
Homework #4 — Phys625 — Spring 2004
Deadline: Wednesday, May 5, 2004.
Turn in homework in the class or put it in
the box on the door of Phys 2314 by 3 p.m.

Victor Yakovenko, Associate Professor
Office: Physics 2314

Phone: (301)-405-6151
E-mail: yakovenk@physics.umd.edu

Web page: http://www2.physics.umd.edu/˜yakovenk/teaching/phys625.spring2004

Do not forget to write your name and the homework number!
Equation numbers with the periods, like (3.2.25), refer to the equations of the textbook.

Equation numbers without period, like (5), refer to the equations of this homework.

Generalized Susceptibilities at a Finite Temperature

1. Matsubara density-density correlator [4 points]

Matsubara density-density correlation function for a Fermi gas is defined as

Π(r − r′, τ − τ ′) = i〈T n̂(r, τ) n̂(r′, τ ′)〉, (1)

where T is the chronological product with respect to the Matsubara time τ .

Derive a general expression for the density-density correlator (1) in the momentum
representation, Π(iΩn,q). In order to do that, draw the Feynman diagram that cor-
responds to the calculation of (1) and express Π(iΩn,q) in terms Matsubara Green’s
functions of the noninteracting electrons, G(iωm,p) = 1/[iωm − εp + µ]. Summing
over the intermediate frequency ωm = (2m + 1)πT of the loop, obtain the following
expression

Π(iΩn,q) = 2
∫

d3p

(2π)3

f(εp+q) − f(εp)

iΩn − εp+q + εp
, (2)

where f(ε) is the thermal Fermi distribution function.

Useful formula:
∞∑

n=−∞

1

(2n + 1)2 + a2
=

π

2a
tanh

πa

2
. (3)

(Can you derive this formula?)

2. From Matsubara to real frequencies [4 points]

The (retarded) dynamical susceptibility χ(ω) is given by the Kubo formula [see Sec.
6.4]:

χ(ω) = i
∫

∞

0
dt eiωt〈[Â(t), B̂(t)]〉T , (4)

where t and ω are the real time and frequency, Â(t) and B̂(t) are the operators in the
Heisenberg representation, and the averaging is performed over the Gibbs distribution
with the temperature T .

Consider the case where the operators Â and B̂ are bilinear in creation and destruction
operators:

Â(t) =
∑
kl

Akle
−i(Ek−El)tâ+

k
âl, B̂(t) =

∑
kl

Bkle
−i(Ek−El)tâ+

k
âl. (5)
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where Akl and Bkl are the matrix elements of Â and B̂ between the energy eigenstates
k and l.

Substituting Eq. (5) into Eq. (4) and performing the thermal averaging for non-
interacting particles, show that

χ(ω) =
∑
kl

AklBlk

f(El) − f(Em)

ω − El + Ek + i0
, (6)

where f(E) is the thermal Fermi or Bose distribution function.

Notice the similarity between Eq. (6) and Eq. (2), provided the indices k and l represent
the momenta p and q. It is clear that Eq. (6) can be obtained from Eq. (2) by the
analytical continuation iΩn → ω + i0.

3. Transition temperature of the Peierls instability

Let us consider an external potential U(r) acting as a perturbation on electrons:

Ĥ1 =
∫

d3r U(r)n̂(r). (7)

Then, the density response function is

n(q) = χ(q) U(q) (8)

Here we are interested in the static case ω = 0.

Let us consider 1D electron gas with the Fermi momentum kF . In the following calcu-
lations, use the linearized dispersion law for electrons:

εk − µ ≈ vF δk where δk = k − kF for k close to +kF

εk − µ ≈ −vF δk where δk = k + kF for k close to −kF ,

where vF is the Fermi velocity.

(a) [4 points] Using Eq. (2) or (6), calculate the response function χ in Eq. (8)
q = 2kF at a temperature T for noninteracting electrons.

(b) [4 points] Suppose electrons interact with an amplitude g. Considering the
following series of diagrams:
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where the circle represents the interaction vertex g, calculate the renormalized
susceptibility χ at q = 2kF . Determine the temperature Tc where χ diverges.
Interpret the result.

Hint: The calculations are similar to those for the superconducting instability consid-
ered in Sec. 10.2.


