there is 
an intrinsic kink density proportional to tan 8. 
Within the TSK approximation, the derivation of 
the step diffusivity including the dependence on 
azimuthal angle yields [43] 

b2(e’ T, = tan28 

4 

where 

+ 
h + C\i( 1 + tan28) D - C2 tan28 

C2-D 

(22)’ 

D = 42: + ( C2 + C) tan2f3, 

and 

c= 1 +z& 

This equation is valid only for small values of 8, 
as overhangs quickly become important for 8 2 5”. 
In order to calculate the diffusivity at arbitrary 
angles, one can use its relationship to another 
important quantity, the step-edge “stiffness” 6 
via [55,56] 

B(fh T) = 
kTa, 

b2(e,z-) c0s3e' 
(23) 

The step edge stiffness can in turn be calculated 
from its relationship to the step free energy 
p(e, T): 

&e, T) =P(e, T) + 
a2w, T) 

302 . (24) 

The step edge stiffness diverges at T + 0 for 
high-symmetry (0 = 0) steps, which makes direct 
calculation of the diffusivity using eqs. (21) or 
(22) useful at low temperature or small angle. 



E.D. Williams et al. / Facetting of stepped Si(ll1) 229 

The variation of the step diffusivity with angle, 
calculated using eqs. (191, (23) and (241, is shown 
in fig. 8. 

Once an expression for the step stiffness or 
diffusivity is obtained, it can be used to evaluate 
the step-step interaction term, g(8, T) in eq. (9). 
The general form for this term, valid when the 
step diffusivity is much smaller than the square of 
the average step separation [35,57], is 

g(e, T) = 
rr2kTb2( 8, T) 

48a,h3 

1 
l/2 2 

(25a) 

for step-step interactions of the form U(x) = 
A/x2. The temperature dependence of this term 
depends on two characteristic energies, the kink 
energy and the interaction energy. The variation 
of the step interaction term with kink density, 
tanf3, is shown in fig. 9 for a specific ratio of the 
step interaction strength A to the kink energy E. 
A useful limiting form for the step-step interac- 
tions for A = 0 is, 

g(e, T) = 
r2kTb2( 8, T) 

12a,h3 * (25b) 

ok! 0:3 0:4 0:5 

tan0 

Fig. 8. The step diffusivity b*(B, T) as a function of azimuthal 
angle, calculated from eqs. (23) and (24), using the values of 
the step free energies shown in fig. 7. The diffusivity increases 
with kink density and with temperature. By E //CT = 5, b* has 

reached its T = 0 limit. 

0.0 

E/kT = 2- 

pl).___ 
3r&_,. 

Fig. 9. The contribution of step interactions to the reduced 
surface tension coefficient, g(0, T), as a function of the 
azimuthal angle, calculated using eq. (25) with the values of 
the diffusivity shown in fig. 8. The strength of the step-step 
interaction used in the calculation is A/a,& = 0.22. The 
magnitude of the interaction coefficient increases with in- 

creasing step wandering. 

For low temperature and misorientation angle, 
the step diffusivity goes to zero and another sim- 
ple form results: 

7T2A 
g(e-+o, T-0) = - 

6h3 . (25c) 

Finally, we will also need to consider the varia- 
tion of the step interaction term g(0, T) with 
tan8. If all the e-variation enters through b2(8, T) 
(in other words, if the step-step interaction 
strength A is independent of angle, as it should 
be for elastic interactions on surfaces with three- 
fold or higher symmetry), we find easily that 
ag/atan 8 --) 0 at 8 = 0. The values of the deriva- 
tive at non-zero angles were calculated numeri- 
cally from eq. (25a) for the analysis of section 4. 

4. Analysis 

We will apply the analysis developed above to 
the orientational phase diagram of Si(lll1 illus- 
trated in fig. 2 [17]. In particular, we will concen- 
trate on the orientational phase separations that 
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Table 1 
The measured values of the angles at the phase boundaries 
illustrated in fig. 2 are listed below for a few selected temper- 
atures, which will be used in the following for quantitative 
analysis 

T PC) Reference direction 

[Zll] iii21 

da 6b 4, % 4b eb 

1845 &’ - 6.7” 8.6” - - 
820 8” 0” 8 17” 5.7” 0” 
800 10” 0” 9” 21” 5.7” 0 
770 12” 0 11” 26” 5.7” 0” 
645 18” 0” 

RT 20” 0 - 14” - 40” 5.7” 0 

Graphical presentations of the complete phase boundaries 
with respect to temperature have been published previously 
[14,15,17,27,68]. In addition, previous observations have shown 
that for orientations exactly on the [ii21 axis, faceting does 
not occur. Along this azimuth, the transition temperature at 
which both the surface reconstruction and the step height 
changes is independent of the polar angle [28]. The subscript 
a refers to the high-temperature “1 X 1” phase, and the sub- 
script b refers to the low-temperature 7 X 7 phase. 

we have previously characterized using LEED 
[14,15,17], which appear as tie-bars in fig. 2. Nu- 
merical values for the measured boundaries of 
the phase diagrams are listed for a few tempera- 
tures in table 1. As we have shown previously, 
these phase separations occur in reversible phase 
transitions, which are driven by the formation of 
the 7 x 7 reconstruction of the (111) surface. The 
faceted surfaces represent phase coexistence be- 
tween two different orientations, on one of which 
the 7 x 7 reconstruction exists, and on the other 
of which there is the structure of the high-tem- 
perature “1 x 1” phase [58]. Thus, in order to 
analyze these transitions according to the 
methodology of section 2, we must have informa- 
tion about the high-temperature, unreconstructed 
phase. We are fortunate that lovely studies of 
step behavior on vicinal Si(ll1) surfaces at high 
temperature have been performed using REM 
[22,59,60]. Alfonso et al. [60] have made direct 
observations of the wandering of isolated steps. 
Their results show that at 9Oo”C, the step edge 
stiffness is 6.8 x lo-* eV/A. Using eq. (231, we 
can use this result to estimate the step diffusivity 

b*(900”C) = 5.7 A*, and thus from eq. (21) the 
kink energy E = 0.18 eV for the high-temperature 
phase [61]. This value of the kink energy is consis- 
tent with their observation that sublimation pits 
are roughly circular at 9OO”C, as calculations of 
the two-dimensional crystal shape within the 
isotropic Ising model show that the shape is close 
to circular to temperatures as low as kT = 0.4~ 
[54]. Alfonso et al. [60] have also measured the 
distributions of step-step separations for a large 
range of step densities, and have shown that the 
width of the step distribution is linear in the 
average separation with a slope between 0.29 and 
0.34. Analysis of their results gives the step-step 
interactioon energy U, = A,/f *, where A, = 0.12- 
0.22 eV A and 1 is the step-step spacing [62,63]. 

For analyzing the phase separations of fig. 2, 
we will also make use of the extensive body of 
existing information concerning the 7 x 7 recon- 
struction which is present at low temperature. 
LEEM studies of the formation of the 7 X 7 phase 
transition have shown that the reconstruction nu- 
cleates differently on steps misoriented toward 
the [zll] and the [2ii] directions [64]. This behav- 
ior is consistent with the crystallographic aniso- 
tropy of the phase diagram of fig. 2. The aniso- 
tropy is also consistent with REM observations of 
etching spirals at 8Oo”C, from which the step free 
energy in the [2ii] was estimated to be 1.2-1.25 
times lower than that in the [%‘ll] direction [59]. It 
is also consistent with observations of the near- 
triangular shape of islands of Si grown on Si(ll1) 
[65]. Recent high-temperature LEEM [29,66] and 
STM [67] measurements have shown that the 
thermal motion of the step edge slows to unob- 
servability as soon as the 7 x 7 reconstruction is 
complete. This suggests that all step rearrange- 
ments that occur below the 7 x 7 transition tem- 
perature (see fig. 2) must take place by motion of 
steps in the 1 X 1 phase. We have previously used 
STM to characterize step and kink distributions 
below the 7 X 7 transition temperature on sur- 
faces misoriented along the [2ii] direction. From 
those studies, we showed that (1) the terraces and 
kinks are quantized in the 7 x 7 unit cell 1251, (2) 
there are no thermally excited 7 x 7 kinks on the 
steps (which we assume were equilibrated at about 
800°C [63,67]), and (3) the step distribution is 
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consistent with a step-step interaction energy Table 2 

U, = A,/12, where A, = 0.4 f 0.1 eV A [631. Energy values for steps on the [?l l] azimuth 

4.1. Phase separation along [,%I/ and [Ii01 
T g,(‘A T) Af a CT) Pb-i% P, (0, T) 

PC) (meV/A*,z) (meV/i*i?) (meV/& (meV/& 
(lower limit) (from eq. (19)) 

From LEED and HRLEED measurement of 
the temperature dependence of the orientational 
phase diagram, we have shown that the phase 
separation along these azimuths was between 4 
< 0.2” for the 7 x 7 phase and &J > &, the 
macroscopic polar angle, for the 1 x 1 phase. 
Measurements of the phase separation using X- 
ray diffraction [68] and RHEED [69] have also 
been made. These results suggest that phase sep- 
aration occurs to a cusp in the surface tension of 
the 7 X 7 phase at 4 = 0”. STM images of the 
facets [70-731, as shown in fig. 1 [321, confirm this 
hypothesis by showing that there is in fact no step 
density on the 7 x 7 facets. We can therefore 
treat this phase separation as an example of a 
case 3 phase transition, as discussed in section 2, 
with the 7 x 7 phase corresponding to orientation 
i& where 4 = 0, and the 1 x 1 phase correspond- 
ing to orientation fi,. We thus should be able to 
obtain one equality, and one inequality among 
the parameters governing the surface tensions of 
the two phases. Given the value of the step-step 
interaction in the 1 x 1 phase, and the value of 
tan(+,(T)) from the phase diagram, we obtain 
the equality by using eq. (17) to determine the 
variation in the difference in the surface tension 
of the two phases Af’(T) in the (111) plane with 
temperature. The numerical results are listed in 
table 2. The difference is very small: even 200°C 
below the transition, where 4, is approximately 
18”, the surface tension of the 7 x 7 phase is only 
approximately 1 meV/A2 smaller than that of the 
1 X 1 phase. The value of the change in surface 
tension is reasonable on thermodynamic grounds: 
the derivative of the surface tension with respect 
to temperature is a specific entropy. One expects 
that the difference in entropy of two phases near 
a thermally driven first order transition to be on 
the order of k, per atom. A change in y of about 
1 meV/A2 over a temperature range of 200 K 
corresponds to a difference of entropy (which is 
proportional to a latent heat [24]) of 0.6 k, per 
surface atom. The general significance of the 

845 15*5 0 39+1 
820 14k5 0.1 f 0.03 3*1 40+7 
800 14k5 0.2 * 0.05 4+2 40+7 
710 14*5 0.3 + 0.1 6~t2 41*7 
645 12+4 0.8 f 0.3 12k4 43+7 

The subscript a refers to the high temperature “1 x 1” phase, 
and the subscript b refers to the low-temperature 7 x 7phase. 
The values E - 0.18 + 0.02 eV and A = 0.15 + 0.05 eV A were 
used in eqs. (22) and (25) to obtain the step-interaction 
prefactor, g(0, T), and thus using the values of the phase 
boundary from table 1, the difference in the surface tension 
Af O(T) of the 1 x 1 and 7x 7 phases from eq. (14). The lower 
limit on the difference in the step free energies, was calcu- 
lated from eq. (26). The absolute value of the step energy in 
the 1 X 1 phase, B&O, T), was calculated using eq. (19) with a 
kink energy e = 0.18 f 0.02 eV. The uncertainties listed in the 
table reflect the error bars on the parameters: the effect of 
experimental uncertainty in the phase diagram is reflected in 
the limited number of significant figures in the reported 
values. 

small calculated value is the fact that changes in 
the surface tension of such small magnitude are 
sufficient to cause faceting of the surface. This is 
a direct result of eq. (171, which relates the differ- 
ence in surface tension to the difference in the 
step interaction terms. The magnitude of the step 
interactions on Si(ll1) is consistent with the value 
expected if the interactions are mediated by the 
surface stress [63,74,75]. Since the surface stress 
is comparable in magnitude on most materials, 
and is likely to be the dominant effect in step 
interactions, the magnitude of the change in sur- 
face tension needed to allow faceting should also 
be comparable for any surface. 

From the inequalities of eqs. (15) and (16), we 
can obtain additional limiting information about 
the differences of the step and kink energies in 
the two phases. We had speculated previously 
that the phase separation was driven by an in- 
crease in the step-formation free energy in the 
presence of the 7 X 7 reconstruction [14,15,24,27]. 
The physical interpretation is that an unfavorable 
step energy in the 7 x 7 phase causes the steps to 
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segregate into bunches which maintain the 1 x 1 
reconstruction, leaving large unstepped regions of 
7 x 7 structure. Such segregation is, of course 
opposed by the increased step interactions caused 
by the smaller step-step separations in the 1 x 1 
phase. We can now quantify this interpretation by 
using eq. 06) to obtain: 

P,(O, T) -P,(O, T) > 3g8(0, T)h, tan’&, (26) 

where we have assumed that the step heights are 
the same in both phases, h, = h,. From eq. (261, 
we now confirm the qualitative interpretation, 
and determine that the minimum magnitude of 
the difference required to cause faceting is set by 
the strength of the step-step interactions. We 
can use eq. (25a) to obtain the value of g&O, T) 
using the kink energy of E = 0.18 eV. In order to 
obtain a feeling for the effect of statistical uncer- 
tainty on the value of the kink energy, a 10% 
uncertainty is assigned to the value of the kink 
energy in the calculation. The result is shown in 
table 2. We obtain the most stringent inequality 
by using a point on the phase diagram with the 
largest change in angle. Thus, using a tempera- 
ture 200°C below the transition, we find that the 
lower limit on the difference in step free energies 
required ty cause faceting can be small, A@(T) 2 
12 meV/A. As noted above, the small magnitude 
of this value is determined by the step-step inter- 
actions, and thus is a general result with signifi- 
cance for any process which changes the step 
energies. If we use eq. (19), with E = 0.18 eV, to 
compute the value of the step free energy in the 
1 X 1 phase, /3.&O, T) as shown in the last column 
of table 2, we can then estimate the absolute 
energy of the [zll] step edge in the 7 x 7 phase to 
be Pb(O, T) 2 55 meV/A, or 1.5 eV/7 X 7 unit 
cell edge. In the isotropic model for step/kink 
energies, this number would also give the kink 
energy in the 7 x 7 phase of approximately 1.5 
eV, corresponding to &/kT i= 15 at the transition 
temperature. 

4.2. Phase separation along [2ii] k 0 

The behavior of Si(ll1) vicinal surfaces along 
the [2iil azimuth is completely different from 
that along the [jll] azimuth [28,76]. Surfaces 

exactly on the [2ii] azimuth are orientationally 
stable, and the reconstructive transition tempera- 
ture is independent of the angle of miscut. Upon 
cooling through the phase transition temperature, 
the surfaces maintain the original polar angle, 
and the step structure changes to a mixture of 
single- and triple-height steps, with the fraction 
of triples increasing with increasing polar angle. 
We have determined that the mixtures occur due 
to a competition between the step-step repulsion 
energy and a small energy cost for forming a 
triple-height step from three single-height step!, 
AE = P,(T = 0) - 3P,(T = 0) = 0.1 meV/A 
[63,75,77]. However, surfaces misoriented by an 
azimuthal miscut with respect to the [2ii] phase 
separate to a finite polar angle on the [2-i?] 
azimuth, and to another orientation with larger 
polar and azimuthal angles, as illustrated in fig. 2 
and table 1. On the basis of the LEED and STM 
data, we postulate that the variation of reduced 
surface tension of the 7 x 7 phase with azimuthal 
angle 0 is close to a knife-edge singularity along 
the [2ii] azimuth. This is equivalent to assuming 
that the energy cost for kinks in the 7 x 7 phase is 
large, so that eq. (20) is a reasonable approxima- 
tion to the variation of step energy with azimuth. 
The large kink energy would then drive the orien- 
tational phase separation by making expulsion of 
the kinks to a 1 x 1 surface of larger azimuthal 
miscut energetically favorable. Under this approx- 
imation, this phase separation can be described 
by the equations of case 2 (section 2.2), discussed 
in section 2. Thus, we are able to specify the 
parameters governing the phase separation with 
two equalities and one inequality. An interesting 
aspect of the observed phase separation is the 
fact that the polar angle of the 7 x 7 phase re- 
mains fixed as both the polar and azimuthal an- 
gles of the 1 x 1 phase change dramatically. As 
we will show below, this result is a natural conse- 
quence of the geometry of the transition. 

The first equality is eq. (141, which gives us the 
difference in surface tension between the (111) 
facet with 1 X 1 and with 7 X 7 reconstruction. 
We have determined this value above from the 
data for the polar phase separation. Here we will 
determine it independently from the data for the 
azimuthal phase separation. In this case, the dif- 
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ference is determined by the strength of the 
step-step repulsions in the two phases, which is 
affected by the non-zero azimuthal angle in the 
1 x 1 phase. If we assume that the kink energy in 
the 7 x 7 phase is much larger than the thermal 
energy, then we can use eq. (2%) to estimate 

gb - r2Ab/6h3 = 0.022 f 0.006 eV/A* for 
single-height steps, and one third of this value, 
g, = 0.007 f 0.002 eV/A* for triple-height steps. 
The value of the step interaction term can be 
calculated using eq. (25a) with the estimated kink 
energy of the 1 x 1 phase, E = 0.18 5 0.02 eV [781. 
The values are listed in table 3, along with the 
calculated value of the difference in the surface 
tension. The values of Af’(T) are in excellent 
agreement with those calculated from the data on 
phase separation in the [zll] direction, indicating 
internal consistency of the model. 

The equality of one slope of the free energy 
curves (eqs. (lOa> and (12)) allows us to obtain 
information about the differences of the step and 
kink energies between the two phases. We have 
speculated previously that this azimuthal phase 
separation occurs due to a large energy cost for 
kinks in the presence of the 7 x 7 reconstruction 
[17]. Thus at the transition temperature there is a 
strong driving force for steps to be oriented along 
the high-symmetry direction in the presence of 
the reconstruction. The expelled kinks segregate 

into regions of 1 x 1 structure, which must also 
develop a large step density for the surface to 
preserve the macroscopic orientation. Thus we 
can qualitatively predict that the energy saving 
due to expulsion of the kinks from the 7 x 7 
phase must be greater than the energy cost of 
forming kinks and steps in the 1 x 1 phase, as 
well as the energy cost of the step-step interac- 
tions in the 1 X 1 phase. We can quantify this 
prediction by using eqs. (lOa> and (12) for the 
special case of 8, = 0, resulting in a convenient 
form for the second equality describing this phase 
separation: 

P,(%, ‘) case _ Pb(O, T, 

ha a hb 

= 3g,(O, T) tan2+, 

- 3g,( 13,) T) tan*+, cos 8, 

tan 8, 
X- 

cos 8, ’ 
(27) 

Using the values of the angles listed in table 1 
and the step interaction terms listed in table 3, 
and explicitly evaluating the azimuthal derivatives 
of the 1 x 1 phase, gives the difference between 

Table 3 
Energy values for steps near the [Zii] azimuth 

T (“0 g, (0, T) 

(meV/i22) 

Af” (T) 

(meV/i22) [G],, [&I,. 
0 

(meV/A) (meV/A2z) 

P, cos ea - fPb O (meV/A) 

845 17 + 5 2fl 10 +_ 2 _ 

820 19 f 5 0.09 f 0.03 3+ 1.5 16 + 3 - 1’7:: 
800 20 f 5 0.14 f 0.04 4* 1.5 19 * 3 -2’0.1 

1.6 

770 21 f 5 0.30 f 0.07 3k 1.5 25 f 3 -3*2 

The subscript a refers to the high-temperature “1 x 1” phase, and the subscript b refers to the low-temperature 7 X 7 phase. The 
values E = 0.18 f 0.02 eV and A = 0.15 f .05 eV A were used in eqs. (24) and (25) to obtain the step-interaction prefactor for the 
1 X 1 phase, These values were used with g,(O, T) = 0.007 + 0.002 eV/A2 and the values of the phase boundary from table 1, to 
obtain the difference in the surface tension Af’(T) of the 1 X 1 and 7 x 7 phases from eq. (14). The values of the slopes of the step 
energy and the step interaction term in the 1 X 1 phase were calculated numerically from eqs. (19) and (25). The difference in the 
step energies in the 1 X 1 and 7 X 7 phase was calculated using eq. (271, with the assumption that the height of the step in the 7 x 7 
phase is 3 times that in the 1 X 1 phase. The uncertainties listed in the table reflect the error bars on the input parameters: the 
effect of experimental uncertainty in the phase diagram is reflected in the limited number of significant figures in the reported 
values. 
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Table 4 
Energy values for steps near the [2ii] azimuth 

T P, (0, T) Pb (0, T) 

PC) (meV/A) (meV/A) 
(triple-height 

(meV/A) 
0 

steps) fmeV/A) 
(lower limit) (eq. (19)) 

845 39*7 _ 93 
820 40+7 119+ 17 52+11 94 
800 41+7 119+15 65*12 95 
770 42+7 121 f 14 87+ 12 98 

The subscript a refers to the high-temperature “1 x 1” phase, 
and the subscript b refers to the low-temperature 7 x 7 phase. 
The value E = 0.18+0.02 was used in eq. (19) to obtain the 
step energy p&e, T) in the 1 X 1 phase, and thus using the 
values from tables 1 and 3, the energy of triple-height steps 
&JO, T) in the 7 x 7 phase. The lower limit of the slope of the 
step energy in the 7 x 7 phase was calculated using eq. (28) 
and values from tables 1 and 3. The slope of the step energy 
was calculated by evaluating eq. (19) with a kink energy of 3.2 
eV, and then numerically differentiating the result at 0 = 0.05”. 
The uncertainties listed in the table reflect the error bars on 
the input parameters: the effect of experimental uncertainty 
in the phase diagram is reflected in the limited number of 
significant figures in the reported values. 

the step free energies in the two phases of 
p, cos 8, - i/3,, which is listed in table 3. The 
result indicates that steps are slightly more favor- 
able in the 7 x 7 phase than in the 1 x 1 phase 
along this azimuth. Consequently, there is no 
tendency for a large decrease in density of steps 
in the reconstructed phase during the phase sepa- 
ration. This allows us to understand why the 
polar angle of the 7 X 7 phase decreases only 
slightly during azimuthal phase separation. 

It is now possible to estimate the free energy 
of triple-height steps in the 7 x 7 phase by calcu- 
lating the step energy in the 1 x 1 phase, assum- 
ing E, = 0.18 f 0.02 eV, and adding the result to 
the difference calculated from eq. (271, as shown 
in table 4. The result is the same, 120 k 15 
meV/& at all three temperatures, indicating in- 
ternal consistency in the calculation. If we use the 
result mentioned above, that the energy cost for 
forming a triple-height step from three-single 
height steps is negligibly small [63,75,77], we can 
estimate the cost of a single height step0 in the 
7 x 7 phase to be pple = 40 f 5 meV/A along 
the [2iil azimuth. In the symmetric model for the 

step, we can also estimate the kink energies for 
both single and triple height steps in the 7 X 7 
phase to be the step energy times the length of 
the 7 x 7 unit cell, giving, and .Y?‘~ - 1.1 f 0.13 
eV, and &ziple = 3.2 k 0.4 eV. (If we chose to 
consider the anisotropic Ising model to describe 
the step energy, with the kinks on steps of this 
symmetry having the structure of the [zll] step 
edge, then these estimates of the kink energies 
would increase by about 35%.) 

We can check the internal consistency of the 
kink and step energies estimated in the previous 
paragraph by using the inequality for this case 
which can also be obtained using eq. (15). The 
result is 

I ap, 1 a&i -___ 
h, a tan 8 e,=o - h, cos 8, a tan 8 0 a 

sin ea 

aga tan2+, 
+p - 

a tan 13 8. cos 8, ’ (28) 

The lower limit for the slope of the step energy in 
the 7 X 7 phase calculated using eq. (28) is listed 
in table 4. To check the internal consistency of 
the model, we can compare this value with the 
slope calculated using the symmetric Ising results, 
eq. (191, using a kink energy of 3.2 eV. The result, 
shown in the last column of table 4, is in each 
case greater than the lower limit, confirming that 
the simple model proposed is adequate to de- 
scribe the observations. 

4.3. The orientational phase diagram of vicinal 
Si(l II) 

In the preceding two sections, we have ana- 
lyzed the phase boundaries of the two observed 
faceting transitions. The parameters that we have 
extracted from this analysis are sufficient to allow 
us to calculate the reduced surface tension for 
vicinal SXlll) as a function of both polar and 
azimuthal angle, and thus the complete orienta- 
tional phase diagram. A comparison of the calcu- 
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Table 5 
Parameters to describe the complete phase diagram of Si(ll1) 

7 x 7 phase 

[zll] azimuth (single-height steps) 

[Zii] azimuth (triple height steps) 

E 

(eV) 

> 1.5 

3.2 

A 

(eV A) 

0.40 

3.6 

p (0, 800°C) 
0 

(meV/A) 
(eqs. (91, (19)) 

> 55 

120 

g (0, SOOT) 

(eV/i*) 
(ects. (91, (25)) 

0.022 

0.007 

1 X 1 phase 

[zll] and [2ii] azimuth 0.18 0.15 40 0.014 

The parameters needed to describe the complete phase diagram of Si(ll1) within a nearest-neighbor square lattice model with 
elastic step-step interactions are the kink energies E and the step-step interaction strength A in the high- (7 x 7) and low- 
(“1 X 1”) temperature phases, and the temperature variation of the difference in the surface tension Af O(T) of the two phases on 
the singular (perfectly oriented) (111) surface. Near the transition we have calculated the rate of variation of the difference in 
surface tension Af’(r) AT with temperature to be 3.5 X lop6 eV/A*. K, as shown in tables 2 and 3. The values for the kink 
energies and the step interaction energies deduced from experimental observations are listed in the table. Representative values of 
the step energies p(0, Z’) and the contribution of the step interactions g(0, T) along the two high symmetry directions calculated 
using these values are listed in the next two columns. For the 7 X 7 phase, the kink energies are large enough that thermal 
excitations at the transition temperature are negligible, and the step and interaction terms are independent of temperature. For the 
1 X 1 phase, the temperature dependence of these terms is small but not zero, as listed in table 2. 

3.0 

T=T, 

(4 
0.0 y 

I I I I 

0.00 0.05 0.10 0.15 0.20 

tan+ 

2.5 - 

04 

O.OO~ 

tan+ 

Fig. 10. Intersecting reduced surface tension curves, calculated with the parameters of table 5, at the temperature of the 7 x 7 and 
“1 X 1” phase transition on the (111) facet, T, = 845°C. As the temperature decreases, the difference in surface tension on the 
facet, A f o(T), between the two phases changes, causing the two curves to sweep through each other. The nature of the intersection 
of the two curves determines the orientational phase diagram. The rate of change of Af O(T) with temperature was determined by 
fitting the experimental data to be 3.5 X 10m6 eV/i*. K. (a) The two reduced surface tension curves calculated for a surface 
misoriented along the high-symmetry [zll] direction. The intersection of the curves leads to faceting. The transition temperature is 
depressed with increasing angle, such that the (simultaneous) appearance of the 7 x 7 reconstruction and the faceting appears 
about 60°C below 7’, for surfaces with step density of 0.2 (miscut angle about 113. (b) The two reduced surface tension curves 
calculated for a surface misoriented along the high symmetry [2ii] direction. The two curves overlap almost perfectly at the 
transition, with the result that the transition occurs within a temperature range of less than *SC over the entire range of step 

densities shown (corresponding to a miscut of up to 14”). 
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lated phase diagram with the experimental obser- 
vations of fig. 2 is the final consistency check on 
the results of the analysis above. The parameters 
that will be used for this final check, as well as 
some representative values of the terms in the 
expression of eq. (9) for the reduced surface 
tension are listed in table 5. To calculate the 
orientational phase diagram, we first calculate 
the reduced surface tension curves for the 7 X 7 
and 1 x 1 phases, and then use eqs. (lo)-(141 to 
evaluate the positions of the tie-bars. The first 
step in this process, calculation of the reduced 
surface tension, is illustrated in fig. 10. The re- 
duced surface tension curves at 845°C the transi- 
tion temperature on the (111) facet, are shown in 
fig. 10 for the two high symmetry orientations of 
the surface. For the [zll] direction, the variation 
of the reduced surface tension with step density is 
distinctly different for the high- and low-tempera- 
ture phases. As the relative surface tension of the 
two phases on the facet (4 = 0) changes with 
temperature, the intersection of the two curves 
moves to larger and larger values of the polar 
angle 4, leading to the faceting which is observed 
experimentally. In contrast, in the [2ii] direction 
the reduced surface tension curves of the two 
phases are very similar in shape. As a result, the 

two curves cross completely within +5”C of the 
transition temperature. Thus, along this azimuth, 
the calculated reconstructive transition tempera- 
ture is independent of the macroscopic polar 
angle &, and the surface is orientationally stable 
as observed experimentally. The calculated full 
two-dimensional phase diagram is shown in fig. 
11. The calculation reproduces quantitatively all 
the experimental observations. In particular, two 
initially puzzling experimental observations, the 
angle-independent phase transition temperature 
along the [2ii] azimuth, and the temperature-in- 
dependent polar angle in the azimuthal phase 
separation, are predicted naturally within the 
simple model chosen to describe the surface. 

4.4. Physical interpretation of the energetic 
parameters 

It is clear from figs. 10 and 11 that the model 
used, a square nearest-neighbor lattice with 
step-step interactions, can reproduce quantita- 
tively all of our experimental observations. Given 
the simplicity of this model, it is not obvious how 
accurately the energetic parameters calculated 
represent the true energies of the surface. To 
address this issue, we consider how the energy 

Fig. 11. Calculated orientation phase diagrams of vicinal Si at 800°C (using Af O(T) = 0.13 meV/A? and 820°C (using 
Af O(T) = 0.08 meV/k), showing the form of the tie lines at various positions in density space. (Following eq. (81, this diagram is a 
polar plot of tan 4.) The tie-bars indicate phase separation between orientations of the high-temperature “1 X 1” structure, which 
exists in the shaded regions, and the low-temperature 7 x 7 structure which is stable along the [2ii] axis and on the (111) surface. 

The X’S and the heavy tie-bars show the experimental observations (also shown in fig. 2). 
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scale is set within our model. The three energies 
which we put into the model initially are the 
step-step interaction energies in the two phases 
and the kink energy in the high-temperature 
phase. The determination of the step-step inter- 
action energies is independent of any of the as- 
sumptions of the statistical model used to de- 
scribe the step structure; thus the parameters 
that are determined primarily by the step interac- 
tions will be the least affected by the details of 
the lattice model. These parameters are the dif- 
ference between the surface tension of the two 
phases (eqs. (14) and (17)), and the difference 
between the step energies in the two phases (eq. 
(26) and column 4 in table 2, and eq. (27) and 
column 5 in table 3). In contrast, the choice of 
the kink energy (0.18 eV) which we used for the 
high temperature phase is strongly influenced by 
the lattice model under consideration. Within the 
square-lattice model, the value chosen is the 
highest energy consistent with both the observa- 
tion of a symmetric shape for two-dimensional 
pits. However, if we allowed anisotropy in the 
model, or if we chose a different lattice symme- 
try, such as a honeycomb lattice [80,811, then 
larger values of the kink energy would be consis- 
tent with the observations, including the mea- 
sured value of the step stiffness [60]. (A larger 
value of the kink energy would also be more 

consistent with Chadi’s estimates of step energies 
[79].) Thus our calculated values which depend 
on the absolute value of the kink energy in the 
high temperature phase are model dependent, 
and may be quite different from their physical 
counterparts. The quantities in particular for 
which this is true are the absolute values of the 
step energies in both phases, and the step energy 
in the high temperature phase. The dependence 
of the calculated values on model symmetry and 
on the value of the kink energy is illustrated in 
table 6. The results show that changing the kink 
energy by a factor of two, and changing from 
square to rectangular symmetry affects the calcu- 
lated differences in surface tension and step en- 
ergy only slightly. In contrast, the absolute values 
of the step energies scale roughly linearly with 
the kink energy. 

In summary, since we find that the simplest 
description of the steps is adequate to reproduce 
the thermodynamic observations, we cannot ex- 
pect to be able to use such observations to de- 
duce information about the appropriate statistical 
mechanical Hamiltonian. Furthermore, the ther- 
modynamic observations are not sufficient to set 
the absolute energy scale. Independent observa- 
tions of step-step interaction energies are needed 
to obtain believable estimates of the differences 
in energies between the two phases. To deter- 

Table 6 

Illustration of the effect of model symmetry, and changes in the energy scale through the value of the kink energy E in the 1 X 1 

phase 

E (eV) 

(1 x 1 phase) 

P, (0, 0) 
0 

(meV/A) 
(1 x 1 phase) 

Af” (645°C) 

(meV/Z?) 

Ps (0, 0) - P, (0, 0) 
(meV/A) 

(single-height steps) 

[Zlll 12iil 
azimuth azimuth 

Pb (O,O) 
0 

(meV/A) 
(single-height) 

[Zlll 

azimuth 

Pb (0, 0) 
0 

(meV/A) 
(triple-height) 

[2iii 
azimuth 

0.18 47 0.8 > 12 -7 > 55 120 
0.36 94 0.6 >9 -7 > 101 260 

0.18 94 0.8 > 12 -7 > 106 260 
0.36 188 0.6 >9 -5 > 197 544 
0.18 23 0.8 > 12 -6 > 35 53 

The first two rows show values for a square-lattice model of the step edge, i.e. with e/ap = p (0, 0). The next two rows show values 

for a rectangular lattice model with e/an = 0.5p (0, 0). The last row shows values for a rectangular lattice model with e/ap = 2p 
(0, 0). Differences in the surface tension and differences in the step energy are changed little by changes in the symmetry or 

absolute energy scale. The calculated absolute values of the step energies Pb (0, 0) in the low-temperature (7 X 7) phase scale 

roughly linearly with the value used for p, (0, 0). 
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mine accurate absolute values of step energies 
from an analysis of the experimental observa- 
tions, one also needs to have independent infor- 
mation on the symmetry and energy scale of the 
system. For Si(lll), the accuracy of the values 
determined from the analysis of the observed 
phase diagrams could be increased dramatically 
given an accurate value of the kink energy and 
structure in the relatively simple “1 x 1” phase. 

5. Conclusions 

We have described in detail the thermody- 
namic formalism of orientational phase separa- 
tion induced by a first-order change on the low- 
index surface, and shown how orientational sta- 
bility can be understood in terms of microscopic 
energetic parameters of the surface. A particu- 
larly important, and general, point which derives 
from this presentation is the role of step-step 
interactions in setting the energy scale of the 
problem. As shown in eqs. (14) and (171, a pro- 
cess which changes the surface tension by amounts 
comparable to the step-interaction term in the 
free energy is required to induce an orientational 
instability. It is reasonable to assume that on 
most surfaces the magnitude of the step interac- 
tions will be comparable to the stress-mediated 
interactions on Si(ll1) [82]. Thus using eq. (251, 
we find that processes which change the surface 
tension by amounts on the order of only one 
meV/A*, which is easily accomplished by either 
adsorption or reconstruction, are necessary to 
induce faceting. To obtain a sufficient condition 
for faceting, there must also be changes of com- 
parable magnitude in either the step or kink 
energy [83] to satisfy eqs. (10). 

As a specific example, a quantitative and suffi- 
cient condition for phase separation between a 
facet and a step bunch to occur is obtained by 
combining eqs. (17) and (26). In physical terms, 
the result is that if the perturbing process affects 
the surface tension of a facet and the energy cost 
of steps with opposite signs, it will lead to step 
bunching. (E.g. if the perturbation simultaneously 
decreases (increases) the surface tension of a 
facet and increases (decreases) the energy cost of 

steps, it will lead to step bunching with the per- 
turbation concentrated on the facet (step bunch).) 
Thus given rather qualitative information about 
how a process (such as adsorption, reconstruction 
or deposition) affects facet, step and kink ener- 
gies, it is generally possible to predict whether or 
not the process will cause faceting. 

Using the thermodynamic and statistical me- 
chanical formalism described in sections 2 and 3, 
we have illustrated, with the specific example of 
vicinal surfaces of Si(lll1, how to analyze obser- 
vations of phase separation to extract information 
about the surface energetics. This process is gen- 
erally applicable. One must be aware, however, 
that given only the phase diagrams, the energetic 
values determined are specific to the model and 
may not represent physical energies. However, if 
additional information is known independently, 
then accurate determination of the physical ener- 
gies is possible. It should increasingly be reason- 
able to expect that good estimates of step interac- 
tion energies will be available, determined either 
from experimental determination of stress [84- 
871, or from theoretical calculation of stress 
[74,88], or from direct measurement of step distri- 
butions [30,50,53,60,89-911. With this information 
one can find good estimates of the change in 
facet surface tension, and of the differences in 
step/kink energies between the two phases from 
the observations of the phase separation. If, in 
addition, one has a good measurement [47] or 
calculation of the kink energy and symmetry in 
one phase [92], then it will be possible to make an 
accurate determination of the overall variation in 
surface tension with orientation for both phases. 

For our specific example of SK1 111, we are 
able to obtain physically meaningful estimates of 
the differences in free energy between the 7 X 7 
and “1 x 1”’ phase as a function of temperature, 
and for the differences in energy between the 
steps in the two phases. However, as we do not 
have an unambiguous determination of the kink 
energy/structure in the high temperature phase 
to set the absolute energy scale of our calcula- 
tions, the specific numbers calculated for the step 
and kink energies are model dependent. Approxi- 
mating the steps on the surface within the sim- 
plest possible model, a square near-neighbor lat- 
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tice, allows us to determine the internally consis- 
tent (but model-dependent) energies listed in 
table 5. The values which we have determined for 
the step energies are particularly interesting: for 
the high-T “1 5 1” structure we obtain p(O, 01 = 
47 _t 5 meV/A for both of the high symmetry 
directions; for single height steps on the 7 X ,7 

reconstructed surface, p(0, 0) > 55 + 8 meV/A 
for the [zll] orientation, and p(O, 0) = 40 k 5 
meV/A for the [2ii] orientation. We can put 
these values in context of other measurements 
and calculations of the energetics of Si surfaces. 
From Chadi’s estimates [79], the difference in 
step energies (without consideration of the 7 X 7 
reconstruction) in the two, directions should be 
approximately 160 meV/% substantially above 
our lower limit of 15 meV/A. Our relative values 
are consistent with the experimental result that 
the step energy anisotropy is 1.2-1.25 [59]. Our 
values are also consistent with a recent estimat: 
of the step energy of approximately 40 meV/A 
based on a direct observation of the Si crystal 
shape [93]. Our values are substanti$ly lower 
than calculated values of 260 meV/A for the 
[zll] steps, and 140 meV/A for the [2ii] steps, 
which were obtained using an empirical potential 
with a 1 X 1 structure for the surface [94]. As 
would be expected based on bond counting argu- 
ments, the step energies for Si(ll1) are substan- 
tially higher than the values of 3-7 and 23-39 
meV/A for the two types of steps on Si(100) 
[47,95]. The physical significance of the magni- 
tude of the step energies can be seen by compar- 
ing the step energies to the surface tension. The 
ratio of @/h>/f” is equal to the ratio of the 
facet width to the crystal radius [36]. The surface 
energy of Si(ll1) is approximately 90 meV/A2 
[96-981. Using the values for the step energies 
above, we find that the width-to-radius ratio of 
the (111) facet will be greater than 0.14. This 
value is surprisingly small from bond-counting 
determinations of the equilibrium crystal shape 
which give a ratio of l/a [99] and somewhat 
smaller than observed in the shape of small cavi- 
ties in Si [93,100]. However, it is consistent with 
observations of a large range of stable surface 
orientations for Si [101,102] which suggest a 
smooth crystal shape. By combining our observa- 

tions with information based on semi-empirical 
[ 1031 and first principles calculations [97,98,1041 
of the energies of Si surfaces, it is reasonable to 
expect that a quantitative, predictive understand- 
ing of Si morphology will soon be a reality. 
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Appendix 

In deriving eqs. (lo)-(171, we wish to begin 
with a thermodynamic function, the reduced sur- 
face tension f, expressed in terms of thermody- 
namic step and kink densities tan 4 and tan 8, 
and take its partial derivatives along two orthogo- 
nal directions, on which both 0 and 4 are vary- 
ing. The geometry of interest is illustrated in fig. 
12. We evaluate the derivatives by first writing 
the differential off in terms of p = tan 4 and 
77 = tan 19: 

df=; d,+$ 
I I 

dq. 
1) P 

(A-1) 

Fig. 12. Coordinate transform. Illustration of the relationship 
between the x-y and the 0 - 4 coordinate systems. 
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We can the evaluate the partial derivatives with 
respect to x and y, giving 

:l,=~~V:lY+~~,~lY~ 
(A.2a) 

and 

(A.2b) 

The partial derivatives of p and 77 with respect to 
x and y can be evaluated using the geometrical 
relationships: 

x=tan C#I cos 8, (A.3a) 

y=tan C#J sin 19, (A.3b) 

tan 8 =y/x, (A.3c) 

x2 +y2 = tan2+. (A.3d) 

The resulting forms for the partial derivatives of 

f are: 

af af 
axy=apq I I 

(A.4a) 

and 

(A.4b) 

which lead directly to eqs. (12) and (13) with the 
substitution px =x and pv =y. 
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