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In a two-dimensional lattice-gas framework, the size and the effect of multisite (lateral) interactions 
between chemisorbed atoms (and between surface atoms in reconstruction systems) are assessed. The 
computation of such interactions, using relatively crude approaches, is surveyed. The effects of such 
interactions are discussed, in particular their role in producing asymmetries in temperature-coverage 
phase diagrams. 

I. Introduction 
For many adsorption systems, particularly chemisorbed 

atoms on transition metals, the adatoms are strongly bound 
to specific sites on the substrate. The barrier to diffusion 
is some moderate fraction of this energy, and the (lateral) 
interaction is a considerably smaller fraction. For such 
systems, it is a good approximation to describe the 
statistical mechanics of the adatoms in terms of a two- 
dimensional lattice-gas model. (These models are also 
useful in describing the reconstructions of some transition- 
metal surfaces.) In such models, the single-adatom binding 
energy can be absorbed into the chemical potential, so 
that the key energies in the 2-d systems are the interactions 
between adatoms on nearby sites. Most studies assume 
that only pairwise interactions are needed to describe the 
measurable properties of the adsorbates. The goals of 
this article are to assess how valid it is to neglect multisite 
interactions and to describe some of the consequences of 
such interactions when they are not negligible. 

The first part of this article treats the computation of 
multisite interactions between chemisorbed atoms (or 
atoms in the top layer of a reconstructing surface). The 
low symmetry of the problem generally precludes the use 
of self-consistent, local-density calculations. Initially, 
crude tight-binding models gave some insight into the 
general behavior of such interactions. A variety of later 
schemes, using both one-electron theory and additional 
correlation effects, were applied to specific systems. After 
summarizing this work, we discuss more recent results 
using the semiempirical embedded-atom method, and 
related schemes. 

The second part of the article considers the observable 
effects of these interactions, in particular on the equilib- 
rium statistical mechanics of surface systems. Since the 
mapping between lattice models and spin models has 
proved very helpful in understanding adsorbate behavior, 
we detail the nonlinearity of the relationship between 
lattice-gas three-site interactions and three-spin inter- 
actions in their Ising model counterparts. Thus, a 
seemingly modest three-spin term can correspond to an 
unphysically large trio-Le., trimer with constituent pairs 
subtracted-interaction. It is widely believed that any 
three-site interaction will break “particle-hole” symmetry 
in the lattice-gas model and so lead to gross asymmetries 
in the temperature-coverage phase diagram. We report 
specific results for systems with a coexistence region around 
the symmetry axis at  half-saturation coverage; we also 
present a specific counterexample for a system with a pure 
phase around this coverage, in which two distinct trio 
configurations are required to produce noticeable asym- 
metry in the phase boundary. A simplistic argument 
rationalizes this behavior. We more generally describe 
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many of the phase diagrams computed with the inclusion 
of trio interactions, using two methods that are reliable 
in two dimensions, Monte Carlo and transfer-matrix finite- 
size scaling. We also discuss evidence for trio interactions 
using field ion microscopy and scanning tunneling mi- 
croscopy. Trios can determine whether small clusters of 
adatoms tend to be compact or linear. 

11. Computation of Multisite Interactions 
The computation of lateral interactions between atoms 

chemisorbed on metallic or semiconductor substrates has 
presented a stern challenge to solid-state theorists. With 
self-consistent-field, local-density, total-energy calcula- 
tions, one must study ordered overlayers with a moderate 
fraction of a monolayer coverage. Such computations 
produce barely enough information to assess pair inter- 
actions-the total energy of a system with two adatoms 
in close proximity minus the corresponding energy with 
the adatoms widely separated. There is little hope of 
gauging multisite interactions. The most promising 
technique, discussed earlier by Feibelman, appears years 
away from being able to investigate multisite effects. To 
address these problems currently, we must therefore resort 
to either tight-binding models or semiempirical (or em- 
pirical) approaches, which give insight into qualitative 
behavior and suggestions of orders of magnitude but are 
incapable of providing reliable quantitative information. 
Readers who nonetheless find these approaches distasteful 
(as did some participants of the conference) should skim 
the latter part of subsection II.A, then skip to section 111, 
and imagine the multisite interactions as phenomenolog- 
ical parameters. It is useful to begin by recapping relevant 
results reported over a decade ago (with some minor 
updates) in my review1 of the general topic of indirect 
interactions. 

A. Results as of a Decade Ago. For polar bonds, the 
dipolar interaction produces a pairwise repulsion (of size 
1.25 eV times the two dipoles in debyes over the separation 
R cubed in angstroms) but no multisite contribution. For 
the weak van der Waals interaction, which dominates only 
in the physisorption case (but see ref 2), there is the Ax- 
ilrod-Teller-Muto R-9 triple- (fluctuating-) dipole inter- 
action, which is repulsive in all important cases. Its 
magnitude is at most 3% (for Ar) to 5% (for Xe) of the 
corresponding pair interactions if all distances are set at  
the equilibrium spacing. This effect is not of concern here, 
but for an interesting application, see ref 3. 

For chemisorption bonds, it is generally believed that 
once the adatoms are separated by about a couple substrate 
(1) Einstein, T. L. In Chemistry and Physics of Solid Surfaces; Van- 

selow, R., Ed.; CRC Press: Boca Raton, FL, 1979; Vol. 2, p 261. 
(2) Gallagher, J.; Haydock, R. Surf. Sci. 1979, 83, 117. 
(3) Klein, J. R.; Bruch, L. W.; Cole, M. W. Surf. Sci. 1986, 173, 555. 
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gas with purely pairwise interactions, the phase diagram 
should besymmetric about the coverage at  which half the 
adsorption sites are filled. (Since coverage is conven- 
tionally expressed as adatoms per top-layer atoms, this 
criterion indicates, for example, that for a close-packed 
surface on which both kinds of 3-fold sites can be occupied, 
the special coverage is 1, not 1/2.) In section IILA we 
shall point out some subtleties in applying this argument 
to phase boundaries near half-saturation coverage. For 
O/W(llO) a more flagrant asymmetry occurs, with an 
ordered phase at  3/4 monolayer not reflected at  l/4; for 
such asymmetries in the ground-state energy, simple 
energetic arguments place lower limits on the values of 
trio interactions. In studying this system, Ching et al." 
assumed that two trio configurations produced the asym- 
metry and thereby estimated the average of their mag- 
nitude. If one considers all the various trio configurations 
of comparable magnitude, the size required of each can be 
substantially reduced.1° 

B. Progress in the Early 1980s by Use of Embedded 
Clusters. The philosophy behind the above single-band 
tight-binding calculations is that the d band is primarily 
responsible for the lateral indirect interactions. Burke12 
raised doubts about the adequacy of this idea by per- 
forming more realistic TB calculations with a 5-fold 
degenerate substrate band. For W/ W(110) his computed 
attraction was too large by nearly a factor of 5 compared 
to results from field ion microscopy; for O/Ni(100) he could 
not explain the ordered phasel3 (and the strength was 
typically much too small, of order 1-10 meV, to account 
for disordering temperatures). Lau and Kohn5 as well as 
Johansson14 and Eguiluz et  al.15 showed that with a jel- 
lium substrate there were also indirect interactions of 
substantial magnitude. 

Muscat16 was the first to allow explicitly for contribu- 
tions of both free and d-like electrons in producing lateral 
interactions between adatoms, in his case H atoms. In his 
embedded-cluster model, spheres are centered on the sites 
of the H adatoms as well as on a cluster of nearby metal 
atoms in the substrate. Within the latter muffin-tin 
spheres, he places self-consistent bulk band-structure 
potentia1s.l" The spheres are then embedded in some 
model of a free-electron gas, usually infinite-barrier jel- 
lium. (In some later work, the jellium contribution is taken 
from effective medium theoryJ'8Jg The d-wave contri- 
bution comes from the 1 = 2 solutions. Again, interaction 
energies are calculated from changes in all the one-electron 
energies. The technique was applied to a wide variety of 
late-transition and noble metal substrates. Pair interac- 
tions generally have the correct sign and order of magnitude 
to corroborate the energies deduced from Monte Carlo 
simulations of the experimental phase diagram (but were 
often off by factors of very roughly 3). Here, however, we 
limit our coverage to instances in which trio interactions 
are deduced.*23 In all these papers, Muscat places various 

lattice constants, their atomic orbitals do not overlap 
significantly, so any interaction is indirect via the substrate. 
The basic idea, presented by Grimley nearly a quarter 
century ago: is that the adsorbate orbitals couple to 
substrate orbitals by virtue of the adsorption bond. When 
the orbitals of two or more adatoms couple to the same 
extended state of the substrate, quantum-mechanical 
matching conditions may cause these orbitals to be in phase 
or out of phase, leading to attractions or repulsions, 
respectively. For the transition metals (or semiconductors) 
involved in most chemisorption systems, in contrast to 
jellium; these wave functions are anisotropic, leading to 
anisotropic interactions. In general, one must consider 
the coupling to all the occupied states of partially filled 
bands to compute the indirect interaction, leading to 
interactions that decay very rapidly with increasing in- 
teradatom separation. Only in the asymptotic limit does 
the coupling simplify to a single state on the Fermi surface 
with wavevector parallel to the direction in real space 
between ad atom^.^^^^^ This simplification is usually ap- 
plicable only at  separations so large that the interaction 
is negligibly small. 

In the framework of the Anderson-Newns model of 
adsorption and a single-band substrate in the tight-binding 
(TB) approximation, it is straightforward not only to write 
expressions for pairwise interactions, but also to write 
generalizations for multiparticle effects and for complete 
ordered overlayers. Assuming strong chemisorption bonds, 
this treatment essentially sums the changes in one-electron 
energies. Careful treatment of Coulomb-induced corre- 
lations on the adatom, which are important for weaker 
bonds, is glossed over in Hartree-Fock fashion. Readers 
interested in the formalism should consult ref 1. The hope 
that pair energies describe most of the interesting physics 
is encouraged by the (potentially deceptive) observation 
that the lateral interactions of an ordered overlayer are 
generally reasonably well approximated by the pair 
interactions of the shortest-separation pairs in the over- 
layer.819 Nonetheless, "trio" interactions-the interaction 
energy of three adatoms minus the three associated pair 
interactions-do have a magnitude that is often some 
moderate fraction of the shortest-separation pairs. The 
good agreement between pairs and the ordered overlayer 
often results from partial cancellations of these higher- 
order terms, so that neglect of such contributions is often 
attributable less to any formal a priori justification and 
more to desperation to restrict the number of included 
interactions to a manageable set. 

In this vein, it is worth reemphasizing the point that 
once one opens the Pandora's box of multiparticle inter- 
actions, there are many to consider. In an early study of 
their effect in deducing phase diagrams, noting the 
dependence of magnitude on the two shorter legs of the 
trio, I pointed outlo that on a square lattice, a linear trio 
should have interaction energy comparable to a right 
triangle with the same legs. Moreover, if the binding is 
in bridge sites, there are two distinct linear configurations 
with comparable magnitude. A ramification of this result 
is that one must be careful in attributing features of tem- 
perature-coverage phase diagrams, e.g., asymmetries, to 
one or two trios. The underlying idea is that in a lattice- 

(4) Grimley, T. B. Proc. Phys. SOC., London 1967,90, 751. 
(5) Lau, K. H.; Kohn, W. Surf. Sci. 1978, 75,69. 
(6) Flores, F.; March, N. H.; Ohmura, Y.; Stoneham, A. M. J. Phys. 

(7) Koster, G. F. Phys. Reo. 19S4,95, 1436. 
(8) Einstein, T. L. Phys. Reo. B 1977, 16, 3411. 
(9) Hunter, P. E.; Einstein, T. L.; Roelofs, L. D. Bull. Am. Phys. SOC. 

(10) Einstein, T. L. Surf. Sci. 1979.84, L497. 

Chem. Solids 1979, 40, 531. 

1980, 25, 194. 

(11) Ching, W. Y.; Huber, D. L.; Lagally, M. G.; Wang, G.-C. Surf. Sci. 
1978.77.550. The exDerimental Dhase diamam is Dresented in: Wanrr. -. 
G.-C:; Lu, T.-M.; Laghy, M. G. 3. Chem. phys.  1978,69, 479. 

2). 

(12) Burke, N. Surf. Sci. 1976,58, 349. 
(13) Burke, N. Ph.D. Thesis, Cambridge University, 1976 (cited by ref 

-, - 
(14) Johansson, P. K. Solid State Commun. 1979,31, 591. 
(15) Eguiluz, A. G.; Campbell, D. A.; Maradudin, A. A.; Wallis, R. F. 

Phys. Reu. B 1984,30, 5449. 
(16) A comprehensive review: Muscat, J.-P. Prog. Surf. Sci. 1986,18, 

59. 
(17) Moruzzi, V. L.; Janak, J. L.; Williams, A. R. Calculated Electronic 

Properties of Metals; Pergamon: New York, 1978. 
(18) Nsrskov, J. K. Phya. Reo. B 1982, 26, 2875. 
(19) Nordlander, P.; Holmstrdm, S. Surf. Sci. 1985, 159, 443. 
(20) Muscat, J.-P. Surf. Sci. 1984, 139, 491. 
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clusters of H atoms on the surface. In these calculations 
the distance d between the H proton and the jellium edge 
(taken as a plane halfway between the surface atoms and 
what would have been the next plane above the surface23) 
is an input parameter. By quoting the results for a few 
values of d ,  Muscat gives some idea of an intrinsic 
uncertainty in this approach. While the variation is not 
negligible, the qualitative and usually semiquantitative 
results are not overly sensitive. 

Reference 23, an extension of refs 21 and 22, gives the 
most comprehensive results, treating the close-packed faces 
of seven substrates: Ti, Co, Ni, Cu, Ru, Rh, and Pd. In 
addition to six configurations of pairs, three trio config- 
urations and four hexagonal configurations are considered 
and their lateral interaction energies evaluated. The 
principal goal was to evaluate the relative stabilities of 
the ground states of various possible ordered overlayers. 
In this regard, pairwise interactions alone were found 
sufficient. Hence, equilateral-triangular trio and hexag- 
onal-ring six-adatom interactions are presented only for 
the case H/Ni(ll l) .  Indeed, these trios typically have 
magnitude 1 meV and never exceed 2 meV. On the other 
hand, the second- and fifth-neighbor pair interactions of 
the sides of the first and second triangles are 4 f 2 and 
1 meV, respectively, so that the fractional contribution is 
comparable to that found in single-band tight-binding 
calculations. The third trio has sides that are sixth 
neighbors. Here Muscat deduces a very strong attrac- 
tion-unreasonably strong in comparison to shorter-range 
interactions-which produces a reasonable disordering 
temperature (compared with experimentu) but poorly 
reproduces the topology of the phase diagram.2s Mus- 
cat's most extensive tabulation of trio energies is in his 
treatment of H/Fe(110).20 Experimental determination 
of the adsorption site was problematic. Initial suggestions 
of the long-bridge site (based on LEED%) and of the short- 
bridge site (based on EELS2') were eventually supplanted 
by the conclusion from detailed LEED work2* that H sits 
in the quasi 3-fold site. Since Muscat's calculations 
supported the short-bridge site, it seems inappropriate to 
reproduce the details, but his general finding was again 
that trio interactions were sufficiently small in magni- 
tude-on the order of 1 meV-to be insignificant [except 
for the smallest (linear) configuration, for which the H 
atoms are unphysically close to each other]. For the eight 
computed configurations, the trio energy was roughly 1 
order of magnitude smaller than the shorter-range con- 
stituent pair energies, Le., somewhat smaller than predicted 
with tight binding. 
C. Recent Progress, Mostly with Embedded Atom 

and Tight-Binding Methods. Further interest in the 
problem of trio interactions was spurred by the observa- 
tion, by several groups using field ion microscopy (FIM), 
of adsorbed trimers. By collecting statistics from large 
numbers of micrographs, one can deduce the interaction 
energies of configurations of adsorbates, as reviewed here 
by Ehrlich and Kellogg. To account for the trends of the 
5-d series (Ta, W, Re, Os, Ir) on W(llO)-in particular, 

Einstein 

(21) Muscat, J.-P. Surf. Sci. 1984, 148, 237. 
(22) M w a t ,  J.-P. Surf. Sci. 19811, 152/153, 684. 
(23) M w a t ,  J.-P. Phys. Reu. B 1986,33,8136. 
(24) Chriatmann, K.; Behm, R. J.; Ertl, G.; Van Hove, M. A.; Wein- 

(25) Roelofa, L. D.; Einstein, T. L.; Bartelt, N. C.; Shore, J. D. Surf. 
berg, W. H. J.  Chem. Phys. 1979, 70,4168. 

Sci. 1986. 176. 295. 
(26) Imbihi, R.; Behm, R. J.; Chriatman, K.; Ertl, G.; Matawhima, T. 

Surf. Scr. 1982. 117. 267. - -. , . - . . . . - _-, . . . , - - . . 
(27) Bar6, A. M.; Erley, W. Surf. Sci. 1981, 112, L759. 
(28) Moritz, W.; Imbihl, R.; Behm, R. J.; Ertl, G.; Matawhima, T. J. 

Chem. Phys. 1985,83,1959. 
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Figure 1. Schematics to illustrate some important pair and trio 
configurations on high-symmetry adsorption grids. The con- 
figurations are labeled by the corresponding energy: (a) square 
lattice, e.g., atop or center sites on (100) faces of fcc and bcc 
substrates; (b) honeycomb lattice, indicating the two kinds of 
3-fold (center) sites (both forming triangular latticed on (111) 
faces of facc substrates or (OOO1) faces of hcp substrates. The 
energies in parentheses are for a triangular lattice (in this case 
the filled circles) (adapted from ref 25, with addition of the tri- 
mers of ref 59; (c) centered rectangular lattice, showing the long- 
bridge sites usually used for simulations. The large circles at the 
lower right show the sites of the top-layer substrate atoms. In 
many cases, the adsorption takes place in the quasi %fold sites, 
which are connected by a shallow barrier and so might allow 
rapid movement back and forth (shaded region). The trimers 
L, 0, and P are considered in ref 32. 

the striking minimum of the lateral interactions for 
Rem-Bourdin et aL30 proposed a very simple analytical 
model. They claimed that Burke's excessively large 
energies were due to his neglect of both core-core 
repulsions and electronic correlations, which they com- 
puted to second order in U l w ,  where U is the Hubbard- 
like intraatomic Coulomb repulsion and w the bandwidth. 
(A decade earlier, correlation was found to make a 
negligible change from the Hartree-Fock energy for H on 
a single-band tight-binding ~ubs t r a t e .~~)  Bourdin et al. 
considered linear trimers at  nearest-neighbor separation. 
They made several simplifying assumptions: (1) The 
substrate is rigid and the adatoms sit exactly a t  high- 
symmetry sites. (2) The core-core repulsion is the same 
for all the adsorbates. (3) The one-electron, "band" 
contribution comes solely from broadening of the adsorbate 
levels. Thus, the dominant interaction is directly between 
adsorbates rather than through the substrate. This an- 
satz is only reasonable at  short spacings. Burke12 also 

(29) Bassett, D. W. Surf. Sci. 1975,53, 74. 
(30) Bourdin, J. P.; DesjonquBres, M. C.; Spanjaard, D.; Friedel, J. 

(31) SchBnhammer, K.; Hartung, W.; Brenig, W. Z. Phys. B 1975,22, 
Surf. Sci. 1985, 157, L345. 
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Multisite Lateral Interactions 

showed that allowing direct interactions at this range made 
an overwhelming difference in the interactions. (I ex- 
plicitly neglected these direct efforts in my tight-binding 
calculations.) (4) The local density of states increases with 
coordination number (as one would expect from TB theory) 
and is taken to be constant over an energy range (as for 
a 2-d band). (5) The Coulomb integral U is independent 
of coordination and of adsorbate species. After exploring 
the range of input parameters producing the observed 
minimum, Bourdin et al. took some account of substrate 
bandlike contributions, adjusted U on species to reproduce 
the experimental dimer pair attraction, and then computed 
trimer-no substraction of pairs-energies (fiiding the 
minimum at  Re). Since there is no estimate of the pair 
interaction between the two end atoms in the linear tri- 
mer, the only way to gauge the trio energy is simply to 
subtract twice the dimer energy from the trimer energy. 
This estimate of the trio strength actually peaks at Re, 
with a value of -0.19 eV and nearly vanishes for Ta (but 
curiously jumps back down to -0.17 eV for Ir). The 
estimated trio energies are attractive (except for a tiny 
repulsion for Ta) and range from the same magnitude as 
the pair energy down to below 1 order of magnitude smaller. 

In a more sophisticated study, Dreyss6 et al.32 found 
similar results for Re/W(110). They considered the same 
contributions, treating the one-electron contribution using 
5-fold degenerate tight-binding bands, the correlation 
energy using second-order perturbation theory (but with 
local atomic densities computed from their Green's 
functions), and the repulsion using Born-Mayer interac- 
tions. They also took some account of self-consistency by 
shifting atomic levels. (For a critique of this procedure, 
see ref 33.) They computed interaction energies for the 
three trimer configurations with two nearest-neighbor pairs 
(Le., in the [ I l l ]  direction): linear (L), nearly equilateral 
(P for "pointed"), and HZO-like (0 for "open"), as well as 
the six shortest-separation pairs. For the pairs, including 
correlation energy-with intraatomic Coulomb integral 
U = 1.6 eV-has a considerable effect, in most cases 
reversing the sign of the interaction; U is just big enough 
to make the nearest-neighbor pair interaction repulsive, 
to reproduce experiment. The trimer interactions (la- 
mentably called "trio") for L, 0, and P configurations are 
-0.18, -0.14, and +0.12 eV, respectively, consistent with 
Fink and Ehrlich's experimenkM With their tabulated 
pair energies, the trio interactions are -0.23, -0.35, and 
-0.17 eV, respectively, strikingly largevalues, considerably 
greater than the pairs. I t  is not clear how small changes 
in the many-albeit sensibly estimated-input parameters 
would alter the results. The paper contains an extensive, 
informative discussion beyond the scope of this review. 

To take advantage of the success of computationally 
intensive schemes such as FLAPW3S to compute details 
of monolayer adsorption, GollischM constructed an ef- 
fective potential, a generalization of the Morse form, with 
several parameters to be fit to the numerical "data". Two 
global parameters, on which the quality depends sensi- 
tively, adjust the exponents of competing terms. Three 
more parameters adjust the scale and exponent of a 
separation-dependent interaction function, here a sum of 
two exponentials, introducing four more parameters. These 

(32) Dreyd ,  H.; TomBnek, D.; Bennemann, K. H. Surf. Sci. 1986, 
173, 538. 
(33) Einstein, T. L. Phys. Reu. B 1975,12,1262. The reviewer forced 

a considerable reduction of the critique from the original manuscript, 
which is available on request. 
(34) Fink, H.-W.; Ehrlich, G. Phys. Reo. Lett. 1984,52, 1532. 
(35) Wimmer, E.; Krakauer, H.; Weinert, M.; Freeman, A. J. Phys. 

Reo. E 1981, 24, 864. 
(36) Gollisch, H. Surf. Sei. 1986, 175, 249; 166, 87. 
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seven parameters are computed from bulk properties and 
tabulated for each element of interest. Parameters for 
interactions between different atomic species are deter- 
mined by various sorb of means of the elemental form. As 
discussed below, the numbers produced for Cu, Ag, and 
Auon W(110) provideagoodstartingpointforsimulations. 

The semiempirical embedded-atom method (EAM)37p98 
has offered a relatively easy way to contend with the low- 
symmetry problem we face. In this approach, the cohesive 
energy is written 

where the pa's are spherically averaged atomic electron 
densities, the prime on the summation indicates j = i is 
excluded, and U is the electrostatic Coulomb repulsion. 
The effective charge densities Z inserted into U are 
determined by the formulaZ(R) = Zo(l+ BzR) exp(-ar,R). 
The embedding energy can be determined numerically by 
embedding an atom in a homogeneous background, as in 
effective medium theoryl8 or by using the "universal" 
binding curve of Rose et al.39 Typically, the parameters 
are adjusted to fit the bulk properties such as lattice 
constant, cohesive energy, and elastic constants. For 
adsorption of one species on another, one can fit adsorption 
site and height and vibration frequencies. The fact that 
fitting functions are not uniquely specified has been 
criticized by some, especially theorists performing massive 
self-consistent, total-energy computations. In fact, this 
flexibility can be a strength in that one can tailor functions 
for specific applications and gauge uncertainties by use of 
different sets of functions. On the other hand, it serves 
as a warning to the uninitiated that the numbers emerging 
from EAM calculations are most useful in identifying 
trends and rough magnitudes; for high-symmetry systems 
more exacting band-structure techniques are most reliable. 
(However, the flexibility of EAM can often lead the 
practitioner to unexpected structural relevations. For 
example, for H /Pd( l l l )  the existence of subsurface sites 
and their domination of the interactions neededto describe 
the phase diagram4 were discovered "by accident" during 
dynamical simulations!) EAM is quite helpful in assessing 
the effects of coordination number on bonding. Also, the 
driving program easily allows for substrate relaxations, or 
motion of any atom in any direction can be frozen. On the 
other hand, since there is no Fermi surface in the method, 
EAM cannot describe any effect involving Friedel oscil- 
lations, such as the asymptotic form of lateral interac- 

In recent EAM calculations of H/Ni( l l l )  and H/Pd- 
(loo), we42 assessed the ability of EAM to predict lateral 
interactions. To lowest order, the positive curvature of 
F(p) leads EAM to predict repulsions, with magnitude 
proportional to the number of shared substrate nearest 
neighbors (except a t  the shortest separations, when direct 
interactions can overwhelm the physics). For H/Ni( l l l )  
only the first-, second-, and third-nearest neighbors are 
above 1 meV (cf. last sentence of the preceding paragraph). 
Their magnitudes are comparable to those found by 
M ~ s c a t ~ ~ - ~ ~  but all of ours are positive, consistent with 

tions. 1 , 5 M  

(37) Daw, M. S.; Baakes, M. I. Phys. Rev. E 1984,29, 6443. 
(38) Foiles, S. M.; Baakes, M. I.; Daw, M. S. Phys. Reo. B 1986,33, 

7983. 
(39) Rose, J. H.; Smith, J. R.; Guinea, F.; Ferrante, J. Phye. Rev. E 

1984, 29, 2963, and references therein. 
(40) Felter, T. E.; Foiles, 5. M.; Daw, M. S.; Stulen, R. H. Surf. Sci. 

1986,171, L379. Daw, M. S.; Foiles, S. M. Phys. Reu. E 1987,36,2128. 
(41) Roelofs, L. D. Ph.D. Thesis, University of Maryland, 1980. 
(42) Einstein, T. L.; Daw, M. S.; Foiles, S. M. Surf. Sci. 1980,227,114. 
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behavior deduced from Monte Carlo fits of the phase 
diagram.26 We found a tiny attractive trio interaction for 
the smallest equilateral triangle of adatoms in the same 
kind of 3-fold site, comparable in size to that found by 
Muscat but of the opposite sign. Overall, the signs of the 
interactions seem more reliable than Muscat’s, there are 
no anomalous attractions, but the second-neighbor re- 
pulsion is less than 3/2 of the third; a ~ ( 2 x 1 )  overlayer is 
predicted instead of the observed graphitic (2 X 2) (or (2 
X 2) - 2HhZ4 A very recent extension of EAM, called 
EDIM (embedded diatomics in  molecule^),'^ obtained 
magnitudes for the lateral interactions more consistent 
with expectations from experiment, but with the same 
sign as we found. There were a number of modifications, 
with no commentary on the effect of each. A likely 
possibility is the allowance, for Ni’s in the top layer, of a 
different number of s electrons from the bulk value. 
Unfortunately, EDIM has not yet been applied to trio 
interactions. 

For H/Pd(100) our calculations found the minimum 
for H atoms to be slightly below the top Ni plane rather 
than slightly above. The magnitudes of the lateral 
interactions are most consistent with experiment, viz. 87 
[94], 54, and -9 meV for the first-, second-, and third- 
neighbor interactions, El, E2, and E3, respectively. (The 
bracketed value for E1 was obtained from analysis of 
ordered overlayers. By symmetry, local distortions that 
plague the isolated pair are removed.) However, since the 
second is more than half the first, a ~ ( 2 x 1 )  ordering rather 
than the observedu 42x2) is predicted. (This problem 
as well as the too-low binding site may be due to use of 
rather primitive EAM functions, which were then available 
for Pd.) The smallest area right-triangle configuration 
has a trio energy ERT = -25 meV; it plays no role in the 
balance between these two ordered states but does affect 
the phase diagram, as we will see shortly. It may not be 
a coincidence that the placing of H lower into the surface 
than in reality leads to more realistic binding energies: 
for H/Pd(ll l) ,M as noted above, the interactions pro- 
ducing the ordering come from the subsurface H’s; those 
on top of the surface have little interaction, as for Ni(ll1). 

For comparison, Stauffer et al.46 have just used a state 
of the art tight-binding approach to present a wealth of 
information on H atoms near Pd(100). The H atoms are 
only allowed to sit in lattice planes of the substrate lattice, 
so the results for the center site of the top layer are the 
ones of most interest. Then El, Ez, and E3 are +14, -182, 
and +41 meV, respectively. Removing the constituent 
pair interactions from their tabulated trimer energies, I 
find that ERT = -32 meV and the linear configuration ELT 
= -72 meV. It would be interesting to know how these 
numbers would change if the H’s were moved slightly above 
the surface; since the dependence on layer index is not 
monotonic, there is no obvious interpolation. In com- 
parison with our EAM numbers, the TB ERTis quite similar 
but ELT is much bigger than expected even in crude 
calculations and certainly in EAM. Moreover, the pair 
interactions are starkly different. While their pair energies 
dolead to the observed 42x2) ordered phase, theenormous 
size of E2/E1 would produce a broad coexistence region of 
42x2) + “gas” that persists to a temperature close to T, 
of the pure 42x2) phase.26 Such a stable coexistence 
region would have been observed in e ~ p e r i m e n t . ~ ~  On the 
other hand, such regions (of more modest size) were 
conjectured on the basis of Monte Carlo  simulation^.^^ 

(43) Truong, T. N.; Truhlar, D. G.; Garrett, B. C. J .  Phys. Chem. 1989, 

(44) Behm, R. J.; Christmann, K.; Ertl, G. Surf. Sci. 1980, 99, 320. 
(45) Stauffer, L.; Riedinger, R.; Dreyss6, H. Surf. Sci. 1990,238, 83. 

93, 8227. 

Hopefully this dilemma will motivate further experimental 
investigation of the low-T, low-coverage region. 

Since EAM successfully treated alloying at surfaces and 
phase transitions of one noble metal on another,” we 
expected42 that late-transition metals on each other would 
be more accurately described in EAM. Recent studiesc8 
of Pt, Pd, and Ni on Pt(100) bear out this belief. As 
described in the following contribution by Kellogg, small 
clusters of these adsorbates may form in lines (Ni), compact 
clusters (Pd for more than three adatoms), or an alteration 
between them (Pt for fewer than seven), depending on the 
relation of the trio interactions to the pairs. For Pt, Pd, 
and Ni adsorbates, with the Pt(100) rigid, the (El, Ez, 
ERT) energies in are -299, +59, -76; -263, +4, -12; and 
-64, +97, -40 meV, respectively. [Somewhat relatedly, Ir 
trimers form chains on Ir(100) but clusters on Ir(lll)+9 
It is not clear what part of the difference in trimer energies 
(0.33 f 0.02 and 0.098 f 0.004 eV, respectively) is due to 
pairs vs trios.] Another issue of concern for adsorbates is 
the large charge gradient near surfaces. For the recon- 
struction of Au(llO), EAM predict@ a (1 X 3) pattern 
rather than the observed (1 X 2). To rectify this problem, 
Roelofs et al.63 included the leading correction from such 
gradients, using a modification of EAM formalism.M 
Moreover, to treat this system with Monte Carlo simu- 
lations, they decomposed the interactions of Au atoms in 
the top layer, finding that not only are trios significant, 
but so are “quartos” (i.e., the interaction energy of four 
surface atoms minus the constituent pairs and trios). 
Specifically, they found linear (along the row) and right- 
triangle trio energies of +22.0 and -1.9 meV, respectively, 
and a quarto rectangle energy of +13.7 meV; even the 
close-packed ”hexto” interaction has a strength -3.4 meV. 
To assess the role of the gradient contribution, I quote the 
comparable numbers I computed for the trios in an early 
stage of this project before the corrections were imple- 
mented: +25 and -4.6 meV, respectively. [For pair 
interactions for adatoms on neighboring rows, a t  the same 
position along the row or shifted by one unit (so somewhat 
diagonal), are -10 and +17.6 meV, respectively, without 
the gradient term vs -2.6 and +12.3 meV with corrections.] 
In short, the gradient corrections do not change the 
qualitative results but are important for quantitative 
assessments. 

111. Effects of Trio Interactions on Statistical 
Mechanics 

Having explored the state of the art in computing mul- 
tisite interactions, it is now time to discuss the role they 
play. We have already seen that they can determine the 
geometry of small clusters. As a first item, we show how 
these trio interactions relate to three-spin terms in the 
Ising analogue of lattice-gas Hamiltonians. Assuming a 
square lattice with nearest (El) and next nearest (Ed 
interactions, as well as a right-triangle trio (ERT), we have 

(48) Binder, K.; Landau, D. P. Surf. Sci. 1981,108,503. 
(47) Foilee, S. M. Surf. Sci. 1987, 191, 329. 
(48) Wright, A. F.; Daw, M. S.; Fong, C. Y. Phys. Reu. B 1990,42,9409. 
(49) Chen, C.; Tsong, T. T., in ref 50, p 312. 
(50) The Structure of Surfaces III; Tong, S .  Y., Van Hove, M. A., 

Takayanagi, K., Xie, X. D., Eds.; Springer: Berlin 1991. 
(51) Proceedings of the 6th Intermtiom1 Conference on Spectroscopy 

and 1st International Conference on Nanometer Scale Science and 
Technology; Baltimore, July 1990; J. Vac. Sci. Technol. B 1991, 9 (2). 

(52) Foiles, S. M. Surf. Sci. 1987, 191, L779. 
(53) Roelofe, L. D.; Foiles, S. M.; Daw, M. S.; Bask-, M. I. Surf. Sci. 

1990,234,63. 
(54) Daw, M. S. Phys. Reu. B 1989,39,7441. 
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Multisite Lateral Interactions 

for the lattice-gas, with ni = 1 or 0 

Langmuir, Vol. 7, No. 11, 1991 2525 

The mapping to spin language, with Si = fl, is ni = (1 + 
s i ) /2 .  We see 

ERT 
- E T  sis,*k ( 3 )  

( i j k )  

In spin language, the three coefficients are called -J1, -Jz, 
and -JRT, respectively. We easily see that 

ERT - wRT/Jl  (4) or -- JRT -= 
J 1  2 + 4 E R T / E l  E l  l-'RT/Jl 

This highly nonlinear relation leads to some surprising 
results. For ERTIE1 anywhere above 1, even far above, 
JRT/J1 is close to l /4 .  For below -'/z, JRT/J1 is 
positive. JRT/J1 is only negative for E R T / E ~  between - l / Z  
and 0. As a result, a simulation using spin variables can 
deduce a value of JRT/ J1 that seems quite sensible until 
translated into In this case, any positive value 
of JRT/J1 around ' 1 4  will lead to enormous E R T / E ~ .  On 
the other hand, in an early Monte Carlo simulation of the 
phase diagram of H/Pd(100), Binder and Landau46 
concluded that JRT/J1 probably lies between -0.2 and -0.3, 
corresponding to 

A. Asymmetries in Phase Boundaries of Pure 
Phases. A rather surprising finding of numerical (Monte 
Carlo) calculations is that a single type of trio interaction 
need not necessarily lead to a large asymmetry in the phase 
boundary about half-coverage.ss This result, illustrated 
in Figure 2 for the case of a 42x2) overlayer described in 
eq 2 ,  is in sharp contrast to the observation in 2-d 
calculations that treat fluctuations approximately-mean 
field and quasi-chemical approximation-that trios must 
produce such asymmetries." We also see that a linear 
trio ELT alone does not produce an asymmetry, but when 
it and ERT are present, the expected notable asymmetry 
does appear. To make some sense of this effect of trios 
on the phase boundary, we need some way to assess the 
difference in the way the trio interactions affect the low- 
temperature ordered phase compared to the high-tem- 
perature disordered phase. The fact that trios break the 
particle-hole symmetry of the pair-interaction lattice- 
gas Hamiltonian, and so introduce an asymmetry into the 
ground-state energy, is not the issue. 

In the remainder of this subsection, we describe a crude 
approximation scheme for assessing the change in the 
disordering temperature T ,  of an ordered phase from a 
known value TJO) for some Hamiltonian to Tc(Enew) for 
a more complicated Hamiltonian with a new interaction 
energy E,,,. While we have applied our procedures7 to a 
wide range of problems,65 we have as yet no formal 
derivation. In essence, the idea is that T, scales with the 
lowest-energy excitation from theground state. In ref 57 
we show, for example, that for a 42x2) overlayer with 1 /2  

(55) Bartelt, N. C., Einstein, T. L., unpublished. 
(56) Milchev, A. J. Chem. Phys. 1985, 78, 1994, Electrochem. Acta 

1983,28, 941. Milchev, A., Paunov, M. Surf. Sci. 1981, 108, 25. 
(57) Bartelt, N. C.; Einstein, T. L.; Williams, E. D. J. Vac. Sci. Tech- 

nol. 1984, A2,1006. See also: Williams, E. D.; Cunningham, S. L.; Wein- 
berg, W. H. J. Chem. Phys. 1978,68,4688. Bartelt, N. C.; Einstein, T. 
L.; Hunter, P. E. Bull. Am. Phys. SOC. 1981,26, 289. 

between -0.22 and -0.27. 

m X * X o  

x * , x  x 
< 112 y". .-* 0 

X . X . X  

. X . X .  

X . X . X  

X-..Y;X 

e>112 x A J X  x 
. X . X .  

X m X o X  
o.2[v, 1, I , I 

0.0 
0.3 0.5 0.7 

0 
Figure 2. Illustration, for ac(2 X 2) overlayer on a square lattice, 
of the crude guideline of scaling the elementary excitation used 
to predict which trios produce sizeable asymmetries in phase 
boundaries. For the simplest case of a single nearest-neighbor 
repulsion, E1 (the disordering temperature is known exactly from 
the Onsager solution to the Ising model) is indicated by an X on 
the temperature-coverage phase diagram. The effect of adding 
a right-triangle trio repulsion, ERT, a linear trio repulsion, ELT, 
or both was studied by using Monte C a r l ~ ~ f i ~ ~  for the case ERT 
= ELT = &/4;  the results for the three cases are plotted with 
fiied triangles, squares, and circles, respectively, with dashed, 
dotted, and solid curves added to guide the eye. The behavior 
at  B = 0.5 is anticipated by eqs 6 and 7. The dashed and dotted 
curves appear symmetric about B = 0.5 (short-dotted line); only 
with both trios present does the (solid) phase boundary become 
noticeably asymmetric. In the plots at  the right, the X's and 
dots indicate occupied and vacant sites, respectively, in a perfectly 
ordered configuration, with the large symbols denoting a vacancy 
( B  < 1 / 2 )  or extra adatom (0  > l / 2 ) ,  respectively. The arrows on 
the plots depict the lowest-energy excitations, with the line type 
of the shaft corresponding to the line type of the phase boundary 
on the phase diagram; for each line type, this excitation energy 
is the same for 0 < 1 / 2  and 0 > 1 / 2 .  In the simple argument, these 
energies scale the disordering temperature. When both trios are 
present, there is "frustration" over which excitation to use; the 
simple argument is not viable, and asymmetries occur. In the 
phase diagram, the broad dashed curve is the result of a mean 
field calculation, plotted at half its magnitude [i.e., T,(0.5) = 1.2 
E l ] ;  not only is this curve far too large and broad, it also 
erroneously predicts substantial asymmetry. 

monolayer coverage, described by a nearest-neighbor 
repulsion E1 and a smaller second-neighbor interaction 
E2 

(5 )  
For this simple problem, Barber showed5* that the exact 
coefficient is d2 z 1.41 rather than 4/3 = 1.33; on the 
other hand, our value is much better than the mean field 
prediction of 1. For this same problem, the effect of a 
right-triangle trio interaction ERT (with E2 = 0) is given 
by 

TC(Q = Tc(0)[ l  - 4E2/3EiI 

(3E1 + z R T ) / T c ( E R T )  = 3E,/Tc(0) Or 

T c ( E ~ ~ )  = Tc(0 ) [ l  + 2&~/3EiI (6) 

(7)  
We caution that this procedure is applicable only if the 
new interaction does not alter the symmetry of the ordered 
state and works well only if the nearby elementary 
excitation from the fully ordered state is uniquely defined. 

Similarly, for a linear trio ELT 

Tc(ELT) = Tc(o ) [ l  + ELT/~E,I  

(58) Barber, M. N. J. Phys. A 1982, 15, 915. 

D
ow

nl
oa

de
d 

by
 Y

A
L

E
 U

N
IV

 o
n 

A
ug

us
t 6

, 2
00

9
Pu

bl
is

he
d 

on
 M

ay
 1

, 2
00

2 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

la
00

05
9a

02
1



2526 Langmuir, Vol. 7, No. 11, 1991 

Thus, it works well for a d 3  X d 3  overlayer on a triangular 
net but not for a ~ ( 2 X 2 ) . ~ ~  It is also curious that this 
procedure requires a lattice-gas picture in which the 
number of atoms is conserved (i.e., a canonical ensemble); 
if the atom instead hopped to a "bath" (i.e., a grand 
canonical ensemble, or fixed chemical potential, or a single- 
spin flip in a spin analogue), the predictions are quite 
poor. 

To assess the effect of trios on the symmetry of the 
temperature-coverage phase boundary of a 42x2) over- 
layer, we look at the elementary excitation near a defect, 
either an extra adatom or a missing one. (See Figure 2.) 
For just a right-triangle (RT) trio, there are no such trios 
(no ZRT) in the excited state when there is a vacancy; 
when there is an extra, there are two RT trios in the ordered 
state, which are lost in hopping to the nearest neighbor 
(where another two RT trios occur). So in both cases, 
there is no change in the number of RT trios, Le., no change 
proportional to ERT is involved. A similar effect occurs 
with a linear trio, but with a different elementary 
excitation. (See Figure 2.) In either case, we saw that the 
phase boundary computed by using Monte Carlo appears 
symmetric. Only when both trios are present does a 
marked asymmetry occur. (M. E. Fisher pointed out, 
however, that a noteworthy inadequacy of this simple 
picture is ita inability to give any idea of the coverage 
dependence of Tc.) 

B. Asymmetries in Boundaries of Coexistence 
Regions. In the alternative case of a square lattice with 
E1 C 0, there is a broad, symmetric coexistence region of 
low-density gas and high-density liquid centered (and 
peaked) at 8 = l /2.  In this case, the presence of trio 
interactions should produce a shift in Tc and 8,: For a 
honeycomb lattice withnearest-neighbor attraction El and 
two trio interactions EIT and EET for trimers forming an 
obtuse isosceles triangle (with 2 E1 sides and an E2 side, 
i.e., sequential sites) and an equilateral triangle (with E2 
sides), Goldstein and Par01a~~ found, using perturbation 
theory 

Tc(EIT,EET)/Tc(O,O) = 1 - 3.732E,/(-Ei) - 
1.732E~~/(-E,) and Oc(Em,Em)/Oc(0,O) = 1 - 

o.439EIT/(-El) - 0.380Em/(-E1) (8) 
Similar results could presumably be generated, with more 
algebra, for the square lattice (with coordination number 
z of 4 rather than 3). By producing some "mixing" of the 
thermodynamic fields, the trios add nonanalytic terms to 
some observables, but since they do not favor any one 
ordered state over the others, these terms have the 
relatively mild energy-like form, with exponent 1 - a; the 
specific heat exponent a is small in 3-d, but in 2-d is 
substantial for non-Ising universality classes (e.g., l / 3  for 
three-state Potts). In particular, in the T dependence of 
the "diameter" 8d of the coexistence curve, Le., the average 
of the coverages at  the high- and low-density boundaries, 
normalized by 8,, Goldstein and Parola argued59 that the 
venerable law of rectilinear diameters is altered by the 
addition of the second term: 

8d = 1 + A,,,(Tc - T)'-* + A1(Tc - T )  + (9) 
For the honeycomb case, this result can be proved exactly.80 

Some Monte Carlo (as well as mean field) results have 
been obtained for this square-lattice problem, with E1 C 

Einstein 

~ 

(59) Goldstein, R. E.; Parola, A. Phys. Reu. A 1987,35,4770. Also: 
Goldstein, R. E.; Parola, A.; Ashcroft, N. W.; Pestak, M. W.; Chan, M. 
H. W.; de Bruyn, J. R.; Balzarini, D. A. Phys. Reu. Lett. 1987, 58, 41. 

(60) Wu, F. Y.; Wu, X. N. Phys. Rev. Lett. 1989, 63, 465. 

0. Milchev and Binders' supposed that at  nearest-neighbor 
distances, there would be strong multiadatom ("nonad- 
ditivity") effects; such effects are particularly likely if the 
adatomic radius is comparable to (half) this distance, as 
for transition-metal adatoms. More generally, this sup- 
position expresses the general trend for the strength of a 
chemical bond to decrease as the number of neighbors of 
the bonding atoms increases.62 In the first case, they 
supposed that the interaction strength decreases linearly 
with the number m of nearest neighbors, from IEl(1)J to 
IEl(m)l; the weakest bound is IE1(z)I = -W, where z is 
coordination number and P = lEl(l)l/W. Explicitly, 
IEl(m)l/ W = (Pz - l) /(z - 1) - m(P - l ) / ( z  - 1). After 
some algebra, one can shows3 that this picture is equivalent 
to E1 = -PW an ET = (P - 1)W/2(z - 1). Simulations 
illustrate the shift of the critical point discussed above. In 
the second case, El(1) = -PWwhile all other El(m) = -W. 
To produce this scenario on a square lattice requires 
strongly repulsive trios: ERT = ELT = 2(P - 1)W. There 
must also be a more attractive longer-range trio and a very 
repulsive quarto, with strength 4(P - 1)W. For this 
seemingly arbitrary ansatz, they found a low-coverage 
region dominated by dimer aggregates, as casual inspection 
of the interactions would suggest. (However, their con- 
clusion that this region constitutes a new phase seems 
ill-founded, as there need not be a phase transition from 
a dimerized phase to an undimerized phase.) 
C. Other Examples. Chin and Landaus" generated 

with Monte Carlo a global set of phase diagrams for a 
triangular lattice-gas with nearest-neighbor interaction 
E1 and a trio ET for the smallest equilateral triangle. We 
focus on the results for E1 > 0, which produces d 3  X d 3  
ordering. With no trio, there is particle-hole symmetry, 
with ordered phases peaking at 8 = l /3  and at 0 = 2/3, with 
a minimum or zero at  8 = l/2. As RT ET/2(E1 + ET) 
increases from 0, it first enhances the higher4 phase (with 
two adatoms per triangle) relative to the lower4 phase, 
then destroys the low4 phase, and finally produces a 
coexistence region between "gas" and the higher4 phase 
at the low4 side of the ordered region, with a tricritical 
point where the boundaries join, with the opposite effect 
for RT < 0. While the authors are careful to quote values 
in terms of the lattice-gas energies, it is noteworthy, when 
thinking about experimental ramifications, that the figures 
for RT = 0.2, 0.5, and 1.0 correspond (analogously to eq 
4) to ET/E~ = 2/3, a, and -2, respectively, so that only the 
first case is likely to be observable. The special case ET 
= -E1 corresponds to vanishing nearest-neighbor coupling 
in the spin analogue; known as the Baxter-Wu model, it 
has been solved exactly in zero field ( p  = -3E1/2).~ 

Trio effecta have been considered in the simulations of 
phase diagrams of various adsorbates on a centered 
rectangular net: H/Fe(llO),@ O/W(l10),6749 and Ag/ 

(61) Milchev, A.; Binder, K. Surf. Sci. 1985, 164, 1. 
(62) For example: Gut", V. The Donor-Acceptor Approach to 

Molecular Interactions; Plenum: New York, 1978. 
(63) Private communication from reviewer of ref 61. 
(64) Chin, K. K.; Landau, D. P. Phys. Reu. B 1987, 36, 275. Also: 

Landau, D. P. Phys. Rev. B 1983,27,5604. Mihura, B.; Landau, D. P. 
Phys. Reu. Lett. 1977,38,977. 

(65) Barter, R. J.; Wu, F. Y. Phys. Reu. Lett. 1973,31,1294; Awt.  J. 
Phys. 1974,27,357. See aleo: Novotny, M. A.; Landau, D. P.; Swendaen, 
R. H. Phys. Rev. B 1982,26,330. 

(66) Kinzel, W.; Selke, W.; Binder, K. Surf. Sci. 1982,121,13. Selke, 
W.; Binder, K.; Kinzel, W. Surf. Sci. 125,74. Excellent reviews are: (a) 
Roelofs, L. D. In Chemistry and Physics of Solid Surfaces IVi Vaneelow, 
R., Howe, R., Eds.; Springer: Berlin, 1982; p 219. (b) Roelofs, L. D.; 
Estrup, P. J. Surf. Sci. 1983, 125, 51. 

(67) Kaski, K.; Kinzel, W.; Gunton, J. D. Phys. Rev. B 1984,27,6777. 
(68) Rikvold, P. A.; Kaski, K.; Gunton, J. D.; Yalabik, M. C. Phys. Reo. 

B 1985,29,6285. 
(69) Kdaczkiewicz, J.; Bauer, E. Surf. Sci. 1985, 151, 333. 
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Multisite Lateral Interactions 

W(l10).70 Unlike W or Re/W(110),32 the long-bridge 
binding site chosen for simulations is less stable than the 
quasi 3-fold site,28*38p71 but does reduce the number of close- 
separation configurations for which interactions should 
be considered.72 For H/Fe( 110) the physical importance 
of a set of impressive computationsa was vitiated when 
subsequent experiments determined that the ordered state 
associated with some extra LEED spots had a different 
real-space pattern. For O/W(110) Kaski et  al.67 noted 
that there should be four trio interactions of comparable 
magnitude,lO but that the ordered phases can be obtained 
with just one (the nearly equilateral triangle configura- 
tion) if its energy is appropriately rescaled; in asubsequent 
transfer-matrix finite-size scaling computation, this group 
achieved reasonable agreement with the measured phase 
diagram once they decreased the fifth-neighbor interaction 
from the previously used value. l l~~~ In the most recent 
paper, Roelofs and B e l l ~ n ~ ~  considered, with some caveats, 
a similar model for Cu and Au on W(110), starting with 
c a l ~ u l a t e d ~ ~  values for three short-range pair repulsions 
plus two different attractive trios and in the case of Au 
a repulsive quarto also. Computing the phase boundary 
using transfer-matrix finite-size scaling, they found that 
the calculated interactions qualitatively describe the 
experimental phase diagram,sg producing the shifts de- 
scribed by Goldstein and Parola.59 In an attempt to 
improve the fit, they described the effects of tuning the 
calculated interactions. While the effect of replacing the 
hourglass binding sites by a single site ("phonon renor- 
malization") is unclear, they emphasized that with mul- 
tisite interactions they could reproduce the essence of the 
phase diagram. 
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bridge sites.) The adsorbates most reliably treated by 
EAM are also those with (nearly) filled d shells, but EAM 
can also be used for H. From recent successes using 
effective medium theory to describe oxygen-induced 
restructuring of Cu( 110) and Cu( we can hope EAM 
may also eventually be able to treat this important 
adsorbate. 

Until recently most of the experimental evidence for 
trio interactions has come from phase diagrams measured 
with LEED and configuration "snapshots" obtained with 
FIM. With the recent surge of activity using scanning 
tunneling microscopy,5l the latter sort of investigation will 
likely be significantly enhanced. As a particularly in- 
triguing example, extensive observations of S/Re(0001) 
have very recently been obtained by Ogletree et al.76 On 
the triangular net of adsorption sites, they found in 
addition to the familiar p(2 X 2), four peculiar higher- 
coverage, lower-symmetry ordered phases, which can only 
be explained in terms of several distinct trio interactions. 
Calculations of interactions within small clusters may well 
involve local relaxations of the substrate and small 
displacements of adatoms from high-symmetry positions. 
While such effects can be readily treated with the San- 
dia's EAM package (and have been assessed in some 
c a s e ~ ~ ~ ~ ~ ) ,  they would require a substantial increase of 
complexity in tight-binding approaches.& Similarly, direct 
interactions between moderately separated transition- 
metal adsorbates is included automatically in the EAM 
formalism without ad hoc assessment of hopping param- 
eters. However, once one starts to worry about gradient 
corrections, one does face analogous questions of adjust- 
ment in EAM. 

Another area of current activity is the study of kinetics 
on surfaces. The barriers to motion between stable 
adsorption sites often play a key role. To compute such 
barriers,76it will generally be necessary to take into account 
multisite interactions;" a particular complication will be 
local distortions in the intermediate state. 
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IV. Conclueions 
In assessing current ability to compute trio interactions, 

we find that there are avariety of schemes that can produce 
numbers that are useful as a starting point for simulation 
studies, which are semiquantitatively sensible but not as 
reliable as most of the energies we have come to expect 
from electronic structure calculation. While far from a 
panacea, EAM offers a convenient and viable way to gauge 
relatively short range interactions. It is particularly 
effective on late-transition and noble metal substrates. 
(However, work is in progress to extend EAM to earlier 
bcc transition metals. It would be quite desirable to assess 
the common replacement of quasi 3-fold sites by long- 
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