Homework \#1 - Phys625 - Spring 2004
Deadline: Wednesday, March 31, 2004.
Turn in homework in the class or put it in
the box on the door of Phys 2314 by 3 p.m.

Victor Yakovenko, Associate Professor
Office: Physics 2314
Phone: (301)-405-6151
E-mail: yakovenk@physics.umd.edu
Web page: http://www2.physics.umd.edu/~yakovenk/teaching/phys625.spring2004
Do not forget to write your name and the homework number!

Second Quantization

1. [6 points] Quantum chain of oscillators

Consider a chain of atoms with masses m connected by springs of rigidity γ :

$$
\begin{equation*}
\mathcal{H}_{p h}=\sum_{n=-\infty}^{\infty} \frac{p_{n}^{2}}{2 m}+\frac{\gamma}{2}\left(u_{n}-u_{n+1}\right)^{2} \tag{1}
\end{equation*}
$$

where u_{n} are the displacements of atoms from their equilibrium positions, and p_{n} are the corresponding conjugate momenta.
Consider the problem in quantum mechanics, i.e. treat \hat{u}_{n} and \hat{p}_{n} as operators satisfying the canonical commutation relation $\left[\hat{p}_{n}, \hat{u}_{n^{\prime}}\right]=-i \hbar \delta_{n, n^{\prime}}$.
Diagonalize the quantum Hamiltonian (1). In order to do this, first make Fourier transform: $\hat{u}_{n} \rightarrow \hat{u}_{k}, \hat{p}_{n} \rightarrow \hat{p}_{k}$, and then introduce the creation and destruction operators of phonons \hat{a}_{k}^{+}and \hat{a}_{k} by the following formula:

$$
\begin{equation*}
\hat{u}_{k}=\sqrt{\frac{\hbar}{2 m \omega(k)}}\left(\hat{a}_{k}+\hat{a}_{k}^{+}\right), \quad \hat{p}_{k}=-i \sqrt{\frac{\hbar m \omega(k)}{2}}\left(\hat{a}_{k}-\hat{a}_{k}^{+}\right) . \tag{2}
\end{equation*}
$$

Write Hamiltonian (1) in terms of \hat{a}_{k}^{+}and \hat{a}_{k} and determine the phonon spectrum $\omega(k)$. Calculate the ground state energy of the system.
2. [6 points] Interaction between phonons

Suppose the springs have small anharmonicity γ^{\prime}, so the Hamiltonian of the system also has the following term:

$$
\begin{equation*}
\mathcal{H}_{p h}^{\prime}=\sum_{n=-\infty}^{\infty} \gamma^{\prime}\left(u_{n}-u_{n+1}\right)^{3} . \tag{3}
\end{equation*}
$$

Rewrite Hamiltonian (3) in terms of the phonon operators \hat{a}_{k}^{+}and \hat{a}_{k} introduced in the previous problem. What can you say about momentum conservation of the phonons in Hamiltonian (3)?

3. Electron-phonon interaction

Suppose electrons are also present on the same chain of atoms. Electrons can make transitions between neighboring lattice sites with the amplitude of probability t_{n} :

$$
\begin{equation*}
\mathcal{H}_{e l}=\sum_{n=-\infty}^{\infty} t_{n} \hat{\psi}_{n+1}^{+} \hat{\psi}_{n}+\text { H.c. } \tag{4}
\end{equation*}
$$

where $\hat{\psi}_{n}^{+}$and $\hat{\psi}_{n}$ are the fermion operators creating and destroying electrons on the site n.

In the case $t_{n}=t=$ const, diagonalize Hamiltonian (4) by the Fourier transform: $\hat{\psi}_{n} \rightarrow \hat{\psi}_{k}$, and determine the spectrum $\varepsilon(k)$ of electronic excitations [4 points].
In general, the amplitude of electron tunneling t_{n} depends on the relative displacement of the neighboring atoms $u_{n}-u_{n+1}$. Let us expand t_{n} as a function of $\left(u_{n}-u_{n+1}\right)$ to the first order: $t_{n}=t+\left(u_{n}-u_{n+1}\right) t^{\prime}$. When substituted in Hamiltonian (4), the second term gives the following term in the Hamiltonian:

$$
\begin{equation*}
\mathcal{H}_{e l-p h}=t^{\prime} \sum_{n=-\infty}^{\infty}\left(u_{n}-u_{n+1}\right) \hat{\psi}_{n+1}^{+} \hat{\psi}_{n}+\text { H.c.. } \tag{5}
\end{equation*}
$$

Rewrite Hamiltonian (5) in terms of the phonon and electron operators \hat{a}_{k} and $\hat{\psi}_{k}$ and their conjugates. Comment on conservation of momentum. Hamiltonian (5) describes electron-phonon interaction [6 points].

