

FIG. 1. ⁴He⁺/U rocking curve for the U surface peak near the (110) direction on the UO₂(111) surface. Experimental data are individual points with error bars. Solid curve (—): ideal bulk termination, no surface vibrational enhancement or correlation. Dashed curve (---): 0.19 Å outward relaxation of the U surface layer, surface vibrational enhancement of 1.2 and no correlation.

like oxygen overlayer residing on an undistorted, underlying bulklike U lattice. The present study addresses the possibility of U lateral distortions on this surface. Preliminary rocking curve data for the U surface peak, taken near the $\langle 100 \rangle$ direction for a $UO_2(100)$ vicinal surface [4.5° from (100)], show a symmetrical curve ~ 0.75 atoms/string larger than that expected for a simple bulk termination. Both surface vibrational enhancement and lateral distortion of U terrace atoms can be used to fit the data, although step effects may also play a role in the larger surface peak.

In summary, we have used RBS and Monte Carlo simulations to demonstrate an outward U surface layer relaxation for the UO₂(111) surface.

Acknowledgments: This research was supported by the Department of Energy under Contract No. DE-AS05-79ER10427. The computer facilities were provided by the Computer Science Center of the University of Maryland.

Summary Abstract: Relationship between many-parameter lattice gas systems and simpler models: Easy approximations for \mathcal{T}_c

N. C. Bartelt, T. L. Einstein, and Ellen D. Williams

Department of Physics and Astronomy, University of Maryland, College Park, Maryland 20742

(Received 18 October 1983; accepted 17 November 1983)

PACS numbers: 82.65.Dp, 68.40. + e

While lateral interactions between chemisorbed atoms markedly affect many properties of the overlayer, they resist quantitative measurement because of their small size relative to binding energies and diffusion barriers. A powerful way to probe the interactions is to measure the 2-d phase diagram of the overlayer. The lateral interactions can then be treated as adjustable parameters in theoretical calculations (most often Monte Carlo) of the phase diagram. ¹⁻⁵ In this procedure it is typically necessary to limit the number of parameters (and values for each). Thus, it would be useful to have a method, given T_c for one (typically small) set of interactions, to estimate T_c for a system of the same symmetry for a different (typically larger) set. We have found such a scheme^{2,4} which is remarkably accurate for simple lattice gases for a wide choice of lateral interactions.

We describe the use of this method in terms of a $c(2\times2)$ overlayer on a square lattice, as shown in Fig. 1. A $c(2\times2)$ overlayer forms when there is a repulsive first neighbor interaction energy E_1 . If this is the only interaction, the problem translates directly into the zero field Ising model, for which $E_1\cong1.76~kT_c$, shown as Onsager solution in Fig. 1. However, in real systems there are also longer range interactions, for instance, a second neighbor interaction E_2 , as shown in Fig. 1. To determine the change in T_c caused by the addition of E_2 , we consider the minimum energy required for an atom to move from an ordered site. As indicated by the \times 's in Fig. 1, the central atom can disorder most easily into a nearest neighbor site. If $E_2=0$, the energy cost for this move is $3E_1$, since there is no repulsion from the newly formed vacancy at the "central" site. (In contrast, in mean field the-

^{a)} Work performed under the auspices of the U. S. Department of Energy.
¹H.-J. Gossman, W. M. Gibson, T. Itoh, and L. C. Feldman, J. Vac. Sci. Technol. A 1, 1059 (1983).

²L. Smit, R. M. Tromp, and J. F. van der Veen, presented at the 43rd Annual Conference on Physical Electronics, June, 1983.

³W. P. Ellis and T. N. Taylor, Surf. Sci. **91**, 409 (1980).

⁴T. N. Taylor and W. P. Ellis, Surf. Sci. 107, 249 (1981).

⁵P. W. Tasker, Surf. Sci. 78, 315 (1979).

⁶K. A. Thompson, W. P. Ellis, C. J. Maggiore, T. N. Taylor, and S. M. Valone, Nucl. Instrum. and Methods (in press).

⁷J. H. Barrett, Phys. Rev. B 3, 1527 (1971).

⁸Data from Willis referenced in H. Matzke, J. A. Davies, and N. G. E. Johansson, Can. J. Phys. **49**, 2215 (1971).

⁹L. C. Feldman, P. J. Silverman, and I. Stensgaard, Nucl. Instrum. and Methods 168, 589 (1980).

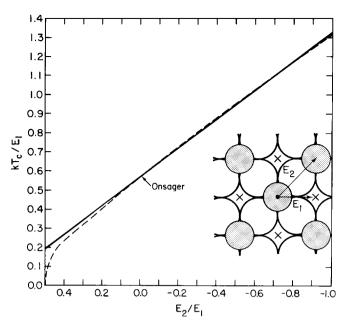


FIG. 1. Inset: $c(2\times 2)$ overlayer on a square lattice of adsorption sites. The lowest energy excitation for the central atom is into one of the four sites marked by \times 's. Graph: Transition temperature as a function of the second neighbor interaction energy for a $c(2\times 2)$ overlayer on a square lattice. Solid line: Eq. (1). Dashed line: Transfer matrix scaling calculation (essentially exact)

ory the adatom goes to a random vacancy with initial excitation energy $4E_1$.) If $E_2 \neq 0$, the energy cost is $3E_1 - 4E_2$. We then scale T_c using these excitation energies as follows:

$$\frac{3E_1 - 4E_2}{T_c(E_2)} = \frac{3E_1}{T_c(0)}$$

or

$$T_c(E_2) = T_c(0) \left(1 - \frac{4}{3} \frac{E_2}{E_1}\right).$$
 (1)

This approximation is plotted in Fig. 1 along with essentially exact values obtained by transfer matrix scaling⁷ calculations.

Equation (1) works extremely well in the range $-1.0 \le E_2/E_1 \le 0.1$. The mechanisms of its failure outside this range illustrate important restrictions on the use of the excitation scheme to predict T_c . First consider the case where $E_2/E_1 \ge 1/2$. Here the $c(2 \times 2)$ structure with ground state energy $4E_2$ per adatom becomes unstable with respect to a (2×1) structure with ground state energy $2E_1$ per atom.

Clearly, to use the excitation scheme the added interactions must not change the symmetry of the overlayer. In the range $0.1 < E_2/E_1 < 1/2$ the impending symmetry change at $E_2/E_1 = 1/2$ complicates the prediction of the minimum energy required to move an atom (i.e., multiatom moves evidently become important) causing the approximation to fail. The excitation scheme for E_2 strongly attractive ($-E_2 > E_1$) fails for a different reason. In this case the nearest neighbor repulsion becomes unimportant compared to the second neighbor attraction, and disordering into one of the sites marked by \times 's is not favored over disordering into a random site. In short, the excitation scheme can be used only if the minimum-energy disordering move is significantly lower in energy than any other possible move.

The excitation scheme can be used for lattice gas systems with a variety of symmetries and hence with different sets of interactions than discussed here, for instance, the $(\sqrt{3} \times \sqrt{3})$ R 30° and (2×2) overlayers on a triangular lattice, the (2×2) on a honeycomb lattice, and the (2×1) on a bcc (110) lattice. In addition, it can be used to estimate the effects of trio (non-pairwise) interactions⁸ on the phase diagram. A discussion of these applications, detailing their accuracy and their range of reliability, will be presented elsewhere.

Acknowledgments: This research was supported by the Department of Energy under Contract No. DE-AS05-79ER10427. The computer facilities were provided by the Computer Science Center of the University of Maryland.

¹W. Y. Ching, D. L. Huber, M. G. Lagally, and G.-C. Wang, Surf. Sci. 77, 550 (1978)

²E. D. Williams, S. L. Cunningham, and W. H. Weinberg, J. Chem. Phys. **68**, 4688 (1978).

³K. Binder and D. P. Landau, Surf. Sci. 108, 503 (1981).

⁴N. C. Bartelt, T. L. Einstein, and P. E. Hunter, Bull. Am. Phys. Soc. 26, 289 (1981).

⁵K. Binder, W. Kinzel, and D. P. Landau, Surf. Sci. 117, 232 (1982).

⁶For example, H. E. Stanley, *Introduction to Phase Transitions and Critical Phenomena* (Oxford University, Oxford, 1971), p. 271.

⁷M. P. Nightingale, Phys. Status Solidi A 83, 561 (1976).

⁸T. L. Einstein, Phys. Rev. B 16, 3411 (1977).

⁹N. C. Bartelt, T. L. Einstein, and E. D. Williams (in preparation).